Switch to: References

Add citations

You must login to add citations.
  1. Relative to Any Non-Hyperarithmetic Set.Noam Greenberg, Antonio Montalbán & Theodore A. Slaman - 2013 - Journal of Mathematical Logic 13 (1):1250007.
    We prove that there is a structure, indeed a linear ordering, whose degree spectrum is the set of all non-hyperarithmetic degrees. We also show that degree spectra can distinguish measure from category.
    Direct download (7 more)  
    Export citation  
    Bookmark   1 citation  
  • Degrees of Categoricity and the Hyperarithmetic Hierarchy.Barbara F. Csima, Johanna N. Y. Franklin & Richard A. Shore - 2013 - Notre Dame Journal of Formal Logic 54 (2):215-231.
    We study arithmetic and hyperarithmetic degrees of categoricity. We extend a result of E. Fokina, I. Kalimullin, and R. Miller to show that for every computable ordinal $\alpha$, $\mathbf{0}^{}$ is the degree of categoricity of some computable structure $\mathcal{A}$. We show additionally that for $\alpha$ a computable successor ordinal, every degree $2$-c.e. in and above $\mathbf{0}^{}$ is a degree of categoricity. We further prove that every degree of categoricity is hyperarithmetic and show that the index set of structures with degrees (...)
    Direct download (6 more)  
    Export citation  
    Bookmark   5 citations  
  • $\Pi _{1}^{0}$ Classes and Strong Degree Spectra of Relations.John Chisholm, Jennifer Chubb, Valentina S. Harizanov, Denis R. Hirschfeldt, Carl G. Jockusch, Timothy McNicholl & Sarah Pingrey - 2007 - Journal of Symbolic Logic 72 (3):1003 - 1018.
    We study the weak truth-table and truth-table degrees of the images of subsets of computable structures under isomorphisms between computable structures. In particular, we show that there is a low c.e. set that is not weak truth-table reducible to any initial segment of any scattered computable linear ordering. Countable $\Pi _{1}^{0}$ subsets of 2ω and Kolmogorov complexity play a major role in the proof.
    Direct download (8 more)  
    Export citation  
    Bookmark   1 citation  
  • Tree-Automatic Well-Founded Trees.Alexander Kartzow, Jiamou Liu & Markus Lohrey - 2012 - In S. Barry Cooper (ed.), How the World Computes. pp. 363--373.