Citations of work:

Stephen Yablo (2006). Circularity and Paradox.

9 found
Order:
Are we missing citations?

PhilPapers citations & references are currently in beta testing. We expect to add many more in the future.

Meanwhile, you can use our bibliography tool to import references for this or another work.

Or you can directly add citations for the above work:

Search for work by author name and title
Add directly by record ID

  1. A Purely Recombinatorial Puzzle.Fritz Peter - 2017 - Noûs 51 (3):547-564.
    A new puzzle of modal recombination is presented which relies purely on resources of first-order modal logic. It shows that naive recombinatorial reasoning, which has previously been shown to be inconsistent with various assumptions concerning propositions, sets and classes, leads to inconsistency by itself. The context sensitivity of modal expressions is suggested as the source of the puzzle, and it is argued that it gives us reason to reconsider the assumption that the notion of metaphysical necessity is in good standing.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  2.  78
    Indefinite Divisibility.Jeffrey Sanford Russell - 2016 - Inquiry: An Interdisciplinary Journal of Philosophy 59 (3):239-263.
    Some hold that the lesson of Russell’s paradox and its relatives is that mathematical reality does not form a ‘definite totality’ but rather is ‘indefinitely extensible’. There can always be more sets than there ever are. I argue that certain contact puzzles are analogous to Russell’s paradox this way: they similarly motivate a vision of physical reality as iteratively generated. In this picture, the divisions of the continuum into smaller parts are ‘potential’ rather than ‘actual’. Besides the intrinsic interest of (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark  
  3. When Do Some Things Form a Set?Simon Hewitt - 2015 - Philosophia Mathematica 23 (3):311-337.
    This paper raises the question under what circumstances a plurality forms a set, parallel to the Special Composition Question for mereology. The range of answers that have been proposed in the literature are surveyed and criticised. I argue that there is good reason to reject both the view that pluralities never form sets and the view that pluralities always form sets. Instead, we need to affirm restricted set formation. Casting doubt on the availability of any informative principle which will settle (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  4. Dangerous Reference Graphs and Semantic Paradoxes.Landon Rabern, Brian Rabern & Matthew Macauley - 2013 - Journal of Philosophical Logic 42 (5):727-765.
    The semantic paradoxes are often associated with self-reference or referential circularity. Yablo (Analysis 53(4):251–252, 1993), however, has shown that there are infinitary versions of the paradoxes that do not involve this form of circularity. It remains an open question what relations of reference between collections of sentences afford the structure necessary for paradoxicality. In this essay, we lay the groundwork for a general investigation into the nature of reference structures that support the semantic paradoxes and the semantic hypodoxes. We develop (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  5.  92
    Theories of Truth Without Standard Models and Yablo’s Sequences.Eduardo Alejandro Barrio - 2010 - Studia Logica 96 (3):375-391.
    The aim of this paper is to show that it’s not a good idea to have a theory of truth that is consistent but ω -inconsistent. In order to bring out this point, it is useful to consider a particular case: Yablo’s Paradox. In theories of truth without standard models, the introduction of the truth-predicate to a first order theory does not maintain the standard ontology. Firstly, I exhibit some conceptual problems that follow from so introducing it. Secondly, I show (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  6.  46
    Jump Liars and Jourdain’s Card Via the Relativized T-Scheme.Ming Hsiung - 2009 - Studia Logica 91 (2):239-271.
    A relativized version of Tarski's T-scheme is introduced as a new principle of the truth predicate. Under the relativized T-scheme, the paradoxical objects, such as the Liar sentence and Jourdain's card sequence, are found to have certain relative contradictoriness. That is, they are contradictory only in some frames in the sense that any valuation admissible for them in these frames will lead to a contradiction. It is proved that for any positive integer n, the n-jump liar sentence is contradictory in (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  7.  44
    Reference, Paradoxes and Truth.Michał Walicki - 2009 - Synthese 171 (1):195 - 226.
    We introduce a variant of pointer structures with denotational semantics and show its equivalence to systems of boolean equations: both have the same solutions. Taking paradoxes to be statements represented by systems of equations (or pointer structures) having no solutions, we thus obtain two alternative means of deciding paradoxical character of statements, one of which is the standard theory of solving boolean equations. To analyze more adequately statements involving semantic predicates, we extend propositional logic with the assertion operator and give (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  8.  51
    The Elimination of Self-Reference: Generalized Yablo-Series and the Theory of Truth.P. Schlenker - 2007 - Journal of Philosophical Logic 36 (3):251-307.
    Although it was traditionally thought that self-reference is a crucial ingredient of semantic paradoxes, Yablo (1993, 2004) showed that this was not so by displaying an infinite series of sentences none of which is self-referential but which, taken together, are paradoxical. Yablo's paradox consists of a countable series of linearly ordered sentences s(0), s(1), s(2),... , where each s(i) says: For each k > i, s(k) is false (or equivalently: For no k > i is s(k) true). We generalize Yablo's (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  9.  46
    How to Eliminate Self-Reference: A Précis.Philippe Schlenker - 2007 - Synthese 158 (1):127-138.
    We provide a systematic recipe for eliminating self-reference from a simple language in which semantic paradoxes (whether purely logical or empirical) can be expressed. We start from a non-quantificational language L which contains a truth predicate and sentence names, and we associate to each sentence F of L an infinite series of translations h 0(F), h 1(F), ..., stated in a quantificational language L *. Under certain conditions, we show that none of the translations is self-referential, but that any one (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   4 citations