
Bits don’t have error bars

 Russ Abbott

Department of Computer Science
California State University

Los Angeles, Ca
01-310-621-3805

Russ.Abbott@GMail.com

ABSTRACT
How engineering enabled abstraction—in computer science.

Categories and Subject Descriptors

K.0 [Computing Milieux]: Philosophy of engineering and

computer science

General Terms (none)

Keywords

Abstraction, emergence, level of abstraction, philosophy of

computer science, philosophy of engineering, philosophy of

science, reductionism.

1. TURNING DREAMS INTO REALITY
In 1944, Erwin Schrödinger [5] pondered the nature of life.

[L]iving matter, while not eluding the ‘laws of physics’ … is

likely to involve ‘other laws,’ [which] will form just as

integral a part of [its] science.

But if biology is not just physics what else is there? Schrödinger’s

question is a special case of the more general question: can there

be independent higher level laws of nature if everything is

reducible to the fundamental laws of physics? The computer

science notion of level of abstraction explains why there can—

illustrating how computational thinking can resolve one of

philosophy’s most vexing problems. (Section 3 explains the

essence of the solution.) This paper explores why the solution

came from computer science rather than from engineering.

Scientists analyze what exists. Those of us in computer science

and engineering build new things. A poetic—if overused—way to

put this is to say that we turn our dreams into reality. We

transform ideas—which exist only as subjective experience—into

phenomena of the material world.

In raising the issue of the relationship between mind and the

physical world I am not claiming to explain consciousness. But I

am taking mind as a given and claiming that the relationship

between ideas and physical reality is at the heart of the difference

between engineering and computer science. Both disciplines

begin with ideas. Computer science turns ideas into a symbolic

reality; engineering turns ideas into a material reality. Although

perhaps unremarkably true, the consequences are far-reaching.

2. ENGINERING & COMPUTER SCIENCE
Intellectual leverage: levels of abstraction vs. mathematical

modeling and functional decomposition. Computer science gains

intellectual leverage by building levels of abstraction, the

implementation of new types and operations in terms of existing

types and operations. A level of abstraction is always

operationally reducible to an underlying domain, but it is

characterized independently—what Searle calls causal but not

ontological reducibility.1 Levels of abstraction allow computer

scientists to create (symbolic but real) worlds that obey laws that

are independent of their underlying platforms.

Engineering gains intellectual leverage through mathematical

modeling and functional decomposition. Both are taken only to

approximate an underlying reality. Neither yields ontologically

independent entities. The National Academy of Engineering

points [3] out that “engineering systems often fail … because of

[unanticipated low-level interactions (such as acoustic resonance)

among well designed components] that could not be identified in

isolation from the operation of the full systems.”

Symbolic floor vs. no floor. By harnessing electrical signals as

bits engineering enabled computer science. Bits are both real

(material) and symbolic (no error bars). Computer science builds

levels of abstraction on a base of bits—and relies on engineering

when faced with issues beyond the bit—such as performance.

But bits prevent computer science from working with the full

richness of reality. Every software model has a fixed bottom

level—making it impossible to explore phenomena that require

dynamically varying lower levels. A good example is a biological

arms race. Imagine a plant growing bark to protect itself from an

insect. The insect may then develop a way to bore through bark.

The plant may develop a toxin—for which the insect develops an

anti-toxin. There are no software models in which evolutionary

creativity of this sort occurs. The problem is that this sort of

creativity is built upon varying levels of physics and biochemistry.

1 In Mind [4] Searle claims that this nicely drawn distinction

explains subjective experience. He doesn’t say how.

Unless all of biochemistry is built in from the start—i.e., unless

the model’s bottom level is the lowest level with any possible

relevance, which is far beyond our computational means—we

cannot build models with this degree of complexity and creativity.

Engineering (like science) does not have this problem. It is both

cursed and blessed by its attachment to physicality. It is cursed

because one can never be sure of the ground on which one stands

—raw nature does not provide a stable base. It is blessed because

one can dig as deeply as needed for any particular problem.

Thought externalization: software vs. design documents and

material objects. The goal of both the computer scientist and the

engineer is to turn ideas into phenomena in the world. (The goal

of the scientist is to turn physical phenomena into ideas.) The first

step is to externalize thought. By thought externalization I mean

not just to act on a thought but to represent the thought outside

the realm of subjective experience in a form that allows it to be

examined and explored. Computer science and engineering

externalize thought in different ways.

An enduring goal [2] of computer science is to develop languages

that have two important properties. (a) The language may be used

to externalize thought. (b) Expressions in the language can act in

the material world—that is, the language is executable. This is

remarkably different from anything that has come before. Human

beings have always used language to externalize thought. But to

have an effect in the world, written expression has always

depended on human beings. Words on paper mean nothing unless

someone reads them; software acts without human intervention.

Engineers externalize thought either by creating designs or by

building objects. Designs—even computer-based designs—have

the same limitation as other traditional languages. They require a

person to understand them. The engineer who builds an object has

indeed turned thought into a material phenomenon. But the

thought is gone; all that’s left is the physical realization. To

recover the thought requires reverse engineering. In computer

science externalized thought is executable; in engineering it isn’t.

3. THE REDUCTIONIST BLIND SPOT
Here’s how levels of abstraction resolve the question posed at the

beginning. (See [1] and [2].) In the Game of Life, the rules are

analogous to the fundamental laws of physics: they determine

everything that happens on a Game of Life grid. Nevertheless

there can be higher level laws that are not derivable from them.

Certain Game of Life configurations produce patterns. One can

implement arbitrary Turing machines by arranging Game of Life

patterns. Computability theory applies to these Turing machines.

Thus while not eluding the Game of Life rules, new laws (i.e.,

computability theory) that are independent of the Game of Life

rules apply at the Turing machine level—just as Schrödinger said.

Furthermore, conclusions about Turing machines apply to Game

of Life grid cells. Because the halting problem is undecidable, it is

undecidable whether an arbitrary Game of Life configuration will

reach a stable state. So, not only are there independent higher

level laws, those laws have implications for the fundamental

elements of the Game of Life. I call this downward entailment, a

scientifically acceptable alternative to downward causation.

Like all levels of abstraction, Game of Life patterns are

epiphenomenal—they have no causal power. It is the elementary

Game of Life rules that turn the causal crank. Why not reduce

away these epiphenomena? Reducing away a level of abstraction

results in a reductionist blind spot. No set of equations over the

domain of Game of Life grid cells can describe the computations

performed by a Game of Life Turing machine—unless the

equations themselves model a Turing machine. The laws that

characterize regularities at higher levels of abstraction are

impossible to express when the abstractions are reduced away.

This perspective applies beyond computer models. Nature—a

“blind programmer”—builds levels of abstraction, a phenomenon

sometimes referred to as emergence. This may be encapsulated as

the principle of emergence: extant levels of abstraction—naturally

occurring or man-made, static (at equilibrium) or dynamic (far

from equilibrium)—are those whose implementations have

materialized and whose environments support their persistence.

4. SUMMARY
Engineering has no stable base. Engineers must always be

concerned about the possibility of lower level physical effects—

such as O-rings not functioning as sealants if the temperature is

too low.2 Consequently, engineering has not been in an

intellectual position to develop the notion of level-of-abstraction.

But with its gift of the bit to computer science, engineering

created a world that is both real and symbolic. Computer science

developed the level-of-abstraction as a way to gain intellectual

leverage over that world—and then applied that concept to solve a

long-standing problem in the philosophy of science.

5. REFERENCES
[1] Abbott, Russ, “Emergence explained,” Complexity, Sep/Oct,

2006, (12, 1) 13-26.

[2] Abbott, Russ, “If a tree casts a shadow is it telling the time?”

Journal of Unconventional Computation, to appear.

[3] Commission on Engineering and Technical Systems,

National Academy of Engineering, Design in the New

Millennium, National Academy Press, 2000.

[4] Searle, John, Mind: a brief introduction, Oxford University

Press, 2004.

[5] Schrödinger, Erwin, What is Life?, Cambridge University

Press, 1944.

2 Every implementation of a level of abstraction has feasibility

conditions. Understanding safety margins as means to ensure

that feasibility conditions are met would encourage engineering

to operate in terms of levels of abstraction. Engineering designs

often have safety factors where software has assertions.

