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The knowledge extraction from data with noise or outliers is a complex problem in the data mining area. Normally, it is not easy to
eliminate those problematic instances. To obtain information from this type of data, robust classifiers are the best option to use. One
of them is the application of bagging scheme on weak single classifiers. The Credal C4.5 (CC4.5) model is a new classification tree
procedure based on the classical C4.5 algorithm and imprecise probabilities. It represents a type of the so-called credal trees. It has
been proven that CC4.5 is more robust to noise than C4.5 method and even than other previous credal tree models. In this paper,
the performance of the CC4.5 model in bagging schemes on noisy domains is shown. An experimental study on data sets with
added noise is carried out in order to compare results where bagging schemes are applied on credal trees and C4.5 procedure. As
a benchmark point, the known Random Forest (RF) classification method is also used. It will be shown that the bagging ensemble
using pruned credal trees outperforms the successful bagging C4.5 and RF when data sets with medium-to-high noise level are
classified.

1. Introduction

Supervised classification [1] is an important task in data
mining, where a set of observations or cases, described by a
set of attributes (also called features or predictive variables),
have assigned a value or label of the variable to be classified,
also called class variable. This variable must be discrete; in
other cases, the learning process is called regression task. A
classifier can be considered as a learning method from data
to obtain a set of laws to predict the class variable value for
each new observation. In order to build a classifier from data,
different approaches can be used, such as classical statistical
methods [2], decision trees [3], and artificial neural networks
or Bayesian networks [4].

Decision trees (DTs), also known as classification trees or
hierarchical classifiers, are a type of classifiers with a simple
structure where the knowledge representation is relatively
simple to interpret. The decision tree can be seen as a set
of compact rules in a tree format, where, in each node,
an attribute variable is introduced; and in the leaves (or
end nodes) we have a label of the class variable or a set
of probabilities for each class label. Hunt et al.’s work [5]

was the origin of decision trees, although they began to
gain importance with the publication of the ID3 algorithm
proposed by Quinlan [6]. Afterwards, Quinlan proposed the
C4.5 [3] algorithm, which is an improvement of the previous
ID3 one and obtains better results. This classifier has the
characteristic of the instability, that is, that few variations of
the data can produce important differences on the model.

The fusion of information obtained via ensembles or
combination of several classifiers can improve the final
process of a classification task; this can be represented via an
improvement in terms of accuracy and robustness. Some of
the more popular schemes are bagging [7], boosting [8], or
Random Forest [9]. The inherent instability of decision trees
[7] makes these classifiers very suitable to be employed in
ensembles.

Class noise, also known as label noise or classification
noise, is named to those situations which appear when data
sets have incorrect class labels. This situation is principally
motivated by deficiencies in the data learning and/or test
capture process, such as wrong disease diagnosis method
and human errors in the class label assignation (see [10–
12]). One of the most important procedures to have success
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in a classification task in situations of noisy domains is the
use or application of ensembles of classifiers. In the literature
about classification on noisy domains, bagging scheme stands
out as the most successful scheme. This ensemble scheme
has characteristics that it reduces the variance and avoids
overfitting. A complete and recent revision of machine
learning methods to manipulate label noise can be found in
[13].

On the other hand, until a few years ago, the classical
theory of probability (PT) has been the fundamental tool
to construct a method of classification. Many theories to
represent the information have arisen as a generalization of
the PT, such as theory of evidence, measures of possibility,
intervals of probability, and capacities of order-2. Each one
represents a model of imprecise probabilities (see Walley
[14]).

The Credal Decision Tree (CDT) model of Abellán and
Moral [15] uses imprecise probabilities and general uncer-
tainty measures (see Klir [16]) to build a decision tree.
The CDT model represents an extension of the classical
ID3 model of Quinlan [6], replacing precise probabilities
and entropy with imprecise probabilities and maximum of
entropy. This last measure is a well-accepted measure of total
uncertainty for some special type of imprecise probabilities
(Abellán et al. [17]). In the last years, it has been checked
that the CDT model presents good experimental results in
standard classification tasks (see Abellán and Moral [18]
and Abellán and Masegosa [19]). The bagging scheme, using
CDT as base classifier, has been used for the particular task
of classifying data sets about credit scoring (see Abellán
and Castellano [20]). A bagging scheme that uses a type of
credal tree different from the CDT presented in [15] will be
described in this work.This newmodel achieves better results
than the bagging of CDT shown in [20] when data sets with
added noise are classified.

In Mantas and Abellán [21], the classical method of C4.5
of Quinlan [3] has been modified using similar tools to the
ones used for the CDT method. The new algorithm is called
Credal C4.5 algorithm (CC4.5). It is shown that the use of
imprecise probabilities has some practical advantages in data
mining: the manipulation of the total ignorance is coherently
solved and the indeterminacy or inconsistency is adequately
represented. Hence, on noisy domains, these classifiers have
an excellent performance. This assertion can be checked in
Mantas and Abellán [21] and Mantas et al. [22]. In [21], the
new CC4.5 presents better results than the classic C4.5 when
they are applied on a large number of data sets with different
levels of class noise. In [22], the performance of CC4.5 with
different values for its parameter 𝑠 is analyzed when data sets
with distinct noise levels are classified and information about
the best value for 𝑠 is obtained in terms of the noise level of a
data set. In this work, the bagging scheme usingCC4.5 as base
classifier will be presented, which obtains very good results
when data sets with added noise are classified.

DTs are models with low bias and high variance. Nor-
mally, the variance and overfitting are reduced by using
postpruning techniques. As we said, ensemble methods like
bagging are also used to decrease the variance and overfitting.
The procedures of the CDT and CC4.5 also represent other

ways to reduce these two characteristics in a classification
procedure. Hence, we have three methods to reduce variance
and overfitting in a classification task which can be especially
important when they are applied on noisy domains.We prove
here that the combination of these three techniques (bagging
+ pruning + credal trees) represents a fusion of tools to be
successful in noise domains. This assertion is shown in this
work via a set of experiments where the bagging ensemble
procedure is executed by using different models of trees
(C4.5, CDT, and Credal C4.5) with and without postpruning
process.

Experimentally, we show the performance of the CC4.5
model when it is inserted on the known ensemble scheme
of bagging (called bagging CC4.5) and applied on data
sets with different levels of label noise. This model obtains
improvements with respect to other known ensembles of
classifiers used in this type of setting: the bagging scheme
with the C4.5 model and the known classifier Random Forest
(RF). It is shown in the literature that the bagging scheme
with the C4.5 model is normally the winning model in many
studies about classification noise [23, 24].

A bagging scheme procedure, using CC4.5 as base classi-
fier, has three important characteristics to be successful under
noisy domains: (a) the different treatment of the imprecision,
(b) the use of the bagging scheme, and (c) the production of
medium-size trees (it is inherent to the model and related to
(a)).

To reinforce the analysis of results, we will use a recent
measure to quantify the degree of robustness of a classifier
when it is applied on noisy data sets. This measure is the
Equalized Loss of Accuracy (ELA) of Sáez et al. [25]. We will
see that the bagging scheme using the CC4.5 attains the best
values with this measure when the level of added noise is
increased.

The rest of the paper is organized as follows. In Sec-
tion 2, we begin with the necessary previous knowledge
about decision trees, Credal Decision Trees, the Credal-
C4.5 algorithm, and the ensemble schemes used. Section 4
contains the experimental results of the evaluation of the
ensemble methods studied on a wide range of data sets
varying the percentage of added noise. Section 5 describes
and comments on the experimentation carried out. Finally,
Section 6 is devoted to the conclusions.

2. Classic DTs versus DTs Based on
Imprecise Probabilities

Decision trees are simple models that can be used as classi-
fiers. In situations where elements are described by one or
more attribute variables (also called predictive attributes or
features) and by a single class variable, which is the variable
under study, classification trees can be used to predict the
class value of an element by considering its attribute values.
In such a structure, each nonleaf node represents an attribute
variable, the edges or branches between that node and its
child nodes represent the values of that attribute variable, and
each leaf node normally specifies an exact value of the class
variable.
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The process for inferring a decision tree is mainly deter-
mined by the followings aspects:

(1) The split criterion, that is, the method used to select
the attribute to be inserted in a node and branching

(2) The criterion to stop the branching
(3) Themethod for assigning a class label or a probability

distribution at the leaf nodes

An optional final step in the procedure to build DTs,
which is used to reduce the overfitting of the model to the
training set, is the following one:

(4) The postpruning process used to simplify the tree
structure

In classic procedures for building DTs, where a measure
of information based on PT is used, the criterion to stop
the branching (above point (2)) normally is the following
one: when the measure of information is not improved or
when a threshold of gain in that measure is attained. With
respect to the above point (3), the value of the class variable
inserted in a leaf node is the one with more frequency in
the partition of the data associated with that leaf node; its
associated distribution of probabilities also can be inserted.
Then the principal difference among all the procedures to
build DTs is point (1), that is, the split criterion used to select
the attribute variable to be inserted in a node.

Considering classic split criteria and split criteria based
on imprecise probabilities, a basic point to differentiate them
is how they obtain probabilities from data. We will compare
a classical procedure using precise probabilities with the one
based on the Imprecise Dirichlet Model (IDM) ofWalley [14]
based on imprecise probabilities:

(i) In classical split criteria, the probability associated
with a state of the class variable, for a partition of
the data, is the classical frequency of this state in that
partition. Formally, let 𝐶 be the class variable with
states {𝑐1, . . . , 𝑐𝑘} and let D be a partition of the data
set. The probability of 𝑐𝑗 associated with the partition
is

𝑝 (𝑐𝑗) = 𝑛𝐷𝑐𝑗𝑁 , (1)

where 𝑛𝐷𝑐𝑗 is the number of pieces of data with the state
𝐶 = 𝑐𝑗 in the partition set𝐷; and𝑁 is the total number
of pieces of data of that partition, |𝐷|.

(ii) When we use the IDM, a model of imprecise proba-
bilities (seeWalley [14]), the probability of a state 𝑐𝑗 of
the class variable is obtained in a different way. Using
the same notation, now the probability is obtained via
an interval of probabilities:

𝑝 (𝑐𝑗) ∈ [
[

𝑛𝐷𝑐𝑗𝑁 + 𝑠 ,
𝑛𝐷𝑐𝑗 + 𝑠
𝑁 + 𝑠 ]]

, (2)

Table 1: Variable selected for branching (𝑋sel) by each split criterion.
IG 𝑋sel: Argmin

𝑋
{𝐻D (𝐶 | 𝑋)}

IIG 𝑋sel: Argmin
𝑋

{𝐻∗ (𝐾D (𝐶 | 𝑋))}
IGR 𝑋sel: Argmax

𝑋
{ IGD (𝐶,𝑋)
SplitInfoD (𝑋)}

IIGR 𝑋sel: Argmax
𝑋

{ IIGD (𝐶,𝑋)
SplitInfoD (𝑋)}

where the parameter 𝑠 is a hyperparameter belonging
to the IDM. The value of parameter 𝑠 regulates the
convergence speed of the upper and lower probability
when the sample size increases. Higher values of 𝑠
produce an additional cautious inference. Walley [14]
does not give a decisive recommendation for the value
of the parameter 𝑠, but he proposed two candidates:𝑠 = 1 and 𝑠 = 2; nevertheless, he recommend the value𝑠 = 1. It is easy to check that the size of the intervals
increases when the value of 𝑠 increases.

In the following sections, we will explain the differences
among the classic split criteria and the ones based on
imprecise probabilities in a parallel way. We will compare the
classic Info-Gain of Quinlan [6] with the Imprecise Info-Gain
of Abellán andMoral [15] and the Info-Gain Ratio of Quinlan
[3] with the Imprecise Info-Gain Ratio of Mantas and Abellán
[21]. The final procedure to select the variable to be inserted
in a node by each split criterion can be seen in Table 1.

The classical criteria use normally Shannon’s measure
as base measure of information, and the ones based on
imprecise probabilities use the maximum entropy measure.
This measure is based on the principle of maximum uncer-
tainty [16] which is widely used in classic information theory,
where it is known as maximum entropy principle [26]. This
principle indicates that the probability distribution with the
maximum entropy, compatible with available restrictions,
must be chosen. The maximum entropy measure verifies an
important set of properties on theories based on imprecise
probabilities that are generalizations of the probability theory
(see Klir [16]).

2.1. Info-Gain versus Imprecise Info-Gain. Following the
above notation, let𝑋 be a general feature whose values belong
to {𝑥1, . . . , 𝑥𝑡}. Let D be a general partition of the data set.
The Info-Gain (IG) criterion was introduced by Quinlan as
the basis for his ID3 model [6], and it is explained as follows:

(i) The entropy of the class variable C for the data setD
is Shannon’s entropy [27] and it is defined as

𝐻D (𝐶) = ∑
𝑖

𝑝 (𝑐𝑖) log2 ( 1
𝑝 (𝑐𝑖)) , (3)

where 𝑝(𝑐𝑖) represents the probability of the class 𝑖 in
D.
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(ii) The average entropy generated by the attribute𝑋 is

𝐻D (𝐶 | 𝑋) = ∑
𝑖

𝑃D (𝑋 = 𝑥𝑖)𝐻D𝑖 (𝐶 | 𝑋 = 𝑥𝑖) , (4)

where 𝑃D(𝑋 = 𝑥𝑖) represents the probability that(𝑋 = 𝑥𝑖) inD.D𝑖 is the subset ofD (D𝑖 ⊂ D), where(𝑋 = 𝑥𝑖).
Finally, we can define the Info-Gain as follows:

IG (𝐶,𝑋)D = 𝐻D (𝐶) − 𝐻D (𝐶 | 𝑋) . (5)

The Imprecise Info-Gain (IIG) [15] is based on imprecise
probabilities and the utilization of uncertainty measures on
credal sets (closed and convex sets of probability distribu-
tions). It was introduced to build the so-called Credal Deci-
sion Tree (CDT) model. Probability intervals are obtained
from the data set using Walley’s Imprecise Dirichlet Model
(IDM) [14] (a special type of credal sets [28]).Themathemat-
ical basis applied is described below.

With the above notation, 𝑝(𝑐𝑗), 𝑗 = 1, . . . , 𝑘, defined for
each value 𝑐𝑗 of the variable 𝐶, is obtained via the IDM:

𝑝 (𝑐𝑗) ∈ [ 𝑛𝑐𝑗𝑁 + 𝑠 ,
𝑛𝑐𝑗 + 𝑠
𝑁 + 𝑠 ] , 𝑗 = 1, . . . , 𝑘, (6)

where 𝑛𝑐𝑗 is the frequency of the case (𝐶 = 𝑐𝑗) in the data
set, 𝑁 is the sample size, and 𝑠 is the given hyperparameter
belonging to the IDM.

That representation gives rise to a specific kind of credal
set on the variable 𝐶, 𝐾D(𝐶) [28]. This set is defined as
follows:

𝐾D (𝐶)
= {𝑝 | 𝑝 (𝑐𝑗) ∈ [ 𝑛𝑐𝑗𝑁 + 𝑠 ,

𝑛𝑐𝑗 + 𝑠
𝑁 + 𝑠 ] , 𝑗 = 1, . . . , 𝑘} . (7)

On this type of sets (really credal sets, [28]), uncertainty
measures can be applied. The procedure to build CDTs uses
the maximum of entropy function on the above defined
credal set. This function, denoted as 𝐻∗, is defined in the
following way:

𝐻∗ (𝐾D (𝐶)) = max {𝐻D (𝑝) | 𝑝 ∈ 𝐾D (𝐶)} . (8)

The procedure to obtain 𝐻∗ for the special case of the
IDM reaches its lowest computational cost for 𝑠 ≤ 1 (see
Abellán [28] for more details).

The scheme to induce CDTs is like the one used by
the classical ID3 algorithm [6], replacing its Info-Gain split
criterion with the Imprecise Info-Gain (IIG) split criterion
which can be defined in the following way:

IIGD (𝐶,𝑋) = 𝐻∗ (𝐾D (𝐶)) − 𝐻∗ (𝐾D (𝐶 | 𝑋)) , (9)

where 𝐻∗(𝐾D(𝐶 | 𝑋)) is calculated via a similar way
to 𝐻D(𝐶 | 𝑋) in the IG criterion (for a more extended
explanation, see Mantas and Abellán [21]).

It should be taken into account that, for a variable 𝑋
and a data set D, IIGD(𝐶,𝑋) can be negative. This situation
does not occur with the Info-Gain criterion. This important
characteristic implies that the IIG criterion can discard
variables that worsen the information on the class variable.
This is an important feature of the model which can be
considered as an additional criterion to stop the branching
of the tree, reducing the overfitting of the model.

As for IG and IIG, the first part of each criterion is
a constant value for each attribute variable. Both criteria
select the variable with lower value of uncertainty about the
class variable when the attribute variable is known, which is
expressed in the second parts in (5) and (9). This can be seen
as a scheme in Table 1.

2.2. Info-Gain Ratio versus Imprecise Info-Gain Ratio. The
Info-Gain Ratio (IGR) criterion was introduced for the C4.5
model [3] in order to improve the ID3 model. IGR penalizes
variables with many states. It is defined as follows:

IGRD (𝐶,𝑋) = IGD (𝐶,𝑋)
SplitInfoD (𝑋) , (10)

where
SplitInfoD (𝑋) = 𝐻D (𝑋)

= ∑
𝑖

𝑃D (𝑋 = 𝑥𝑖) log2 ( 1
𝑃D (𝑋 = 𝑥𝑖)) . (11)

The method for building Credal C4.5 trees [21] is similar
to Quinlan’s C4.5 algorithm [3]. Credal C4.5 is created by
replacing the Info-Gain Ratio split criterion from C4.5 with
the Imprecise Info-Gain Ratio (IIGR) split criterion.Themain
difference is that Credal C4.5 estimates the values of the
features and class variable by using imprecise probabilities.
This criterion can be defined as follows:

IIGRD (𝐶,𝑋) = IIGD (𝐶,𝑋)
SplitInfoD (𝑋) , (12)

where SplitInfo is defined in (11) and Imprecise Info-Gain (IIG)
is

IIGD (𝐶,𝑋)
= 𝐻∗ (𝐾D (𝐶))

− ∑
𝑖

𝑃D (𝑋 = 𝑥𝑖)𝐻∗ (𝐾D (𝐶 | 𝑋 = 𝑥𝑖)) ,
(13)

where 𝐾D(𝐶) and 𝐾D(𝐶 | 𝑋 = 𝑥𝑖) are the credal sets
obtained via the IDM for 𝐶 and (𝐶 | 𝑋 = 𝑥𝑖) variables,
respectively, for a partition D of the data set [15]; and{𝑃D(𝑋 = 𝑥𝑖), 𝑖 = 1, . . . , 𝑛} is a probability distribution that
belongs to the credal set 𝐾D(𝑋).

We choose the probability distribution 𝑃D from 𝐾D(𝑋)
which maximizes the following expression:

∑
𝑖

𝑃 (𝑋 = 𝑥𝑖)𝐻 (𝐶 | 𝑋 = 𝑥𝑖) . (14)

It is simple to calculate this probability distribution. Formore
details, see Mantas and Abellán [21].
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2.3. Bagging Decision Trees. In machine learning, the idea
of taking into account several points of view before taking a
decision is appliedwhen several classifiers are combined.This
is called by distinct names such as multiple classifier systems,
committee of classifiers, mixture of experts, or ensemble-
based systems. Normally, the ensemble of decision trees
achieves a better performance than an individual classifier
[10].

The usual strategy for the combination of decision trees is
based on the creation of several decision trees aggregatedwith
a majority vote criterion. If an unclassified instance appears,
then each single classifier makes a prediction and the class
value with the highest number of votes is assigned for the
instance.

Breiman’s bagging [7] (or Bootstrap Aggregating) is an
intuitive and simple method that shows a good performance,
reduces the variance, and avoids overfitting. Normally it
is implemented with decision trees, but it can be applied
with any type of classifier. Diversity in bagging is obtained
by generating replicated bootstrap data sets of the original
training data set: “different training data sets are randomly
drawnwith replacement from the original training set and, in
consequence, the replicated training data sets have the same
size as the original data, but some instances may not appear
in it or may appear more than once.” Afterwards, a single
decision tree is built with each new instance of the training
data set using the standard approach [29]. Thus, building
each tree from a different data set, several decision trees are
obtained, which are defined by a different set of variables,
nodes, and leaves. Finally, the predictions of these trees are
combined by a majority vote criterion.

3. Bagging Credal C4.5 and the Noise

Bagging Credal C4.5 consists of using the bagging scheme,
presented in the previous section, with the Credal C4.5 algo-
rithm as base classifier. The difference between CC4.5 and
classic C4.5 is the split criterion. CC4.5 uses IIGR measure
and C4.5 uses IGR. It can be shown that the measure IIGR
is less sensitive to noise than the measure IGR. Hence, CC4.5
can perform a classification task on noisy data sets better than
the classic C4.5, as it was experimentally demonstrated in
[21].

The following example illustrates a case where the mea-
sure IIGR is more robust to noise than the measure IGR.

Example 1. Let us suppose a data set altered by noise and
composed by 15 instances, 9 instances of class 𝐴 and 6
instances of class 𝐵. It can be considered that there are two
binary feature variables 𝑋1 and 𝑋2. According to the values
of these variables, the instances are organized as follows:

𝑋1 = 0 󳨀→ (3 of class 𝐴, 6 of class 𝐵)
𝑋1 = 1 󳨀→ (6 of class 𝐴, 0 of class 𝐵)
𝑋2 = 0 󳨀→ (1 of class 𝐴, 5 of class 𝐵)
𝑋2 = 1 󳨀→ (8 of class 𝐴, 1 of class 𝐵) .

(15)

If this data set appears in the node of a tree, then the
C4.5 algorithm chooses the variable𝑋1 for splitting the node
because

IGRD𝑛 (𝐶,𝑋1) = 0.222 > IGRD𝑛 (𝐶,𝑋2) = 0.13, (16)

whereD𝑛 is the noisy data set composed by the 15 instances.
It can be supposed that the data set is noisy because it has

an outlier point when 𝑋2 = 1 and class is 𝐵. In this way, the
clean distribution is composed by 10 instances of class 𝐴 and
5 instances of class 𝐵, which are organized in the following
way:

𝑋1 = 0 󳨀→ (4 of class 𝐴, 5 of class 𝐵)
𝑋1 = 1 󳨀→ (6 of class 𝐴, 0 of class 𝐵)
𝑋2 = 0 󳨀→ (1 of class 𝐴, 5 of class 𝐵)
𝑋2 = 1 󳨀→ (9 of class 𝐴, 0 of class 𝐵) .

(17)

When this data set appears in the node of a tree, then the
C4.5 algorithm chooses the variable𝑋2 for splitting the node
because

IGRD (𝐶,𝑋1) = 0.497 < IGRD (𝐶,𝑋2) = 1.012, (18)

whereD is the clean data set composed by the 15 instances.
It can be observed that the C4.5 algorithm, by means of

the IGR criterion, creates an incorrect subtree when noisy
data are processed. However, a tree built with the IIGR
criterion (and 𝑠 = 1) selects the variable 𝑋2 for splitting the
node in both cases (noisy data set and clean data set). That is,

IIGRD𝑛 (𝐶,𝑋1) = 0.053 < IIGRD𝑛 (𝐶,𝑋2) = 0.123, (19)

whereD𝑛 is the data set with noise, and

IIGRD (𝐶,𝑋1) = 0.164 < IIGRD (𝐶,𝑋2) = 0.481, (20)

whereD is the clean data set.

This example shows the difference with respect to the
robustness. CC4.5 algorithm is more robust to noise than
C4.5. For this reason, bagging Credal C4.5 is alsomore robust
to noise than bagging C4.5. This fact will be shown with the
experiments of this paper.

4. Experimentation

In this section, we shall describe the experiments carried
out and comment on the results obtained. We have selected
50 well-known data sets in the field of machine learning,
obtained from the UCI repository of machine learning [30].
The data sets chosen are very different in terms of their
sample size, number and type of attribute variables, number
of states of the class variable, and so forth. Table 2 gives a brief
description of the characteristics of the data sets used.

We have performed a study where the bagging of Credal
C4.5 on data with added noise is compared with the Random
Forest algorithm [9] and the bagging of other tree based
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Table 2: Data set description. Column “N” is the number of instances in the data sets, column “Feat” is the number of features or attribute
variables, column “Num” is the number of numerical variables, column “Nom” is the number of nominal variables, column “k” is the number
of cases or states of the class variable (always a nominal variable), and column “Range” is the range of states of the nominal variables of each
data set.

Data set N Feat Num Nom k Range
anneal 898 38 6 32 6 2–10
arrhythmia 452 279 206 73 16 2
audiology 226 69 0 69 24 2–6
autos 205 25 15 10 7 2–22
balance-scale 625 4 4 0 3 —
breast-cancer 286 9 0 9 2 2–13
wisconsin-breast-cancer 699 9 9 0 2 —
car 1728 6 0 6 4 3-4
cmc 1473 9 2 7 3 2–4
horse-colic 368 22 7 15 2 2–6
credit-rating 690 15 6 9 2 2–14
german-credit 1000 20 7 13 2 2–11
dermatology 366 34 1 33 6 2–4
pima-diabetes 768 8 8 0 2 —
ecoli 366 7 7 0 7 —
Glass 214 9 9 0 7 —
haberman 306 3 2 1 2 12
cleveland-14-heart-disease 303 13 6 7 5 2–14
hungarian-14-heart-disease 294 13 6 7 5 2–14
heart-statlog 270 13 13 0 2 —
hepatitis 155 19 4 15 2 2
hypothyroid 3772 30 7 23 4 2–4
ionosphere 351 35 35 0 2 —
iris 150 4 4 0 3 —
kr-vs-kp 3196 36 0 36 2 2-3
letter 20000 16 16 0 26 —
liver-disorders 345 6 6 0 2 —
lymphography 146 18 3 15 4 2–8
mfeat-pixel 2000 240 0 240 10 4–6
nursery 12960 8 0 8 4 2–4
optdigits 5620 64 64 0 10 —
page-blocks 5473 10 10 0 5 —
pendigits 10992 16 16 0 10 —
primary-tumor 339 17 0 17 21 2-3
segment 2310 19 16 0 7 —
sick 3772 29 7 22 2 2
solar-flare2 1066 12 0 6 3 2–8
sonar 208 60 60 0 2 —
soybean 683 35 0 35 19 2–7
spambase 4601 57 57 0 2 —
spectrometer 531 101 100 1 48 4
splice 3190 60 0 60 3 4–6
Sponge 76 44 0 44 3 2–9
tae 151 5 3 2 3 2
vehicle 946 18 18 0 4 —
vote 435 16 0 16 2 2
vowel 990 11 10 1 11 2
waveform 5000 40 40 0 3 —
wine 178 13 13 0 3 —
zoo 101 16 1 16 7 2



Complexity 7

models: C4.5 [10] and CDT [23]. We have used each model
with andwithout a postpruning process.The pruning process
of eachmodel has been the one used by defect for eachmodel.
Hence, the algorithms considered are the following ones:

(i) Bagging C4.5 with unpruned tress (BA-C4.5-U)
(ii) Bagging CDTs with unpruned trees (BA-CDT-U)
(iii) Bagging Credal C4.5 with unpruned trees (BA-

CC4.5-U)
(iv) Bagging C4.5 (BA-C4.5)
(v) Bagging CDTs (BA-CDT)
(vi) Bagging Credal C4.5 (BA-CC4.5)
(vii) Random Forest (RF)

The Weka software [31] has been used for the experi-
mentation. The methods BA-CDT and BA-CC4.5 and their
versions with unpruned trees were implemented using data
structures of Weka. The implementation of C4.5 algorithm
provided by Weka software, called J48, was employed with
its default configuration. We added the necessary methods
to build Credal C4.5 trees with the same experimental
conditions. In CDTs and Credal C4.5, the parameter of the
IDM was set to 𝑠 = 1, that is, the value used in the original
methods by [18, 21], respectively.The reasons to use this value
were principally that it was the value recommended byWalley
[14]; and the procedure to obtain themaximum entropy value
reaches its lowest computational cost for this value (see [28]).

The implementation of bagging ensembles and Random
Forest provided byWeka were used with their default config-
urations, except that the number of trees used for thosemeth-
ods was equal to 100 decision trees. Although the number of
trees can strongly affect the ensemble performance, this is a
reasonable number of trees for the low-to-medium size of the
data sets used in this study, and moreover it was the number
of trees used in related research, such as [8].

UsingWeka’s filters, we have added the following percent-
ages of random noise to the class variable: 0%, 10%, 20%,
30%, and 40%, only in the training data set. The procedure
to introduce noise was the following: a given percentage of
instances of the training data set was randomly selected and,
then, their current class values were randomly changed to
other possible values.The instances belonging to the test data
set were left unmodified.

We repeated 10 times a 10-fold cross validation procedure
for each data set. It is a very known and used validation
procedure. Tables 3, 4, 5, 6, and 7 show the accuracy of
the methods with the different percentages of added noise.
Table 8 presents a summary of the average accuracy results
where the best algorithm for each added noise level is
emphasized using bold fonts and the second best is marked
with italic fonts.

Following the recommendation of Demšar [32], we used
a series of tests to compare the methods using the 𝐾𝑒𝑒𝑙
software [33].Weused the following tests to comparemultiple
classifiers on multiple data sets.

Friedman Test (Friedman [34, 35]). It is a nonparametric test
that ranks the algorithms separately for each data set, with the
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Figure 1: Values of Friedman’s rank of themethods.The segment on
the top expresses the size of the critical difference associatedwith the
experiments and Nemenyi’s test for the pairwise comparisons.

best performing algorithm being assigned the rank of 1 and
the second best being assigned the rank of 2 and so forth.The
null hypothesis is that all the algorithms are equivalent. If the
null hypothesis is rejected, we can compare all the algorithms
with each other using the Nemenyi test [36].

All the tests were carried out with a level of significance𝛼 = 0.05. Hence, Table 9 shows Friedman’s ranks about
the accuracy of the methods when they are applied on data
sets with different levels of added noise. The best algorithm
for each noise level is emphasized using bold fonts and the
second best one is marked with italic fonts. Tables 10, 11,
12, 13, and 14 show the p values of the Nemenyi test on the
pairs of comparisons when they are applied on data sets with
different percentage of added noise. In all cases, Nemenyi
test rejects the hypotheses that the algorithms are equivalent
if the corresponding p value is ≤0.002381. When there is a
significant difference, the best algorithm is distinguishedwith
bold fonts.

For the sake of clarity, the results of Nemenyi’s test can
be seen graphically in Figure 1. In this graph, the columns
express the values of Friedman’s ranks and the critical
difference is expressed as a vertical segment.When the height
of a segment on a column is lower than the one of the
other column, the differences are statistically significant in
favor of the algorithm represented with the lower rank (lower
column).

To present the results of the average tree size (number
of nodes) obtained by each method, we use Figure 2. In this
figure, we can see in a quick way the average size of the trees
built by each bagging method when they are applied on data
sets with different levels of added noise.

We have extended the study of the results using a recent
measure to quantify the degree of robustness of a classifier
when it is applied on noisy data sets. This measure is the
Equalized Loss of Accuracy (ELA) of Sáez et al. [25].

The Equalized Loss of Accuracy (ELA) measure is a new
behavior-against-noisemeasure that allows us to characterize
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Table 3: Accuracy results of the methods when they are used on data sets without added noise.

Data set BA-C4.5-U BA-CDT-U BA-CC4.5-U BA-C4.5 BA-CDT BA-CC4.5 RF
anneal 98.90 98.89 98.65 98.79 98.59 98.78 99.68
arrhythmia 75.35 74.49 75.16 75.04 74.36 75.09 69.12
audiology 81.83 80.41 82.03 80.75 74.35 82.08 80.36
autos 85.45 80.27 79.28 84.39 72.65 78.98 84.29
balance-scale 81.56 82.41 82.65 82.39 83.82 82.65 80.30
breast-cancer 70.43 70.35 72.84 73.09 72.35 73.73 70.02
wisconsin-breast-cancer 96.45 96.14 96.31 96.32 95.85 96.14 96.58
car 94.33 93.55 93.30 93.65 91.24 93.04 94.70
cmc 52.19 53.21 53.92 53.12 56.02 54.09 50.69
horse-colic 85.51 84.91 85.40 85.21 85.21 85.48 85.59
credit-rating 85.68 86.07 86.84 86.14 86.16 86.43 86.14
german-credit 73.01 74.64 73.96 74.73 75.26 74.84 76.08
dermatology 97.13 94.18 96.77 96.61 93.63 96.23 96.91
pima-diabetes 76.14 75.80 75.94 76.17 75.92 75.90 76.01
ecoli 84.88 83.82 84.34 84.70 83.75 84.49 84.67
Glass 74.49 75.51 72.66 74.96 73.31 72.80 79.71
haberman 70.17 73.76 74.25 72.95 73.47 73.89 65.44
cleveland-14-heart-disease 80.23 78.68 80.13 79.90 80.39 80.20 81.56
hungarian-14-heart-disease 78.92 81.18 82.88 79.87 82.09 82.88 80.25
heart-statlog 80.96 81.41 82.26 81.19 82.33 82.19 82.26
hepatitis 81.76 80.99 82.09 81.37 81.57 81.90 83.58
hypothyroid 99.62 99.59 99.59 99.61 99.55 99.58 99.51
ionosphere 92.57 91.23 91.74 92.54 90.77 91.74 93.48
iris 94.47 95.07 94.40 94.47 94.80 94.40 94.53
kr-vs-kp 99.46 99.40 99.46 99.44 98.92 99.45 99.27
letter 94.03 92.44 93.48 93.86 90.80 93.45 96.60
liver-disorders 73.42 72.21 71.02 73.25 71.31 70.76 72.03
lymphography 79.96 76.24 79.47 79.69 77.51 79.74 83.42
mfeat-pixel 83.86 87.20 84.40 83.60 87.04 84.37 96.37
nursery 98.68 96.66 96.53 97.41 95.90 96.51 99.17
optdigits 95.84 95.55 95.84 95.79 94.74 95.83 98.30
page-blocks 97.36 97.32 97.33 97.37 97.29 97.38 97.46
pendigits 98.32 98.45 98.12 98.25 98.15 98.10 99.21
primary-tumor 44.22 43.93 44.11 44.93 41.98 44.52 43.45
segment 97.75 97.45 97.22 97.64 96.74 97.21 98.16
sick 98.97 98.97 98.91 98.85 98.54 98.84 98.43
solar-flare2 99.49 99.53 99.53 99.53 99.53 99.53 99.43
sonar 80.07 80.78 78.86 80.40 77.57 78.77 84.63
soybean 92.28 90.47 92.37 93.10 88.81 92.37 93.31
spambase 94.73 94.65 94.30 94.58 93.98 94.24 95.68
spectrometer 56.61 54.48 54.58 56.53 52.91 54.57 57.42
splice 94.70 94.40 94.84 94.68 94.06 94.71 95.88
Sponge 93.91 92.63 93.88 92.63 92.50 92.63 95.00
tae 60.88 60.88 54.85 59.43 57.56 55.18 68.25
vehicle 75.22 74.78 74.47 75.17 73.06 74.49 75.18
vote 96.78 96.34 96.62 96.69 95.52 96.69 96.43
vowel 94.04 92.17 90.66 92.64 88.96 90.68 98.16
waveform 83.40 83.51 83.08 83.35 83.31 83.08 85.20
wine 95.34 95.84 94.89 95.23 95.10 94.89 97.74
zoo 92.80 92.40 92.90 92.50 92.61 92.90 96.33
Average 85.28 84.90 84.98 85.29 84.24 84.97 86.24
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Table 4: Accuracy results of the methods when they are used on data sets with a percentage of added noise equal to 10%.

Data set BA-C4.5-U BA-CDT-U BA-CC4.5-U BA-C4.5 BA-CDT BA-CC4.5 RF
anneal 98.05 98.50 98.45 98.64 98.36 98.59 96.44
arrhythmia 74.29 73.88 74.85 74.40 73.28 74.93 67.74
audiology 80.84 79.28 81.27 81.01 75.68 81.13 75.72
autos 80.44 75.79 77.56 79.99 67.43 77.18 77.21
balance-scale 81.09 81.97 82.67 82.22 83.84 82.71 78.03
breast-cancer 67.17 69.87 70.93 72.04 71.44 72.74 66.77
wisconsin-breast-cancer 95.49 95.75 96.24 95.81 96.11 96.27 94.61
car 90.92 92.34 92.29 91.98 90.94 92.08 93.30
cmc 50.12 51.82 52.78 51.56 54.75 53.22 48.51
horse-colic 84.55 83.71 84.93 85.07 84.64 84.96 83.61
credit-rating 83.30 84.77 86.12 85.87 85.80 85.97 84.01
german-credit 72.67 73.43 73.09 73.92 74.66 73.78 74.79
dermatology 95.46 93.82 96.64 96.48 93.85 96.53 96.25
pima-diabetes 75.59 74.48 75.92 75.53 75.84 75.80 74.24
ecoli 84.82 84.70 84.79 85.09 84.11 84.67 83.87
Glass 73.33 74.37 72.48 73.10 72.32 72.30 76.82
haberman 69.05 70.44 73.40 71.68 73.99 73.44 62.66
cleveland-14-heart-disease 80.30 79.73 80.73 80.43 81.07 80.77 80.76
hungarian-14-heart-disease 78.96 79.46 82.13 79.54 80.86 82.29 79.56
heart-statlog 79.70 79.26 80.74 80.07 81.11 81.11 79.37
hepatitis 80.63 81.53 81.72 82.06 82.64 81.79 82.71
hypothyroid 99.30 99.48 99.48 99.50 99.47 99.48 99.24
ionosphere 91.80 90.58 91.40 91.71 91.35 91.40 92.31
iris 93.80 94.20 93.87 94.00 94.33 93.87 90.07
kr-vs-kp 98.02 98.72 98.81 99.17 98.79 99.09 96.57
letter 93.56 92.56 93.32 93.43 91.10 93.19 94.04
liver-disorders 70.47 69.43 68.66 70.09 69.97 68.37 69.38
lymphography 79.58 77.02 78.69 78.63 78.10 78.75 83.09
mfeat-pixel 83.09 86.71 83.89 83.14 87.27 84.01 95.82
nursery 96.27 97.11 96.95 97.12 96.08 96.69 97.55
optdigits 95.70 95.81 95.62 95.62 95.07 95.54 98.26
page-blocks 97.11 97.20 97.20 97.22 97.20 97.20 96.49
pendigits 98.43 98.43 98.27 98.35 97.99 98.19 99.08
primary-tumor 41.62 43.06 42.77 42.33 43.12 43.04 42.15
segment 96.75 97.08 97.10 97.14 96.49 97.04 95.92
sick 98.08 98.47 98.40 98.43 98.45 98.43 98.17
solar-flare2 98.58 99.47 99.48 99.53 99.53 99.53 97.56
sonar 77.45 79.47 78.02 77.60 76.99 77.97 81.61
soybean 91.22 90.25 92.61 92.72 88.45 92.62 90.41
spambase 93.23 93.32 93.55 93.53 93.55 93.54 93.13
spectrometer 55.42 51.85 54.16 55.67 50.58 54.16 56.39
splice 93.11 93.54 94.08 94.18 93.54 94.22 93.98
Sponge 91.39 92.68 93.00 92.34 92.50 92.57 92.98
tae 56.17 57.15 52.12 55.70 53.78 52.38 61.69
vehicle 73.88 73.54 72.96 74.15 72.42 72.98 74.48
vote 95.22 95.35 95.49 95.91 95.56 95.89 94.11
vowel 92.73 90.74 90.30 91.95 88.58 90.22 92.18
waveform 83.16 83.16 82.99 83.17 83.05 82.98 84.94
wine 94.44 94.50 94.77 94.60 94.54 94.77 96.86
zoo 93.66 93.37 93.27 93.77 93.77 93.27 92.97
Average 84.00 84.06 84.42 84.54 83.89 84.47 84.17
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Table 5: Accuracy results of the methods when they are used on data sets with a percentage of added noise equal to 20%.

Data set BA-C4.5-U BA-CDT-U BA-CC4.5-U BA-C4.5 BA-CDT BA-CC4.5 RF
anneal 95.34 97.42 97.41 98.04 98.10 98.05 91.16
arrhythmia 73.87 72.84 74.87 74.25 72.02 74.91 66.75
audiology 76.25 75.57 78.81 78.37 72.84 79.12 71.28
autos 73.34 69.80 74.52 73.88 63.51 74.61 70.63
balance-scale 79.26 80.97 82.09 81.37 83.25 82.08 75.28
breast-cancer 63.40 66.20 67.74 70.95 69.94 71.10 62.02
wisconsin-breast-cancer 93.41 94.00 95.91 94.91 96.22 95.98 90.83
car 85.43 89.72 89.76 89.82 89.76 90.02 90.48
cmc 48.38 50.14 50.93 50.39 53.21 51.54 46.58
horse-colic 81.46 80.73 83.93 83.96 83.44 84.42 80.70
credit-rating 79.41 82.67 84.03 83.58 85.42 85.03 80.00
german-credit 69.91 71.38 70.82 71.90 73.85 71.64 71.80
dermatology 92.73 93.52 95.46 95.39 94.01 95.63 94.86
pima-diabetes 74.62 72.60 75.41 74.76 75.30 75.64 71.85
ecoli 82.56 82.91 83.81 83.06 83.81 83.78 80.74
Glass 70.61 72.67 70.75 70.71 71.33 70.57 72.72
haberman 66.55 66.33 70.98 68.45 71.80 72.79 59.43
cleveland-14-heart-disease 79.02 79.15 80.39 79.71 81.04 79.93 79.48
hungarian-14-heart-disease 78.14 78.36 81.99 79.34 80.79 81.96 77.81
heart-statlog 76.93 76.81 79.00 78.11 79.04 79.48 76.93
hepatitis 79.35 79.95 80.88 80.63 81.38 81.20 79.69
hypothyroid 98.34 99.37 99.36 99.29 99.36 99.40 98.65
ionosphere 87.84 86.70 89.44 88.01 90.41 89.41 88.39
iris 90.07 90.93 92.73 92.27 93.80 92.67 82.80
kr-vs-kp 92.68 95.63 95.75 97.50 97.99 97.43 90.37
letter 92.57 92.32 93.01 92.97 91.28 92.92 90.57
liver-disorders 67.08 66.45 66.69 67.22 68.59 66.69 65.84
lymphography 75.99 76.00 78.17 77.49 77.44 78.65 78.08
mfeat-pixel 82.19 86.60 83.17 82.59 87.63 83.52 95.32
nursery 90.42 96.50 96.55 96.52 96.06 96.41 93.74
optdigits 95.73 96.07 95.74 95.75 95.41 95.68 98.01
page-blocks 96.33 96.79 97.12 96.80 97.10 97.10 94.68
pendigits 98.08 98.19 98.17 98.16 97.93 98.13 98.75
primary-tumor 40.20 41.03 41.71 41.26 42.80 42.39 40.53
segment 94.29 95.83 96.33 95.81 96.28 96.38 93.48
sick 96.14 97.87 97.99 97.29 98.29 98.10 96.82
solar-flare2 96.45 99.23 99.15 99.52 99.53 99.51 94.76
sonar 74.77 76.27 76.06 74.86 76.22 76.06 78.54
soybean 88.07 87.70 92.21 91.93 85.51 92.42 84.83
spambase 90.39 89.95 92.26 91.13 92.78 92.31 89.33
spectrometer 54.15 49.97 54.03 54.11 48.89 54.05 55.86
splice 90.87 91.50 92.12 92.87 92.87 92.92 91.52
Sponge 87.89 90.57 91.38 91.79 92.50 91.77 89.45
tae 53.13 54.80 51.21 53.27 50.48 51.02 54.87
vehicle 72.59 72.41 72.68 73.01 72.55 72.60 72.52
vote 92.59 93.93 93.93 95.17 95.49 95.24 90.55
vowel 88.88 84.42 88.31 89.17 84.80 88.26 84.23
waveform 82.70 82.80 82.82 82.71 83.08 82.82 84.46
wine 91.35 90.68 92.77 91.51 93.76 92.66 93.61
zoo 93.50 93.27 93.10 93.99 91.39 92.91 87.83
Average 81.50 82.15 83.27 83.11 83.01 83.58 80.99
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Table 6: Accuracy results of the methods when they are used on data sets with a percentage of added noise equal to 30%.

Data set BA-C4.5-U BA-CDT-U BA-CC4.5-U BA-C4.5 BA-CDT BA-CC4.5 RF
anneal 89.44 93.97 94.70 95.99 97.54 96.36 83.29
arrhythmia 72.86 71.64 73.41 73.14 70.64 73.88 65.58
audiology 73.37 71.51 75.62 77.21 69.01 76.72 66.02
autos 64.32 62.54 68.31 64.91 57.87 68.80 61.73
balance-scale 74.95 77.10 80.27 78.32 81.82 80.59 68.62
breast-cancer 59.83 61.24 63.19 64.31 64.62 66.34 59.10
wisconsin-breast-cancer 87.78 88.35 93.46 90.96 94.15 93.95 82.88
car 78.65 84.87 85.65 87.05 88.13 87.45 85.41
cmc 45.41 47.51 48.73 47.75 51.32 49.65 43.54
horse-colic 76.04 75.16 79.67 80.43 78.12 81.75 74.34
credit-rating 71.61 75.30 77.57 74.54 81.55 79.43 71.72
german-credit 65.07 67.19 66.37 67.27 70.65 67.52 66.93
dermatology 88.71 91.04 92.35 93.30 93.63 93.41 92.84
pima-diabetes 70.80 67.50 73.68 71.09 71.53 73.72 67.04
ecoli 79.88 80.86 83.58 81.04 83.58 83.46 77.34
Glass 66.90 68.39 68.46 67.18 69.32 68.46 67.69
haberman 62.34 60.46 66.06 62.95 66.79 70.26 56.03
cleveland-14-heart-disease 75.60 76.57 78.49 77.41 80.14 78.52 75.82
hungarian-14-heart-disease 75.96 76.09 81.93 78.63 80.18 81.52 74.10
heart-statlog 69.52 69.89 75.30 70.52 75.44 75.63 70.96
hepatitis 73.24 75.51 75.99 75.18 80.33 76.49 75.24
hypothyroid 95.90 98.82 98.77 97.43 99.15 99.06 97.31
ionosphere 79.86 78.38 83.57 80.06 84.37 83.94 81.01
iris 81.73 84.13 89.20 84.80 91.67 89.47 73.47
kr-vs-kp 82.68 86.36 86.56 88.91 95.14 89.77 79.88
letter 90.29 91.30 91.91 91.93 91.30 92.21 85.85
liver-disorders 61.66 61.44 61.71 61.89 63.61 62.01 60.26
lymphography 73.02 73.14 76.13 75.82 76.53 76.00 72.06
mfeat-pixel 81.81 87.03 83.18 82.61 88.30 83.56 94.35
nursery 81.74 93.42 94.23 95.32 95.64 95.60 87.09
optdigits 95.08 95.90 95.32 95.18 95.74 95.33 97.73
page-blocks 94.22 95.73 96.80 95.28 97.05 96.84 91.53
pendigits 97.39 97.76 97.87 97.62 97.86 97.87 98.04
primary-tumor 37.61 39.73 39.85 39.05 42.42 41.15 37.14
segment 90.50 93.15 94.84 92.33 95.99 95.09 90.13
sick 90.34 94.64 95.77 92.47 97.25 96.69 91.44
solar-flare2 92.24 97.11 97.28 99.39 99.50 99.40 90.19
sonar 69.52 71.75 71.05 69.47 73.22 70.99 72.75
soybean 83.45 81.65 90.73 90.82 81.61 91.21 79.31
spambase 86.06 83.51 89.57 86.91 89.57 89.69 83.02
spectrometer 51.62 47.97 52.28 51.89 47.05 52.28 53.58
splice 87.83 88.76 89.11 89.86 91.89 89.97 87.55
Sponge 77.45 84.05 82.27 89.16 91.95 86.88 81.07
tae 49.83 49.20 47.32 49.22 48.48 46.99 51.38
vehicle 70.13 70.36 71.25 70.45 72.02 71.45 69.86
vote 86.25 88.87 88.75 91.54 94.00 91.79 83.33
vowel 81.63 74.76 85.01 82.95 74.61 85.10 75.21
waveform 81.82 82.14 82.40 81.86 82.83 82.40 83.60
wine 85.63 85.69 89.12 85.97 92.91 89.06 88.90
zoo 89.71 90.71 90.50 91.31 90.53 91.41 80.50
Average 76.99 78.20 80.30 79.61 80.97 81.14 76.08
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Table 7: Accuracy results of the methods when they are used on data sets with a percentage of added noise equal to 40%.

Data set BA-C4.5-U BA-CDT-U BA-CC4.5-U BA-C4.5 BA-CDT BA-CC4.5 RF
anneal 80.69 87.46 88.69 89.11 96.65 92.29 74.12
arrhythmia 69.56 70.07 69.34 70.07 67.57 71.2 63.74
audiology 66.31 60.64 72.52 72.34 60.2 74.31 60.38
autos 53.96 53.59 59.65 54.36 50.98 59.99 52.03
balance-scale 65.7 69.1 75.04 69.8 78.24 75.86 59.94
breast-cancer 53.26 54.14 55.64 56.02 57.15 57.26 54.07
wisconsin-breast-cancer 75.72 73.16 84.16 79.23 83.39 85.48 68.71
car 68.86 76.19 77.37 83.32 85.42 83.63 77.93
cmc 42.41 44.33 44.45 44.19 49.14 45.84 41.06
horse-colic 64.64 63.42 69.32 68.48 65.78 71.58 63.08
credit-rating 60.59 61.03 63.65 62.96 64.65 65.58 61.55
german-credit 57.51 59.63 58.96 58.86 62.57 59.71 58.87
dermatology 83.33 85.41 87.62 88.38 91.74 89.62 88.02
pima-diabetes 66.12 60.25 68.4 66.05 64.37 68.49 60.12
ecoli 74.69 76.33 80.3 76.06 82.69 80.68 70.73
Glass 61.45 62.87 64.07 62.05 67.52 64.2 61.08
haberman 56.14 55.44 58.39 56.24 57.1 60.62 53.12
cleveland-14-heart-disease 69.76 72.58 75.2 71.6 78.52 75.83 70.26
hungarian-14-heart-disease 73.51 72.42 80.94 76.92 79.56 80.9 69.16
heart-statlog 62.07 61.56 64.59 63.3 65.96 64.67 62.33
hepatitis 62.77 63.98 66.71 65.3 69.43 68.1 64.67
hypothyroid 90.62 97.44 96.84 92.82 98.91 97.46 94.03
ionosphere 67.79 66.6 72.41 68.39 71.52 72.72 67.91
iris 72.6 74.87 86.13 75.2 87.73 86.07 65
kr-vs-kp 67.81 69.83 70.06 71.52 80.02 72.24 65.9
letter 85.81 88.67 89.1 89.21 90.94 90.23 79.34
liver-disorders 57.16 57.17 58.24 57.01 58.28 58.67 56.41
lymphography 65.98 66.58 70.64 69.15 75.07 71.51 65.66
mfeat-pixel 81.54 86.94 82.79 82.43 88.71 83.42 93.04
nursery 70.94 85.09 87.8 92.78 94.55 93.56 76.76
optdigits 93.99 95.56 94.46 94.23 95.82 94.52 96.85
page-blocks 89.84 92.85 96.05 91.33 96.75 96.15 86.03
pendigits 95.76 96.7 97.03 96.16 97.69 97.09 96.33
primary-tumor 34.53 36.51 37.22 35.86 40.53 38.61 33.68
segment 85.65 88.71 92.15 86.99 95.71 92.57 85.3
sick 76.76 80.85 85.46 78.64 87.27 87.38 76.52
solar-flare2 85.62 90.37 90.66 98.69 98.6 98.71 82.52
sonar 60.66 62.1 62.3 60.52 62.16 62.35 62.11
soybean 74.85 69.3 86.09 86.89 73.66 88.5 69.74
spambase 76.7 70.98 82.02 77.74 77.3 82.31 70.71
spectrometer 48.99 43.13 50.12 49.19 43.11 50.14 50.73
splice 82.91 84.34 84.4 84.97 89.2 85.23 81.45
Sponge 69.29 75.05 72.79 79.73 89.18 77.18 73.98
tae 46.17 45.71 43.48 45.9 43.17 43.22 46.67
vehicle 65 65.98 67.71 65.54 69.76 68.11 64.7
vote 73.54 75.62 76.2 79.39 83.92 79.85 70.73
vowel 71.84 65.65 78.47 73.27 63.14 78.54 65.86
waveform 79.59 80.21 80.84 79.65 81.78 80.84 81.54
wine 78.25 79.1 83.99 78.82 88.06 83.99 81.07
zoo 81.58 84.46 85.15 86.05 87.52 86.05 70.25
Average 70.02 71.2 74.51 73.25 75.77 75.86 68.92
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Table 8: Average result of the accuracy of the different algorithms when they are built from data sets with added noise.

Algorithm Noise 0% Noise 10% Noise 20% Noise 30% Noise 40%
BA-C4.5-U 85.28 84.00 81.50 76.99 70.02
BA-CDT-U 84.90 84.06 82.15 78.20 71.20
BA-CC4.5-U 84.98 84.42 83.27 80.30 74.51
BA-C4.5 85.29 84.54 83.11 79.61 73.25
BA-CDT 84.24 83.89 83.01 80.97 75.77
BA-CC4.5 84.97 84.47 83.58 81.14 75.86
RF 86.24 84.17 80.99 76.08 68.92

Table 9: Friedman’s ranks about the accuracy of the algorithms when they are applied on data sets with different percentages of added noise.

Algorithm Noise 0% Noise 10% Noise 20% Noise 30% Noise 40%
BA-C4.5-U 3.17 4.88 5.63 5.94 5.82
BA-CDT-U 4.52 4.42 4.85 4.81 4.89
BA-CC4.5-U 4.08 3.60 3.09 3.34 3.26
BA-C4.5 3.78 3.09 3.45 3.92 4.08
BA-CDT 5.43 4.27 3.07 2.25 2.34
BA-CC4.5 4.24 3.48 2.68 2.14 1.91
RF 2.78 4.26 5.23 5.60 5.70

Table 10: 𝑝 values of the Nemenyi test about the accuracy on data
sets without added noise.

𝑖 Algorithms 𝑝
21 BA-CDT versus RF 0
20 BA-C4.5-U versus BA-CDT 0
19 BA-CDT-U versus RF 0.000056
18 BA-C4.5 versus BA-CDT 0.000134
17 BA-CC4.5 versus RF 0.000727
16 BA-C4.5-U versus BA-CDT-U 0.00178
15 BA-CC4.5-U versus BA-CDT 0.00178
14 BA-CC4.5-U versus RF 0.002622
13 BA-CDT versus BA-CC4.5 0.005882
12 BA-C4.5-U versus BA-CC4.5 0.013265
11 BA-C4.5 versus RF 0.020638
10 BA-C4.5-U versus BA-CC4.5-U 0.035183
9 BA-CDT-U versus BA-CDT 0.035183
8 BA-CDT-U versus BA-C4.5 0.086755
7 BA-C4.5-U versus BA-C4.5 0.157987
6 BA-C4.5 versus BA-CC4.5 0.287015
5 BA-CDT-U versus BA-CC4.5-U 0.308487
4 BA-C4.5-U versus RF 0.366699
3 BA-CC4.5-U versus BA-C4.5 0.487453
2 BA-CDT-U versus BA-CC4.5 0.516937
1 BA-CC4.5-U versus BA-CC4.5 0.711138

the behavior of a method with noisy data considering perfor-
mance and robustness. 𝐸𝐿𝐴measure is expressed as follows:

ELA𝑥% = 100 − 𝐴𝑥%𝐴0% , (21)

Table 11: 𝑝 values of the Nemenyi test about the accuracy on data
sets with 10% of added noise.

𝑖 Algorithms 𝑝
21 BA-C4.5-U versus BA-C4.5 0.000034
20 BA-C4.5-U versus BA-CC4.5 0.001194
19 BA-CDT-U versus BA-C4.5 0.002081
18 BA-C4.5-U versus BA-CC4.5-U 0.00305
17 BA-C4.5 versus BA-CDT 0.006311
16 BA-C4.5 versus RF 0.006769
15 BA-CDT-U versus BA-CC4.5 0.029579
14 BA-CDT-U versus BA-CC4.5-U 0.057705
13 BA-CDT versus BA-CC4.5 0.067475
12 BA-CC4.5 versus RF 0.07102
11 BA-CC4.5-U versus BA-CDT 0.120962
10 BA-CC4.5-U versus RF 0.126611
9 BA-C4.5-U versus RF 0.151281
8 BA-C4.5-U versus BA-CDT 0.157987
7 BA-CC4.5-U versus BA-C4.5 0.237833
6 BA-C4.5-U versus BA-CDT-U 0.287015
5 BA-C4.5 versus BA-CC4.5 0.366699
4 BA-CDT-U versus RF 0.711138
3 BA-CDT-U versus BA-CDT 0.728454
2 BA-CC4.5-U versus BA-CC4.5 0.781207
1 BA-CDT versus RF 0.981534

where 𝐴0% is the accuracy of the classifier when it is applied
on a data set without added noise and 𝐴𝑥% is the accuracy of
the classifier with it is applied on a data set with level of added
noise of x%.

The 𝐸𝐿𝐴 measure (there exists another similar measure
named as the Relative Loss of Accuracy (RLA) of Sáez et al.
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Table 12: 𝑝 values of the Nemenyi test about the accuracy on data
sets with 20% of added noise.

𝑖 Algorithms 𝑝
21 BA-C4.5-U versus BA-CC4.5 0
20 BA-C4.5-U versus BA-CDT 0
19 BA-CC4.5 versus RF 0
18 BA-C4.5-U versus BA-CC4.5-U 0
17 BA-C4.5-U versus BA-C4.5 0
16 BA-CDT-U versus BA-CC4.5 0.000001
15 BA-CDT versus RF 0.000001
14 BA-CC4.5-U versus RF 0.000001
13 BA-CDT-U versus BA-CDT 0.000038
12 BA-C4.5 versus RF 0.000038
11 BA-CDT-U versus BA-CC4.5-U 0.000046
10 BA-CDT-U versus BA-C4.5 0.001194
9 BA-C4.5-U versus BA-CDT-U 0.07102
8 BA-C4.5 versus BA-CC4.5 0.074716
7 BA-CC4.5-U versus BA-CC4.5 0.342638
6 BA-C4.5-U versus RF 0.354539
5 BA-CDT versus BA-CC4.5 0.366699
4 BA-C4.5 versus BA-CDT 0.379114
3 BA-CDT-U versus RF 0.379114
2 BA-CC4.5-U versus BA-C4.5 0.40471
1 BA-CC4.5-U versus BA-CDT 0.963078

Table 13: 𝑝 values of the Nemenyi test about the accuracy on data
sets with 30% of added noise.

𝑖 Algorithms 𝑝
21 BA-C4.5-U versus BA-CC4.5 0
20 BA-C4.5-U versus BA-CDT 0
19 BA-CC4.5 versus RF 0
18 BA-CDT versus RF 0
17 BA-CDT-U versus BA-CC4.5 0
16 BA-C4.5-U versus BA-CC4.5-U 0
15 BA-CDT-U versus BA-CDT 0
14 BA-CC4.5-U versus RF 0
13 BA-C4.5-U versus BA-C4.5 0.000003
12 BA-C4.5 versus BA-CC4.5 0.000038
11 BA-C4.5 versus RF 0.000101
10 BA-C4.5 versus BA-CDT 0.000111
9 BA-CDT-U versus BA-CC4.5-U 0.000668
8 BA-CC4.5-U versus BA-CC4.5 0.005479
7 BA-C4.5-U versus BA-CDT-U 0.008911
6 BA-CC4.5-U versus BA-CDT 0.01164
5 BA-CDT-U versus BA-C4.5 0.039403
4 BA-CDT-U versus RF 0.067475
3 BA-CC4.5-U versus BA-C4.5 0.179454
2 BA-C4.5-U versus RF 0.431313
1 BA-CDT versus BA-CC4.5 0.799032

[37]. We find that the 𝐸𝐿𝐴 measure is more important than
the 𝑅𝐿𝐴 measure, because 𝐸𝐿𝐴 takes into account higher

Table 14: 𝑝 values of the Nemenyi test about the accuracy on data
sets with 40% of added noise.

𝑖 Algorithms 𝑝
21 BA-C4.5-U versus BA-CC4.5 0
20 BA-CC4.5 versus RF 0
19 BA-C4.5-U versus BA-CDT 0
18 BA-CDT versus RF 0
17 BA-CDT-U versus BA-CC4.5 0
16 BA-C4.5-U versus BA-CC4.5-U 0
15 BA-CDT-U versus BA-CDT 0
14 BA-CC4.5-U versus RF 0
13 BA-C4.5 versus BA-CC4.5 0.000001
12 BA-C4.5 versus BA-CDT 0.000056
11 BA-C4.5-U versus BA-C4.5 0.000056
10 BA-CDT-U versus BA-CC4.5-U 0.000161
9 BA-C4.5 versus RF 0.000177
8 BA-CC4.5-U versus BA-CC4.5 0.00178
7 BA-C4.5-U versus BA-CDT-U 0.031355
6 BA-CC4.5-U versus BA-CDT 0.033222
5 BA-CC4.5-U versus BA-C4.5 0.057705
4 BA-CDT-U versus BA-C4.5 0.060822
3 BA-CDT-U versus RF 0.060822
2 BA-CDT versus BA-CC4.5 0.319611
1 BA-C4.5-U versus RF 0.781207
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Figure 2: Average tree size for the bagging methods when they are
applied on data sets with added noise.

levels of accuracy on data sets with added noise) considers
the performance without noise as a value to normalize the
degree of success. This characteristic makes it particularly
useful when comparing two different classifiers over the same
data set.The classifier with the lowest value for𝐸𝐿𝐴𝑥% will be
the most robust classifier.

Table 15 shows the values of the Equalized Loss of
Accuracy (𝐸𝐿𝐴) measures. The best algorithm for each level
of added noise is identified using bold fonts and the second
best one is represented with italic fonts.
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Table 15: ELA measure for the algorithms when they are used on
data sets with several percentages of added noise.

Method 10% 20% 30% 40%
BA-C4.5-U 0.1876 0.2169 0.2698 0.3515
BA-CDT-U 0.1878 0.2102 0.2568 0.3392
BA-CC4.5-U 0.1833 0.1969 0.2318 0.3000
BA-C4.5 0.1813 0.1980 0.2391 0.3136
BA-CDT 0.1912 0.2017 0.2259 0.2876
BA-CC4.5 0.1828 0.1932 0.2220 0.2841
RF 0.1836 0.2204 0.2774 0.3604

5. Comments on the Results

From a general point of view, we can state that bagging of
credal trees (BA-CC4.5 and BA-CDT) has a better perfor-
mance than the models used as reference (BA-C4.5 and RF)
when the level of added noise is increased.This improvement
is not only with respect to the accuracy, via the tests of
Friedman and Nemenyi carried out, but also in terms of the
measures of robustness.

An important characteristic of the results is that the
bagging ensembles using credal trees built less complex
models than the ones built by the bagging of classic C4.5,
as can be seen in Figure 2. When the level of added noise
is increased, the complexity of the bagging models using
credal sets is notably smaller than the ones that use C4.5.
That complexity is an important aspect of a classifier when it
is applied on data set with noise, because when the model is
larger, the overfitting on data with errors is larger too. Hence,
the model can produce a worse performance. This is the case
for RF according to Figure 2: the complexity of the random
trees for RF is very large; therefore RF has a bad performance
when it is applied on noisy data sets.

Next, we are going to analyze the results, on each level
of added noise, taking into account principally the accuracy
and measures of robustness. The following aspects must be
remarked.

0%. According to accuracy and test of Friedman, without
added noise, 𝑅𝐹 is the best model. We can observe in
Table 9 (Friedman’s ranking) that all the bagging models
without pruning are better in accuracy than the same bagging
models with pruning. Besides, BA-C4.5-U is the best model
compared with the other bagging models. These results are
coherent with the original bagging algorithmproposed in [7],
where the trees are built without pruning for each bootstrap
sample. In this way, the trees tend to be more different
from each other than if they were pruned. This is a good
characteristic of a model, for reducing variance, when it is
used as base classifier in a bagging scheme. When we use
unpruned trees, we are increasing the risk of overfitting;
however, the aggregation of trees carried out by bagging
offsets this risk.We remark that this assertion is right for data
sets without added noise.

10%. With this low level of added noise, BA-C4.5 is now
the best model but 𝑅𝐹 suffers notable deterioration in its
performance about accuracy. Also BA-C4.5-U, which was
excellent without added noise, is now the worse method. It

must be remarked that it builds the largest trees. Here BA-
CC4.5 begins to have excellent results in accuracy, being
the second better classifier for this level of added noise.
The 𝐸𝐿𝐴 measure indicates that the best value is for BA-
C4.5 followed by BA-CC4.5. According to Friedman’s ranking
about accuracy, we can observe that each baggingmodel with
pruned trees is better than the same model with unpruned
trees for this added noise level. With these results, we can
conclude that the bagging algorithm needs to aggregate trees
with pruning in order to manipulate data sets with low level
of added noise. That is, using only a bagging scheme is
insufficient in order to classify data sets with this level of
added noise. Then, to prune the trees is also necessary here.

20%. With this medium-to-high level of added noise, the
situation is notably different from the one with lowest level
of added noise. Here BA-CC4.5 is the better procedure in
terms of accuracy followed by BA-CDT. BA-C4.5 has still
good performance but it is worse than the bagging credal
trees. We cannot say the same for RF that has a very bad
performance, getting worse when the level of noise increases.
The Nemenyi test carried out presents significant differences
in favor of bagging credal trees when they are compared with
RF and some versions of the methods without pruning. The𝐸𝐿𝐴measure has the best results for BA-CC4.5. BA-C4.5-U is
again the worse method considering all the aspects analyzed.
The size of the trees impairs seriously their performance.
Hence, to obtain better results, the bagging scheme needs to
use pruned credal trees when it is applied on data sets with a
level of added noise greater than or equal to 20% (we will see
similar conclusion for higher level of added noise).

30% and 40%. As with these levels of added noise the results
are very similar, we will comment on their results together.
For these levels of added noise, BA-CC4.5 is always the
best procedure in terms of accuracy. The other model based
on credal trees, BA-CDT, obtains the second better results.
These comments are reinforced by the tests of Friedman and
Nemenyi carried out. Here, even BA-C4.5 is significantly
worse than the two bagging schemes of credal trees, via the
test carried out. RF is now evenworse thanwithmedium level
of added noise. It is remarkable that themethod BA-CC4.5-U
(without pruning) has better results than the pruned method
BA-C4.5, although they have similar average tree sizes. Also
the robustness measure confirms these assertions. Again BA-
CC4.5 is the best model for the 𝐸𝐿𝐴 measure. In all cases,
BA-C4.5 has medium results but the same model without
pruning, BA-C4.5-U, has now very bad results, being the
worsemethod for these high levels of addednoise.The second
worse results are obtained by RF, which also is not a good
procedure for high level of added noise, when it is compared
with bagging schemes of credal trees. With these results, and
considering the ones for 20% of added noise, we can say
that the combination of bagging, pruning, and credal trees is
necessary to obtain the best significant results when we want
to apply the methods on data sets with levels of added noise
greater than or equal to 20%.

With respect to the average tree size, we have the following
comments. It can be observed that the model BA-CDT builds
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always smaller trees. Perhaps this is one of the reasons why
it works well with high level of added noise but not without
added noise, when it is compared with the rest of models.
When the level of added noise is increased, the percentage
of increasing of the average size is the smallest one for BA-
CDT. BA-CC4.5 has medium tree size compared with all the
models with pruning; we remember that it has decent results
in accuracy on data sets without added noise, and it is the
best model in accuracy on data sets with medium and high
levels of added noise. The following methods in tree size,
with very similar sizes, are BA-C4.5 and BA-CC4.5-U, that
is, a pruned method and an unpruned one; the second one
is better in accuracy for level of added noise of 20–40%. At
this point, we can argue that the size is not as important as
the split criterion used; CC4.5 has a different treatment of the
imprecision than C4.5, as was explained in previous sections.
The rest of unpruned methods build larger trees, with BA-
C4.5 being the one with larger results in tree size but the one
with worse results in the rest of aspects, when it is compared
with the other methods.

We can conclude that the method with a moderate or
medium tree size, BA-CC4.5, has the best results in accuracy
and measures of robustness, when the level of added noise
is increased. Hence, we can think that the tree size is not a
fundamental aspect of the performance of a model on noisy
domains.

6. Conclusion

A very recent model called Credal C4.5 (CC4.5) is based on
the classical C4.5 algorithm and imprecise probabilities. In a
previous work, its excellent performance in noise domains
has been shown. In this paper, we have used it in a bagging
scheme on a large experimental study. We have compared
it with other models that can be considered as very appro-
priate in this type of domains: bagging C4.5 and bagging
Credal Decision Trees (CDTs). This last model, called CDT,
represents other procedures based on imprecise probabilities,
which was presented some years ago to be very suitable under
noise.

With the results obtained in this paper, we show that
bagging CC4.5 obtains excellent results when it is applied
on data sets with label noise. Its performance is better than
the ones of the other models used as benchmark here in two
folds: accuracy and measures of robustness under noise. This
improvement is even greater when the level of label noise
increases.

Real data commonly have noise. This reason allows us
to believe that the bagging of Credal C4.5 trees is an ideal
candidate to use on data from real applications. It combines
several resources to be successful in the treatment of noisy
data: imprecise probabilities, bagging, and pruning. Hence,
it could be considered as a powerful tool to apply in noise
domains.
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Table 1. Accuracy results of the methods when they are used
on data sets without added noise. Table 2. Accuracy results
of the methods when they are used on data sets with a
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data sets without added noise. Nemenyi’s procedure rejects
those hypotheses that have an unadjusted𝑝 value -< 0:002381.
Table 9. 𝑝 values of the Nemenyi test about the accuracy
on data sets with 10% of added noise. Nemenyi’s procedure
rejects those hypotheses that have an unadjusted 𝑝 value -<
0:002381. Table 10. 𝑝 values of the Nemenyi test about the
accuracy on data sets with 20% of added noise. Nemenyi’s
procedure rejects those hypotheses that have an unadjusted𝑝 value -< 0:002381. Table 11. 𝑝 values of the Nemenyi test
about the accuracy on data sets with 30% of added noise.
Nemenyi’s procedure rejects those hypotheses that have an
unadjusted 𝑝 value -< 0:002381. Table 12. 𝑝 values of the
Nemenyi test about the accuracy on data sets with 40% of
added noise. Nemenyi’s procedure rejects those hypotheses
that have an unadjusted 𝑝 value -< 0:002381. Table 13. 𝑝
values of the Bonferroni-Dunn test about the accuracy on
data sets without added noise, where Random Forest is the
best method in Friedman’s rank. Table 14. 𝑝 values of the
Bonferroni-Dunn test about the accuracy on data sets with
10% of added noise, where bagging of C4.5 is the best method
in Friedman’s rank. Table 15. 𝑝 values of the Bonferroni-
Dunn test about the accuracy on data sets with 20% of added
noise, where bagging of Credal C4.5 is the best method in
Friedman’s rank. Table 16. 𝑝 values of the Bonferroni-Dunn
test about the accuracy on data sets with 30% of added
noise, where bagging of Credal C4.5 is the best method in
Friedman’s rank. Table 17. 𝑝 values of the Bonferroni-Dunn
test about the accuracy on data sets with 40% of added
noise, where bagging of Credal C4.5 is the best method in
Friedman’s rank. (Supplementary Materials)
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[25] J. A. Sáez, J. Luengo, and F. Herrera, “Evaluating the classifier
behavior with noisy data considering performance and robust-
ness: The Equalized Loss of Accuracy measure,” Neurocomput-
ing, vol. 176, pp. 26–35, 2016.

[26] E. T. Jaynes, “On The Rationale of Maximum-Entropy Meth-
ods,” Proceedings of the IEEE, vol. 70, no. 9, pp. 939–952, 1982.

[27] C. E. Shannon, “Amathematical theory of communication,” Bell
Labs Technical Journal, vol. 27, pp. 379–423, 623–656, 1948.

[28] J. Abellán, “Uncertainty measures on probability intervals from
the imprecise Dirichlet model,” International Journal of General
Systems, vol. 35, no. 5, pp. 509–528, 2006.

[29] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone,
Classification and Regression Trees, Wadsworth, Belmont, Mass,
USA, 1984.

[30] M. Lichman, UCI Machine Learning Repository, 2013, http://
archive.ics.uci.edu/ml.

[31] I. H. Witten and E. Frank, Data Mining: Practical Machine
Learning Tools and Techniques, Morgan Kaufmann Series in
DataManagement Systems,Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2nd edition, 2005.
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