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ABSTRACT 
How engineering enabled abstraction—in computer science.  
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K.0 [Computing Milieux]: Philosophy of engineering and 
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1. TURNING DREAMS INTO REALITY 
In 1944, Erwin Schrödinger [5] pondered the nature of life. 

[L]iving matter, while not eluding the ‘laws of physics’ … is 

likely to involve ‘other laws,’ [which] will form just as 

integral a part of [its] science. 

But if biology is not just physics what else is there? Schrödinger’s 

question is a special case of the more general question: can there 

be independent higher level laws of nature if everything is 

reducible to the fundamental laws of physics? The computer 

science notion of level of abstraction explains why there can—

illustrating how computational thinking can resolve one of 

philosophy’s most vexing problems. (Section 3 explains the 

essence of the solution.) This paper explores why the solution 

came from computer science rather than from engineering.  

Scientists analyze what exists. Those of us in computer science 

and engineering build new things. A poetic—if overused—way to 

put this is to say that we turn our dreams into reality. We 

transform ideas—which exist only as subjective experience—into 

phenomena of the material world.  

  

In raising the issue of the relationship between mind and the 

physical world I am not claiming to explain consciousness. But I 

am taking mind as a given and claiming that the relationship 

between ideas and physical reality is at the heart of the difference 

between engineering and computer science. Both disciplines 

begin with ideas. Computer science turns ideas into a symbolic 

reality; engineering turns ideas into a material reality. Although 

perhaps unremarkably true, the consequences are far-reaching.  

2. ENGINERING & COMPUTER SCIENCE 
Intellectual leverage: levels of abstraction vs. mathematical 

modeling and functional decomposition. Computer science gains 

intellectual leverage by building levels of abstraction, the 

implementation of new types and operations in terms of existing 

types and operations. A level of abstraction is always 

operationally reducible to an underlying domain, but it is 

characterized independently—what Searle calls causal but not 

ontological reducibility.1 Levels of abstraction allow computer 

scientists to create (symbolic but real) worlds that obey laws that 

are independent of their underlying platforms.  

Engineering gains intellectual leverage through mathematical 

modeling and functional decomposition. Both are taken only to 

approximate an underlying reality. Neither yields ontologically 

independent entities. The National Academy of Engineering 

points [3] out that “engineering systems often fail … because of 

[unanticipated low-level interactions (such as acoustic resonance) 

among well designed components] that could not be identified in 

isolation from the operation of the full systems.”  

Symbolic floor vs. no floor. By harnessing electrical signals as 

bits engineering enabled computer science. Bits are both real 

(material) and symbolic (no error bars). Computer science builds 

levels of abstraction on a base of bits—and relies on engineering 

when faced with issues beyond the bit—such as performance.  

But bits prevent computer science from working with the full 

richness of reality. Every software model has a fixed bottom 

level—making it impossible to explore phenomena that require 

dynamically varying lower levels. A good example is a biological 

arms race. Imagine a plant growing bark to protect itself from an 

insect. The insect may then develop a way to bore through bark. 

The plant may develop a toxin—for which the insect develops an 

anti-toxin. There are no software models in which evolutionary 

creativity of this sort occurs. The problem is that this sort of 

creativity is built upon varying levels of physics and biochemistry. 

                                                                 

1  In Mind [4] Searle claims that this nicely drawn distinction 

explains subjective experience. He doesn’t say how. 



Unless all of biochemistry is built in from the start—i.e., unless 

the model’s bottom level is the lowest level with any possible 

relevance, which is far beyond our computational means—we 

cannot build models with this degree of complexity and creativity. 

Engineering (like science) does not have this problem. It is both 

cursed and blessed by its attachment to physicality. It is cursed 

because one can never be sure of the ground on which one stands 

—raw nature does not provide a stable base. It is blessed because 

one can dig as deeply as needed for any particular problem. 

Thought externalization: software vs. design documents and 

material objects. The goal of both the computer scientist and the 

engineer is to turn ideas into phenomena in the world. (The goal 

of the scientist is to turn physical phenomena into ideas.) The first 

step is to externalize thought. By thought externalization I mean 

not just to act on a thought but to represent the thought outside 

the realm of subjective experience in a form that allows it to be 

examined and explored. Computer science and engineering 

externalize thought in different ways.  

An enduring goal [2] of computer science is to develop languages 

that have two important properties. (a) The language may be used 

to externalize thought. (b) Expressions in the language can act in 

the material world—that is, the language is executable. This is 

remarkably different from anything that has come before. Human 

beings have always used language to externalize thought. But to 

have an effect in the world, written expression has always 

depended on human beings. Words on paper mean nothing unless 

someone reads them; software acts without human intervention.  

Engineers externalize thought either by creating designs or by 

building objects. Designs—even computer-based designs—have 

the same limitation as other traditional languages. They require a 

person to understand them. The engineer who builds an object has 

indeed turned thought into a material phenomenon. But the 

thought is gone; all that’s left is the physical realization. To 

recover the thought requires reverse engineering. In computer 

science externalized thought is executable; in engineering it isn’t. 

3. THE REDUCTIONIST BLIND SPOT 
Here’s how levels of abstraction resolve the question posed at the 

beginning. (See [1] and [2].) In the Game of Life, the rules are 

analogous to the fundamental laws of physics: they determine 

everything that happens on a Game of Life grid. Nevertheless 

there can be higher level laws that are not derivable from them.  

Certain Game of Life configurations produce patterns. One can 

implement arbitrary Turing machines by arranging Game of Life 

patterns. Computability theory applies to these Turing machines. 

Thus while not eluding the Game of Life rules, new laws (i.e., 

computability theory) that are independent of the Game of Life 

rules apply at the Turing machine level—just as Schrödinger said.  

Furthermore, conclusions about Turing machines apply to Game 

of Life grid cells. Because the halting problem is undecidable, it is 

undecidable whether an arbitrary Game of Life configuration will 

reach a stable state. So, not only are there independent higher 

level laws, those laws have implications for the fundamental 

elements of the Game of Life. I call this downward entailment, a 

scientifically acceptable alternative to downward causation.  

Like all levels of abstraction, Game of Life patterns are 

epiphenomenal—they have no causal power. It is the elementary 

Game of Life rules that turn the causal crank. Why not reduce 

away these epiphenomena? Reducing away a level of abstraction 

results in a reductionist blind spot. No set of equations over the 

domain of Game of Life grid cells can describe the computations 

performed by a Game of Life Turing machine—unless the 

equations themselves model a Turing machine. The laws that 

characterize regularities at higher levels of abstraction are 

impossible to express when the abstractions are reduced away.  

This perspective applies beyond computer models. Nature—a 

“blind programmer”—builds levels of abstraction, a phenomenon 

sometimes referred to as emergence. This may be encapsulated as 

the principle of emergence: extant levels of abstraction—naturally 

occurring or man-made, static (at equilibrium) or dynamic (far 

from equilibrium)—are those whose implementations have 

materialized and whose environments support their persistence. 

4. SUMMARY 
Engineering has no stable base. Engineers must always be 

concerned about the possibility of lower level physical effects—

such as O-rings not functioning as sealants if the temperature is 

too low.2 Consequently, engineering has not been in an 

intellectual position to develop the notion of level-of-abstraction. 

But with its gift of the bit to computer science, engineering 

created a world that is both real and symbolic. Computer science 

developed the level-of-abstraction as a way to gain intellectual 

leverage over that world—and then applied that concept to solve a 

long-standing problem in the philosophy of science. 
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2  Every implementation of a level of abstraction has feasibility 

conditions. Understanding safety margins as means to ensure 

that feasibility conditions are met would encourage engineering 

to operate in terms of levels of abstraction. Engineering designs 

often have safety factors where software has assertions. 


