Citations of work:

Hao Wang (1996). A Logical Journey: From Gödel to Philosophy.

12 found
Order:
Are we missing citations?

PhilPapers citations & references are currently in beta testing. We expect to add many more in the future.

Meanwhile, you can use our bibliography tool to import references for this or another work.

Or you can directly add citations for the above work:

Search for work by author name and title
Add directly by record ID

  1.  29
    Richness and Reflection.Neil Barton - 2016 - Philosophia Mathematica 24 (3):330-359.
    A pervasive thought in contemporary philosophy of mathematics is that in order to justify reflection principles, one must hold universism: the view that there is a single universe of pure sets. I challenge this kind of reasoning by contrasting universism with a Zermelian form of multiversism. I argue that if extant justifications of reflection principles using notions of richness are acceptable for the universist, then the Zermelian can use similar justifications. However, I note that for some forms of richness argument, (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark  
  2.  82
    Intuition and Its Object.Kai Hauser - 2015 - Axiomathes 25 (3):253-281.
    The view that mathematics deals with ideal objects to which we have epistemic access by a kind of perception has troubled many thinkers. Using ideas from Husserl’s phenomenology, I will take a different look at these matters. The upshot of this approach is that there are non-material objects and that they can be recognized in a process very closely related to sense perception. In fact, the perception of physical objects may be regarded as a special case of this more universal (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  3.  29
    Arithmetic, Mathematical Intuition, and Evidence.Richard Tieszen - 2015 - Inquiry: An Interdisciplinary Journal of Philosophy 58 (1):28-56.
    This paper provides examples in arithmetic of the account of rational intuition and evidence developed in my book After Gödel: Platonism and Rationalism in Mathematics and Logic . The paper supplements the book but can be read independently of it. It starts with some simple examples of problem-solving in arithmetic practice and proceeds to general phenomenological conditions that make such problem-solving possible. In proceeding from elementary ‘authentic’ parts of arithmetic to axiomatic formal arithmetic, the paper exhibits some elements of the (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  4. Monads and Mathematics: Gödel and Husserl.Richard Tieszen - 2012 - Axiomathes 22 (1):31-52.
    In 1928 Edmund Husserl wrote that “The ideal of the future is essentially that of phenomenologically based (“philosophical”) sciences, in unitary relation to an absolute theory of monads” (“Phenomenology”, Encyclopedia Britannica draft) There are references to phenomenological monadology in various writings of Husserl. Kurt Gödel began to study Husserl’s work in 1959. On the basis of his later discussions with Gödel, Hao Wang tells us that “Gödel’s own main aim in philosophy was to develop metaphysics—specifically, something like the monadology of (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  5. Gödel's Philosophical Program and Husserl's Phenomenology.Xiaoli Liu - 2010 - Synthese 175 (1):33 - 45.
    Gödel’s philosophical rationalism includes a program for “developing philosophy as an exact science.” Gödel believes that Husserl’s phenomenology is essential for the realization of this program. In this article, by analyzing Gödel’s philosophy of idealism, conceptual realism, and his concept of “abstract intuition,” based on clues from Gödel’s manuscripts, I try to investigate the reasons why Gödel is strongly interested in Husserl’s phenomenology and why his program for an exact philosophy is unfinished. One of the topics that has attracted much (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  6.  11
    Gödel’s Philosophical Program and Husserl’s Phenomenology.Xiaoli Liu - 2010 - Synthese 175 (1):33-45.
  7.  31
    Chateaubriand's Realist Conception of Logic.Frank Thomas Sautter - 2010 - Axiomathes 20 (2-3):357-364.
    I present the realist conception of logic supported by Oswaldo Chateaubriand which integrates ontological and epistemological aspects, opposing it to mathematical and linguistic conceptions. I give special attention to the peculiarities of his hierarchy of types in which some properties accumulate and others have a multiple degree. I explain such deviations of the traditional conception, showing the underlying purpose in each of these peculiarities. I compare the ideas of Chateaubriand to the similar ideas of Frege, Tarski and Gödel. I suggest (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  8.  51
    Naturalism and Abstract Entities.Feng Ye - 2010 - International Studies in the Philosophy of Science 24 (2):129-146.
    I argue that the most popular versions of naturalism imply nominalism in philosophy of mathematics. In particular, there is a conflict in Quine's philosophy between naturalism and realism in mathematics. The argument starts from a consequence of naturalism on the nature of human cognitive subjects, physicalism about cognitive subjects, and concludes that this implies a version of nominalism, which I will carefully characterize. The indispensability of classical mathematics for the sciences and semantic/confirmation holism does not affect the argument. The disquotational (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  9.  22
    Gödel's Introduction to Logic in 1939.P. Cassou-Nogues - 2009 - History and Philosophy of Logic 30 (1):69-90.
    This article presents three extracts from the introductory course in mathematical logic that Gödel gave at the University of Notre Dame in 1939. The lectures include a few digressions, which give insight into Gödel's views on logic prior to his philosophical papers of the 1940s. The first extract is Gödel's first lecture. It gives the flavour of Gödel's leisurely style in this course. It also includes a curious definition of logic and a discussion of implication in logic and natural language. (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  10.  40
    Gödel on Concepts.Gabriella Crocco - 2006 - History and Philosophy of Logic 27 (2):171-191.
    This article is an attempt to present Gödel's discussion on concepts, from 1944 to the late 1970s, in particular relation to the thought of Frege and Russell. The discussion takes its point of departure from Gödel's claim in notes on Bernay's review of ?Russell's mathematical logic?. It then retraces the historical background of the notion of intension which both Russell and Gödel use, and offers some grounds for claiming that Gödel consistently considered logic as a free-type theory of concepts, called (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  11. Deflating skolem.F. A. Muller - 2005 - Synthese 143 (3):223-253.
    . Remarkably, despite the tremendous success of axiomatic set-theory in mathematics, logic and meta-mathematics, e.g., model-theory, two philosophical worries about axiomatic set-theory as the adequate catch of the set-concept keep haunting it. Having dealt with one worry in a previous paper in this journal, we now fulfil a promise made there, namely to deal with the second worry. The second worry is the Skolem Paradox and its ensuing Skolemite skepticism. We present a comparatively novel and simple analysis of the argument (...)
    Direct download (8 more)  
    Translate
     
     
    Export citation  
     
    Bookmark  
  12.  40
    A Common Ground and Some Surprising Connections.Edward N. Zalta - 2002 - Southern Journal of Philosophy 40 (S1):1-25.
    This paper serves as a kind of field guide to certain passages in the literature which bear upon the foundational theory of abstract objects. The foundational theory assimilates ideas from key philosophers in both the analytical and phenomenological traditions. I explain how my foundational theory of objects serves as a common ground where analytic and phenomenological concerns meet. I try to establish how the theory offers a logic that systematizes a well-known phenomenological kind of entity, and I try to show (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark