Switch to: References

Citations of:

Hilbert’s Program

In Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy. The Metaphysics Research Lab, Center for the Study of Language and Information, Stanford University (2003)

Add citations

You must login to add citations.
  1. Lieber Herr Bernays!, Lieber Herr Gödel! Gödel on Finitism, Constructivity and Hilbert's Program.Solomon Feferman - 2008 - Dialectica 62 (2):179–203.
    This is a survey of Gödel's perennial preoccupations with the limits of finitism, its relations to constructivity, and the significance of his incompleteness theorems for Hilbert's program, using his published and unpublished articles and lectures as well as the correspondence between Bernays and Gödel on these matters. There is also an important subtext, namely the shadow of Hilbert that loomed over Gödel from the beginning to the end.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • On Some Properties of Humanly Known and Humanly Knowable Mathematics.Jason L. Megill, Tim Melvin & Alex Beal - 2014 - Axiomathes 24 (1):81-88.
    We argue that the set of humanly known mathematical truths (at any given moment in human history) is finite and so recursive. But if so, then given various fundamental results in mathematical logic and the theory of computation (such as Craig’s in J Symb Log 18(1): 30–32(1953) theorem), the set of humanly known mathematical truths is axiomatizable. Furthermore, given Godel’s (Monash Math Phys 38: 173–198, 1931) First Incompleteness Theorem, then (at any given moment in human history) humanly known mathematics must (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  • Existence Assumptions and Logical Principles: Choice Operators in Intuitionistic Logic.Corey Edward Mulvihill - 2015 - Dissertation, University of Waterloo
    Hilbert’s choice operators τ and ε, when added to intuitionistic logic, strengthen it. In the presence of certain extensionality axioms they produce classical logic, while in the presence of weaker decidability conditions for terms they produce various superintuitionistic intermediate logics. In this thesis, I argue that there are important philosophical lessons to be learned from these results. To make the case, I begin with a historical discussion situating the development of Hilbert’s operators in relation to his evolving program in the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  • Unfolding Finitist Arithmetic.Solomon Feferman & Thomas Strahm - 2010 - Review of Symbolic Logic 3 (4):665-689.
    The concept of the (full) unfolding of a schematic system is used to answer the following question: Which operations and predicates, and which principles concerning them, ought to be accepted if one has accepted ? The program to determine for various systems of foundational significance was previously carried out for a system of nonfinitist arithmetic, ; it was shown that is proof-theoretically equivalent to predicative analysis. In the present paper we work out the unfolding notions for a basic schematic system (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   2 citations