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Abstract. The least element 0 of a finite meet semi-distributive lat-
tice is a meet of meet-prime elements. We investigate conditions under
which the least element of an algebraic, meet semi-distributive lattice is
a (complete) meet of meet-prime elements. For example, this is true if
the lattice has only countably many compact elements, or if |L| < 2ℵ0 ,
or if L is in the variety generated by a finite meet semi-distributive lat-
tice. We give an example of an algebraic, meet semi-distributive lattice
that has no meet-prime element or join-prime element. This lattice L
has |L| = |Lc| = 2ℵ0 where Lc is the set of compact elements of L.

1. Introduction

In [14], B. Jónsson and J. E. Kiefer observed that in a finite join semi-
distributive lattice, the canonical joinands of 1 are join-prime. The Jónsson-
Kiefer property has arisen naturally in a number of settings. For example,
V.A. Gorbunov and his co-researchers at Novosibirsk deeply investigated the
Birkhoff-Maltsev problem, which asks for a characterization of the lattices
isomorphic to the lattice L(K) of all sub-quasivarieties of K for some qua-
sivariety K. Among their first discoveries was the fact that these lattices
are dually algebraic lattices with the Jónsson-Kiefer property. Also, an easy
argument shows that if a lattice satisfies Jónsson-Kiefer property, then it is
join semi-distributive (Gorbunov [10]).

We wish to discuss various extensions and variations of the Jónsson-Kiefer
property in complete lattices, and we shall identify both local and global ver-
sions of the property and its dual. For the sake of simplicity, we shall confine
our discussions, whenever possible, to the dual of the property observed by
Jónsson and Kiefer. Thus we deal primarily with meet semi-distributive lat-
tices, with meet-prime elements, and with the dual Jónsson-Kiefer property.
We will say that a complete lattice L has the dual Jónsson-Kiefer property
if every element a is the meet of a set of elements that are meet-prime in
the interval sublattice 1/a. Similarly, L has the Jónsson-Kiefer property at
0 if 0 is the meet of all the meet-prime elements of L. All the concepts
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and properties of lattices mentioned in this section are defined in the next
section.

V.A. Gorbunov was concerned to show, where possible, the independence
of the various properties of the lattice of sub-quasivarieties, and thus, over
time he came to consider the question whether every meet semi-distributive
algebraic lattice has the dual Jónsson-Kiefer property. The question seemed
hard and remained open until now. It recently appeared as Problem 8 in
[1]. It is resolved in the final section of this paper, where we construct an
algebraic meet semi-distributive lattice that has no meet-prime element.

2. Concepts, terms and notation

An element c of a complete lattice L is compact if whenever c ≤ ∨
X,

X ⊆ L, then c ≤ ∨
X ′ for some finite set X ′ ⊆ X. The set of all compact

elements of L will be denoted Lc. The ideal and filter generated by an
element x in a lattice L (or in an ordered set P) are denoted ↓ x and ↑ x,
respectively. A lattice L is termed algebraic if and only if L is complete and
for all a ∈ L, a =

∨ ↓a ∩ Lc.
A complete lattice L is upper continuous if a ∧ (

∨
D) =

∨
d∈D(a ∧ d) for

any a ∈ L and any up-directed subset D ⊆ L. It is lower continuous if the
dual condition holds. For elements a, b of a lattice L, we say that a is way
below b, written a � b, if whenever U is an up-directed set and b ≤ ∨

U ,
then a ≤ u for some u ∈ U . A lattice is termed Scott continuous if for every
x ∈ L we have x =

∨{a ∈ L : a � x}. Since an element a is compact if
and only if a� a, every algebraic lattice is Scott continuous. Observe that
every Scott continuous lattice is upper continuous.

A lattice L is termed meet semi-distributive at a iff

a = b ∧ c1 = b ∧ c2 implies a = b ∧ (c1 ∨ c2);
and we say that L is meet semi-distributive iff L satisfies

u = x ∧ y = x ∧ z implies u = x ∧ (y ∨ z).
Equivalently, L is meet semi-distributive iff it is meet semi-distributive at
each of its elements. The concept of a lattice being join semi-distributive
at a and the concept of join semi-distributive lattice are the duals of the
ones just defined. We call L pseudo-complemented if for all x ∈ L there is a
largest y ∈ L such that x ∧ y = 0.

We say that a =
∧
C canonically if a =

∧
C irredundantly and whenever

a =
∧
B, then C refines B in the sense that for every c ∈ C there exists

b ∈ B such that c ≥ b. In the context of complete lattices, we do not require
B and C to be finite.

Let A be a complete, upper continuous lattice, or more generally, a com-
plete meet semilattice with 1 in which for every up-directed set U and ele-
ment x,

∨
U = a exists and x ∧ a =

∨{x ∧ u : u ∈ U}. A subset S of A
is an algebraic subset if S is closed under arbitrary meets and under arbi-
trary joins of nonempty up-directed sets. (In particular, this requires that
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S contains 1.) The lattice of all algebraic subsets of A ordered by set inclu-
sion is denoted Sp(A). One can show that Sp(A) is join semi-distributive,
and for algebraic subsets U, V in A, U ∨ V (the join in Sp(A)) is the set
U ∪ V ∪ {u ∧ v : u ∈ U, v ∈ V }.

Now suppose that L is a complete lattice. It is not hard to show that
Sp(A) is dually algebraic iff L is algebraic. A binary relation R on L is said
to be distributive if a ∧ bR c implies that there exist a′, b′ such that aR a′,
bR b′ and c = a′ ∧ b′. A subset S ⊆ L is R-closed if b ∈ S whenever a ∈ S
and aR b. For any complete lattice L and any binary relation R on L, the
collection of all R-closed algebraic subsets of L forms a complete lattice,
denoted as Sp(L, R). The chief result on these lattices is Theorem 5 below.

Here are some basic and fairly easily established facts.

Proposition 1.
(1) If a lattice L is complete and upper continuous, then it is pseudo-

complemented if and only if it is meet semi-distributive at 0.
(2) L is meet semi-distributive at a if and only

a =
∧
B =

∧
C implies a =

∧
{b ∨ c : b ∈ B, c ∈ C}

whenever B and C are finite subsets of L.
(3) If L is finite then it is meet semi-distributive at a if and only if a

has a canonical meet representation.
(4) If L is algebraic, then it is meet semi-distributive iff for all a, b, c ∈

Lc, if a ≤ b ∨ c then for some positive integer n and some sub-
set {u0, . . . , un} ⊆ L with a = un ≥ un−1 ≥ · · · ≥ u0, and some
{v, v0, . . . , vn−1} ⊆ {b, c}, we have that u0 ≤ v and for all 0 ≤ i < n:
ui+1 ≤ ui ∨ vi.

An element p of a lattice L is meet-prime if p < 1 and p ≥ x ∧ y implies
p ≥ x or p ≥ y. Dually, p is join-prime if p > 0 and p ≤ x ∨ y implies p ≤ x
or p ≤ y. Let MP(L) denote the set of meet-prime elements of a lattice L,
and let JP(L) denote the set of its join-prime elements. Likewise, for an
element a ∈ L, let MP(↑a) denote the set of elements that are meet-prime
in the filter ↑ a (i.e., elements p such that p ≥ x ∧ y ≥ a implies p ≥ x or
p ≥ y), and let JP(↓a) denote the set of elements that are join-prime in the
ideal ↓a.

We say that a complete lattice L has the dual Jónsson-Kiefer property,
abbreviated “dual JKP”, if a =

∧
MP(↑ a) for every a ∈ L. Similarly,

L has the dual Jónsson-Kiefer property at 0, abbreviated “dual JKP0”, if
0L =

∧
MP(L).

The D relation on the join-irreducible elements of a lattice is defined by
p D q if p 6= q and there exists an element x ∈ L such that p ≤ q ∨ x but
p � r∨x for all r < q. While this notion is most often used in finite lattices,
it can also play a role in infinite lattices. The relation defined dually on the
meet-irreducible elements of a lattice is denoted by Dd.
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3. Canonical decompositions and the Jónsson-Kiefer property

The original version of Jónsson and Kiefer, appropriately dualized, reads
as follows.

Theorem 2. If a lattice L has the ascending chain condition, and is meet
semi-distributive at 0, then 0L has a canonical finite decomposition into
meet-prime elements.

Gorbunov provided a natural generalization of Theorem 2 [9]. For refine-
ments, see Semenova [16, 17] and the references therein.

Theorem 3. If a complete lattice L is upper continuous and meet semi-
distributive at 0, and every non-zero element of L is above an atom, then
0L has a canonical decomposition into completely meet-prime elements.

In a different context, standard arguments give the following. We say
that the lattice L is weakly atomic if for every a < b in L the interval b/a
contains a two-element interval d/c. Note that every algebraic lattice is
weakly atomic.

Theorem 4. If a complete lattice L is upper continuous, weakly atomic, and
distributive, then every element of L is a meet of completely meet irreducible
elements, which are meet-prime.

This has nothing to do with canonical representations. Consider the lat-
tice of open sets of a Hausdorff space, which has these properties. The
coatoms (complements of singletons) are the meet-prime elements. These
are generally not completely meet-prime, and the representation of 0 (say)
as the meet of all meet-prime elements is not canonical.

A third result along these lines (but dually) is due to Gorbunov [10]. If A
is an algebraic lattice and R is a distributive relation on A, then the lattice
Sp(A, R) of all R-closed algebraic subsets of A (defined in the previous
section) is dually algebraic, lower continuous, and join semi-distributive.

Theorem 5. Let A be an algebraic lattice and R a distributive relation on
A. Then Sp(A, R) has the JKP. In particular, for any quasivariety Q, the
lattice of subquasivarieties of Q has the JKP.

The above evidence led to the following rather optimistic extension of the
Gorbunov conjecture.

Conjecture 6. If L is complete, upper continuous, weakly atomic and meet
semi-distributive at 0, then 0 =

∧
MP(L).

The natural setting for the conjecture is algebraic lattices, and in fact
the lattice provided in the final section of this paper demonstrates that the
conjecture is false for algebraic lattices. Before providing this counterex-
ample, we will discuss some rather general circumstances under which meet
semi-distributivity does imply the dual JKP0.
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The next result generalizes a result of M. Maróti and R. McKenzie [15].
Define an element p to be weakly meet-prime if x ∧ y = 0 implies x ≤ p or
y ≤ p. Let WMP(L) denote the set of all weakly meet-prime elements of L.

Theorem 7. A Scott continuous lattice L is pseudo-complemented if and
only if

∧
WMP(L) = 0.

Proof. Suppose that
∧

WMP(L) = 0 but that L is not meet semi-distributive
at 0, with say 0 = x∧y = x∧z < x∧(y∨z) = a. Then there exists a weakly
meet-prime element p with a � p. Now x � p as a � p, so x∧ y = 0 implies
y ≤ p. Similarly, x∧z = 0 implies z ≤ p. But then a = x∧(y∨z) ≤ y∨z ≤ p,
a contradiction. So L must be meet semi-distributive at 0.

Now assume that L is Scott continuous and meet semi-distributive at 0.
We want to show that for every element a > 0 there is a weakly meet-
prime element p such that a � p. Fix a > 0, and choose an element b
with 0 < b � a. Let F be a maximal filter containing b. As observed by
Gorbunov and Tumanov [13], a lattice is meet semi-distributive at 0 if and
only if every maximal filter is prime. Hence the set complement of F is an
ideal. Let p =

∨
(L− F ).

If x, y are elements with both x, y � p, then x ∈ F and y ∈ F , whence
x∧ y ∈ F and x ∧ y > 0. Thus p is weakly meet-prime. On the other hand,
if a ≤ p =

∨
(L − F ) then as b � a we would have b ≤ ∨

S for some finite
subset S ⊆ L − F . Because L − F is an ideal, that would imply b /∈ F , a
contradiction. Hence a � p, as desired. �

We remarked earlier that if R is distributive and A is algebraic, then
Sp(A, R) is dually algebraic. It is also true that if R is distributive and
A is Scott continuous, then Sp(A, R) is dually Scott continuous (see, for
example, Adaricheva [2] for the case of R = id).

The importance of these ideas is due to the fact that for any quasivariety
Q, the lattice LQ of all subquasivarieties of Q can be represented as Sp(A, R)
for an algebraic lattice A and a distributive relation R (Gorbunov and Tu-
manov [12]; see also [11]). Gorbunov’s proof of the JKP for these lattices is
part of the effort to characterize the lattices LQ, with the aid of some strong
form of join semi-distributivity. The lattices Sp(A, R) are also useful as a
source of examples of join semi-distributive lattices.

Gorbunov’s result (Theorem 5) can be generalized to the case when the
lattice A is Scott continuous.

Theorem 8. Let A be a Scott continuous lattice and R a distributive rela-
tion on A. Then Sp(A, R) has the dual JKP.

Proof. First, it is folklore that any algebraic subset of a Scott continuous
lattice is also a Scott continuous lattice (with respect to the induced order).
To see this, let S be an algebraic subset of A and take a ∈ S. Then a =

∨
bi

with bi ∈ A and bi � a. Consider ai =
∧{x ∈ S : x ≥ bi}. Clearly ai ∈ S

and bi ≤ ai ≤ a for each i, so a =
∨
ai. Fixing an index i, suppose a ≤ ∨′D

where D is an up-directed subset of S and
∨′ denotes the join in S. Because
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S is algebraic,
∨′D =

∨
D and hence bi ≤ d for some d ∈ D. Then ai ≤ d,

and we have shown that ai � a in the lattice S. Thus S is Scott continuous.
Also recall that every element in a Scott continuous lattice is a meet of

meet irreducible elements [7].
With these two facts, the proof just repeats the one in Gorbunov [10],

Lemma 6.6. �

In the next section, we show that in any algebraic psuedo-complemented
lattice L with |L| ≤ 2ℵ0 ,

∧
MP(L) = 0. In Section 5 it is proved that

any algebraic meet semi-distributive lattice in which |Lc| ≤ ℵ0 or Lc is a
sublattice satisfies

∧
MP(L) = 0. We also show that every atomistic dually

algebraic lattice that supports an equaclosure operator has the JKP. In
Section 6, we show that

∧
MP(L) = 0 for any weakly atomic, join continuous

member L of a variety generated by a finite meet semi-distributive lattice.

4. Using the structure of pseudo-complemented lattices

We recall a basic structure result for pseudo-complemented complete lat-
tices (Glivenko [8], Frink [6]).

Theorem 9. Let L be a pseudo-complemented complete lattice, and let L∗ =
{x∗ : x ∈ L}. Then L∗ is a complete Boolean algebra. The meet operation
on L∗ coincides with that on L, and the join in L∗ of a subset X ⊆ L∗ is
given by (

∧{x∗ : x ∈ X})∗. The complementation on L∗ is given by ∗.
Moreover, the closure operator γ : L → L∗ via γ(x) = x∗∗ is an increasing,

0-separating homomorphism that preserves finite meets and arbitrary joins.

This applies immediately to the current problem.

Theorem 10. Let L be a pseudo-complemented complete lattice. If L∗ is
atomic, then 0 is the meet of the meet-prime elements of L. If 0 has a
canonical meet representation, then L∗ is atomic.

Proof. Assume that L∗ is atomic, and let c be a coatom of L∗. Suppose that
c is not meet-prime, say c ≥ x∧y properly. Now c∗∧x > 0 since x � c∗∗ = c,
and (c∗ ∧ x) ∧ y ≤ c∗ ∧ c = 0. Thus y ≤ (c∗ ∧ x)∗, so that c < (c∗ ∧ x)∗ < 1,
a contradiction. Hence the coatoms of L∗ are meet-prime.

Assume that 0 =
∧
X canonically in L, and let x ∈ X. Let m =

∧
(X −

{x}), so that by the definition of a canonical meet representation x∗ = m
and m∗ = x. If 1 > z∗ ≥ x for some element z ∈ L, then z ≤ z∗∗ ≤ x∗ = m.
Since z > 0 we have z � x, and thus z ∧ z∗ = 0 implies z∗ ≤ x. Thus x is a
coatom of L∗. �

Now recall that every infinite complete Boolean algebra has cardinality
at least 2ℵ0 . The next result is thus a consequence of Theorems 9 and 10.

Corollary 11. Let L be a pseudo-complemented complete lattice with |L| <
2ℵ0 . Then L∗ is finite, and hence 0 is the meet of the meet-prime elements
of L.
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We now show that the statement of Theorem 10 cannot be strengthened
to an equivalence by giving an example of a complete (algebraic) psuedo-
complemented lattice in which the psuedo-complements form an atomless
Boolean algebra and the meet of all meet-prime elements is 0.

Let C denote the Cantor space (the product of countably many discrete
two-point spaces with the product topology). The lattice O(C) of open sets
of the Cantor space has the desired properties. Clearly O(C) is complete; it
is even algebraic (because C is zero-dimensional and compact). It is psuedo-
complemented because of the frame distributive law: (

⋃
Ui)∩V =

⋃
(V ∩Ui).

Indeed, for any open set U , the pseudo-complement U∗ is the interior of the
set complement C − U . Thus U = U∗∗ if and only if U is regular open. (A
set U is regular open if U is the interior of the closure of U .) Let B denote
the lattice of regular open sets of C. Then B is atomless, because any pair
of points can be separated by a regular open set (in fact, by a clopen set).
As C has no isolated points, B is atomless. Finally, for each point x ∈ C
the set complement C −{x} is a meet-prime open set. The meet of all such
prime open sets clearly contains no point of C.

We conclude this section with some observations about the meet-prime
elements in a pseudo-complemented complete lattice.

Theorem 12. Let L be a pseudo-complemented complete lattice.
(1) If p is a meet-prime element of L, then p∗∗ is either 1 or a coatom

of L∗
(2) If 0 =

∧
MP(L), then b =

∧
(↑b ∩MP(L)) for every b ∈ L∗.

Proof. If p is meet-prime in L, then clearly for every a ∈ L either p ≥ a or
p ≥ a∗. Suppose p∗∗ < a∗ < 1. Then a ∧ p∗∗ = 0, whence we cannot have
a ≤ p ≤ p∗∗, while p∗∗ ≥ p ≥ a∗ > p∗∗ is also a contradiction. Thus p∗∗
must be either 1 or a coatom of L∗.

Assuming that 0 =
∧

MP(L), for a ∈ L let µ(a) =
∧

(↑a∩MP(L)). Then
a ≤ µ(a) and µ(a)∧µ(a∗) = 0, whence µ(a∗) ≤ (µ(a))∗ ≤ a∗ ≤ µ(a∗). Thus
µ(a∗) = a∗. �

5. Sufficient conditions for the dual JKP in algebraic lattices

Clearly some finiteness condition, in addition to join (or meet) semi-
distributivity, needs to be imposed in order to ensure that a lattice has the
JKP or its dual. As observed by Gorbunov [10], the lattice Co(Z) of convex
subsets of the integers is join semi-distributive, algebraic and atomistic, yet
has no join-prime element.

Recall that a filter F is prime if a, b /∈ F implies a ∨ b /∈ F. Equivalently,
a filter F is prime if and only if L− F is an ideal.

Lemma 13. Let L be an algebraic lattice. The following are equivalent.
(1) For every compact element b > 0, there exists a prime filter F such

that b ∈ F and F =↑ (F ∩ Lc), that is, every element of F is above
a compact element in F.
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(2) 0 =
∧

MP(L).

Proof. Assume (1), and suppose that u =
∧

MP(L) > 0. Then there is a
compact element b such that 0 < b ≤ u. Let F be as given by (1), and let
I = L−F. As F is prime, I is an ideal. So I is closed under finite joins, and
by the second property in (1) we see that p =

∨
I is not in F. Thus I =↓p.

Since L− ↓ p = F is a filter, p is meet-prime. But p � b since b ∈ F, and
hence p � u, contradicting the definition of u.

Conversely, assume that 0 =
∧

MP(L) and let b ∈ Lc with b > 0. Then
there is a meet-prime element p such that p � b. Let I =↓p and F = L− I,
which will be a prime filter. For any x ∈ F we have x � p, whence there is
a compact element c with c ≤ x and c � p. Then c ∈ F, and we have shown
that F =↑(F ∩ Lc). �

Gorbunov and Tumanov [13] also observe that a lattice L is meet semi-
distributive at 0 if and only if every maximal filter of L is prime. Thus in
any lattice with 0 that is meet semi-distributive at 0, every element x > 0 is
contained in a prime filter. It follows that the ideal lattice I(L) of a lattice
that is meet semi-distributive at 0 satisfies 0 =

∧
MP(I(L)). (This despite

the fact that the ideal lattice of a meet semi-distributive lattice need not
be meet semi-distributive.) Also in [13], there is an example of a lattice
satisfying both semi-distributive laws and Whitman’s condition (W), but
having no least element and no prime filter. In the notes [4], there is an
example of a meet semi-distributive lattice L that satisfies the ACC (and
hence is algebraic) and has L− {0} as its only prime filter.

We will use a slight weakening of maximality for filters.

Lemma 14. Let L be an algebraic lattice that is meet semi-distributive at
0. If F is a filter of L such that

(i) F =↑(F ∩ Lc), and
(ii) for every compact element x /∈ F, there exists y ∈ F such that x∧y =

0,
then F is prime.

Proof. Assume that F satisfies (i) and (ii). Suppose a, b /∈ F but a ∨ b ∈ F.
Then a ∨ b ≥ f for some compact f ∈ F, whence by (i) there exist compact
elements a′ ≤ a and b′ ≤ b with a′ ∨ b′ ≥ f . On the other hand, by (ii),
a′ /∈ F implies that a′ ∧ g = 0 for some g ∈ F. Likewise, b′ ∧h = 0 for h ∈ F.
Replacing f , g and h with their meet, we may assume that f = g = h.
By the meet semi-distributivity at 0, we have 0 = (a′ ∨ b′) ∧ f = f , a
contradiction. Thus F is prime. �

Theorem 15. Let L be an algebraic lattice that is meet semi-distributive at
0. If Lc is a sublattice of L, then 0 =

∧
MP(L).

Proof. Given b > 0 compact, then using Zorn’s Lemma let F be a filter that
is maximal such that b ∈ F, 0 /∈ F, and F =↑ (F ∩ Lc). If x is compact
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and x /∈ F, then the filter G generated by F ∪ {x} has the property that
G =↑(G ∩ Lc), whence 0 ∈ G, as desired. �

Theorem 16. Let L be an algebraic lattice that is meet semi-distributive at
0. If Lc is countable, then 0 =

∧
MP(L).

Proof. Let b > 0 be a compact element. Index Lc = {b0, b1, b2, . . . } with
b0 = b. Let f0 = b0.

Inductively, suppose we have compact elements f0 ≥ f1 ≥ · · · ≥ fk > 0
such that for all j ≤ k, either bj ≥ fk or bj ∧ fk = 0. If bk+1 ∧ fk = 0, put
fk+1 = fk. If bk+1 ∧ fk > 0, let fk+1 be a nonzero compact element below
bk+1 ∧ fk. Note that the property now holds for k + 1.

Let F =
⋃

k∈ω ↑ fk. By Lemma 14 this is prime, whence by Lemma 13,
0 =

∧
M(L). �

However, we note that even in a countable, distributive, algebraic lattice,
it is possible to have a maximal filter F such that F 6=↑(I ∩ Lc), so that its
complement is not a principal ideal.

Next, we examine the implications of having an equaclosure operator (a
property of the lattices of sub-quasivarieties). Let L be a complete lattice
with a closure operator h : L → L that satisfies properties (h1)–(h4) of
equaclosure operators (see [3]; also[11], p.195):

(h1) h(0) = 0.
(h2) For all x, y ∈ L, h(x) = h(y) implies h(x) = h(x ∧ y).
(h3) For all x, y, z ∈ L, h(x) ∧ (y ∨ z) = (h(x) ∧ y) ∨ (h(x) ∧ z).
(h4) h(L) with the induced order is a dually algebraic lattice and any

x ∈ h(L) is co-compact in h(L) iff x is co-compact in L.
We call a lattice atomistic if every element is a join of atoms.

Theorem 17. Let L be a dually algebraic lattice that admits an equaclosure
operator h.

(1) h(
∨
JP (L)) = 1L.

(2) If L is atomistic then L has the JKP.

Proof. Let L be a dually algebraic lattice with an equaclosure operator h.
For (1), it suffices to show that for each co-compact element c ∈ h(L) with
c < 1 there is a join-prime element of L not below c. We begin by choosing
s to be a minimal element in h(L)\ ↓ c, which we can do because c is co-
compact in h(L). The dual algebraicity of h(L) easily yields that (h2) and
(h4) imply the existence of the least element e ∈ L with the property h(e) =
s. Now e � c, and we can show that e is join-prime in L as follows. Suppose
that a ∈ L, a � e. Then h(a∧s) < s (else s = h(e) = h(a∧s) = h(e∧a∧s)),
and thus a ∧ s ≤ h(a ∧ s) ≤ c. Suppose also that b ∈ L, b � e, so that also
h(b ∧ s) ≤ c. Then by (h3),

(a ∨ b) ∧ s = (a ∧ s) ∨ (b ∧ s) ≤ c .
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Thus h((a ∨ b) ∧ s) ≤ c, implying that a ∨ b � e. We have shown that
e ∈ JP (L), as required.

For (2), we pick any dually compact element d < 1 in L. In order to show
that L has JKP at 1 it will suffice to find a join-prime atom not below d.
Let’s assume to the contrary that no atom in L belonging to F = L\ ↓d is
join-prime. Pick any atom x ∈ F . There are elements u, v ∈ L such that
x ≤ u∨ v, but x 6≤ u, v. Now x ≤ h(x)∧ (u∨ v) = (h(x)∧u)∨ (h(x)∧ v), so
h(x)∧u and h(x)∧v cannot both be below d. Hence there must be an atom
y ≤ h(x) ∧ u or y ≤ h(x) ∧ v with y ∈ F . Now h(y) ≤ h(x) and x ∧ y = 0,
whence by (h2) we conclude that h(y) < h(x).

Now let S = {h(x) : x ∈ F is an atom}. Let M be a maximal chain in
S, and put m =

∧
M . Since d is co-compact, then m ∈ F . We can choose

an atom a ≤ m, a ∈ F . Now h(a) ≤ m and, as above there must exist
some atom b ∈ F with h(b) < h(a). The chain M ∪ {h(b)} contradicts the
maximality of M . This contradiction proves the desired result, that there is
a join-prime atom in F .

Finally, to show that L has JKP we mention that if L admits an equaclo-
sure operator h then every principal ideal ↓ a of L admits the equaclosure
operator ha(x) = h(x) ∧ a, see [3]. �

6. Varieties with the dual JKP

First, we prove a generalization of the result for distributive lattices.

Theorem 18. Let L be a finite meet semi-distributive lattice. If K is a com-
plete, upper continuous, weakly atomic lattice in V(L), then 0 =

∧
MP(K).

Proof. We need to show that if u > 0 in K, then there is a meet-prime
element not above u. By weak atomicity, there is a covering pair in K with
a ≺ b ≤ u. We will find a meet-prime element not above b.

Let ψ be the unique maximum congruence of K separating a and b. Then
K/ψ is a subdirectly irreducible lattice in V(L), and hence a finite, meet
semi-distributive lattice. Let us show that the natural map φ : K → K/ψ
is upper bounded. To see that this will suffice, note that the canonical
meetands of 0 in K/ψ are meet-prime, and the greatest preimage of a meet-
prime element is meet-prime. Since φ(b) > 0, it follows that the greatest
preimage of at least one of the canonical meetands of 0 is not above b.

By upper continuity, we can find a maximal element p above a and not
above b. (By SD∧, p is unique, but this part of the argument works with-
out using the uniqueness of p.) Now p is completely meet irreducible, and
[φ(p), φ(p†)] is a critical quotient in K/ψ, where p† is the unique upper cover
of p. Moreover, p is the greatest preimage of φ(p). For every meet irreducible
element d ∈ M(K/ψ), we have

φ(p) Dd c1 Dd . . . Dd ck−1 Dd d
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for some k ≥ 0. (See e.g. Corollary 2.37 of [5].) It suffices to prove that the
meet irreducible elements have greatest preimages, so we will prove that if
c Dd d and c has a greatest preimage, then so does d.

Assume that c ≥ d ∧ x properly in K/ψ, and c � d† ∧ x, and that c has
a greatest preimage q in K. Choose any t ∈ φ−1(x). Then c ≥ φ(s ∧ t)
for all s ∈ φ−1(d), so that q ≥ ∨

φ(s)=d(s ∧ t) = (
∨
φ−1(d)) ∧ t by upper

continuity. Hence
∨
φ−1(d) is a preimage of d, necessarily the greatest one.

This completes the proof. �

7. A counterexample

The lattice L constructed in this section is algebraic, meet semi-distributive,
has compact 1, is of cardinality continuum, and has no meet-prime elements
or join-prime elements. The most remarkable thing about L is that it is
easily described and accessible to inspection.

We require more definitions. Let P = 〈P,≤〉 be an ordered set (i.e., a
partially ordered set). A condition for P is a triple c = (a, u, v) of elements
of P with u, v incomparable, a 6≤ u, a 6≤ v. An order ideal (downset) J in P
is said to satisfy the condition c iff {u, v} ⊆ J → a ∈ J . Let C be a set of
conditions for P. We have the algebraic lattice L(P, C) whose elements are
the downsets of P that satisfy all the conditions in C. The order in L(P, C)
is set inclusion.

Let S
ω
^ be the infinite binary-branching rooted tree consisting of all func-

tions t such that dom(t) is some natural number n = {0, 1, . . . , n − 1} and
t : n→ {0, 1}. We order S

ω
^ by putting s ≤ t iff s ⊇ t. The largest element

of this ordered set is the empty function ∅. Note that 〈S ω
^,≤〉 is actually

an upper semilattice, the join of σ and τ being σ ∩ τ .
Define Σ as the subset of S

ω
^ × S

ω
^ consisting of all pairs (t0, t1) with

t0 ≤ t1 (i.e., with t1 ⊆ t0), and give Σ the the product order, so that
(s0, s1) ≤ (t0, t1) iff s0 ≤ t0 and s1 ≤ t1. For s ∈ S

ω
^ we write |s| for the

length of s, i.e., the domain of s. For t = (t0, t1) ∈ Σ, we define σ(t) = t0,
n(t) = |t1|. Notice that for s, t ∈ Σ we have s ≤ t iff σ(s) ≤ σ(t) and
n(s) ≥ n(t).

We write Π for the set of all maximal chains in 〈S ω
^,≤〉. The members of

Π will often be called paths in S
ω
^. Let s : Π → Pπ be a bijection between

Π and a set Pπ = {sp : p ∈ Π}, which we assume to be disjoint from Σ. We
take

P = Σ ∪ Pπ ,

and order P as follows. For s = (s0, s1), t = (t0, t1) ∈ Σ, and for p ∈ Π we
have

• s ≤ t means that s ≤ t in Σ.
• s < sp iff s1 ∈ S

ω
^ \ p (and so s0 ∈ S

ω
^ \ p).
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In this order, there is no top element, and the maximal elements of P are
the members of Pπ and the top element, (∅, ∅), of Σ. We note that if p ∈ Π
and t = (t0, t1) ∈ Σ, then t is a maximal member of ↓sp \ {p} iff t0 = t1 6∈ p
and for all s > t, s ∈ S ω

^ we have s ∈ p.
We require the following definitions. For s, s′ ∈ S

ω
^ we write s′ ≺ s

to denote that s ⊆ s′ and |s′| = |s| + 1, in other words, s′ is one of the
two subcovers, s0 and s1, of s in the ordered set S

ω
^. Let t = (t0, t1),

t′ = (t′0, t′1) ∈ Σ. Then we shall write t� t′ iff t1 ≥ t′1 in Σ; t ∼0 t
′ iff t0 = t′0;

t ∼1 t
′ iff t1 = t′1.

Note that x� y implies x� y′ for all y′ ≤ y; also, if x ∼1 x
′ and y ∼1 y

′
then x� y iff x′ � y′. Note also that for p ∈ Π, our definition gives x < sp

iff x ∈ Σ and for no s in p do we have x� (s, s).

We define a set C of conditions on the ordered set P = 〈P,≤〉. It is the
union of four sets Ci (0 ≤ i ≤ 3).

C0: the set of all triples ((s, t), (s0, t), (s1, t)) with s, t ∈ S ω
^, s ≤ t.

C1: the set of all triples ((s, t), (s, u), (r, t)) with {r, s, t, u} ⊆ S
ω
^, s ≤

t, s ≤ u, r ≤ t.
C2: the set of all triples ((s, t), (si, t), sp) with p ∈ Π, and s ≤ t, where

si ≺ s, s ∈ p, si 6∈ p.
C3: the set of all triples ((sq, sp, (ti, ti)) where {p, q} ⊆ Π, p 6= q, i ∈

{0, 1}, t ∈ p ∩ q, and ti ∈ p \ q.
Finally, we take L as the lattice L(P, C). In other words, L is the set

of all downsets J in P such that for all (x, y, z) ∈ C, if {y, z} ⊆ J then
x ∈ J , and it is ordered by set inclusion. For Y ⊆ P , we shall write Y for
the smallest member of L containing the set Y .

We note that Σ ∈ L, and for Y ⊆ Σ, Y is the smallest downset J ⊆ Σ
such that J satisfies conditions C0 ∪ C1. In order to prove that L is meet
semi-distributive, we need a more useful characterization of Y for Y ⊆ Σ.
Thus for Y ⊆ Σ we define Y † be the smallest set T containing Y such that
for all (x, y, z) ∈ C0, if {y, z} ⊆ T then x ∈ T . We define Y � to be the set
of all x ∈ Σ such that y � x ∼0 z for some {y, z} ⊆ (↓Y ).

Lemma 19.
(1) For x ∈ P , ↓x is a member of L. Thus P is naturally embedded in

L.
(2) If {p, p′, q} ⊆ Π, p 6= p′, and p ∩ p′ ⊆ q, then sq ∈ {sp, sp′}.
(3) If Y ⊆ P and {y, z} ⊆ ↓Y and y � x ∼0 z, then x ∈ Y .
(4) If Y ⊆ Σ then Y is the set of all x ∈ Σ satisfying (`Yx ): there is a

finite set Qx ⊆↓x such that x ∈ Q†
x, Qx ⊆ Y �, and for each q ∈ Qx,

x ∼1 q.
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Proof. Statement (1) is straightforward to verify. For (2), assume that
{p, p′, q} ⊆ Π, p 6= p′, and p ∩ p′ ⊆ q. Let s ∈ S

ω
^ be the least member

of p ∩ p′ and s′ ≺ σ be the subcover of s that lies off q. Now s′ belongs to
one but not both of p, p′. We can assume, without losing generality, that
s′ ∈ p \ p′. Then we have that x = (s′, s′) ≤ sp′ and, by C3, sq ∈ {sp, x}.
Thus sq ∈ {sp, sp′}.

Statement (3) follows immediately on consideration of the conditions C1.
Now to prove (4), let Y ⊆ Σ. It is clear that Y is the smallest downset
contained in Σ which contains Y and satisfies conditions C0 ∪ C1. Define
∂(Y ) as the set of all x ∈ Σ such that (`Yx ) holds. It is easily verified that

Y ⊆ Y � ⊆ ∂(Y ) ⊆ Y

and that Y � is a downset. We need to prove that ∂(Y ) is a downset that
satisfies the conditions of C0 ∪ C1.

First, suppose that x = (s, t) ∈ Σ and where xi = (si, t) (i ∈ {0, 1})
we have ↓ xi ⊆ ∂(Y ) for i ∈ {0, 1}. We show that ↓ x ⊆ ∂(Y ). Let
y = (u, v) ≤ x. If u < s then y ≤ xi (i = 0 or i = 1) and so y ∈ ∂(Y ). So
we can assume that y = (s, v), v ≤ t. Now yi ≤ xi, so yi = (si, v) ∈ ∂(Y )
(i ∈ {0, 1}); hence we have (`Yyi

). Let Qi ⊆↓ yi ∩ Y �, so that yi ∈ Q†
i and

for each q ∈ Q = Q0 ∪ Q1, q ∼1 y (y ∼1 y0 ∼1 y1). Now we have y ∈ Q†,
obviously (use conditions C0), and we have shown that y ∈ ∂(Y ).

From the argument of the preceding paragraph, it is clear that ∂(Y ) is a
downset and satisfies C0.

To see that ∂(Y ) satisfies C1, let x = (s, t), y = (s, u), z = (r, t) with
s ≤ t, s ≤ u and r ≤ t, and with {y, z} ⊆ ∂(Y ). We need to prove that
x ∈ ∂(Y ). We assume that t > u (else x ≤ y and there is nothing to prove).
We have that (`Yy ) and (`Yz ) hold. We have only to show that (`Yx ) holds.

Choose Qy ⊆↓y∩Y � and Qz ⊆↓z∩Y � so that y ∈ Q†
y, z ∈ Q†

z and y ∼1 q
for all q ∈ Qy, and similarly for Qz. Define Qx = {(w, t) : (w, u) ∈ Qy}.
(Since s ≤ u < t then (w, t) ∈ P whenever (w, u) ∈ P .) Clearly, Qx ⊆↓ x
and x = (s, t) ∈ Q†

x as y = (s, u) ∈ Q†
y. We must show that Qx ⊆ Y �. So

choose x̄ = (a, t) ∈ Qx. Put ȳ = (a, u) (∈ Qy) and choose z̄ = (b, t) ∈ Qz.
Choose β ∈↓Y with β� z̄ and choose α ∈↓Y with α ∼0 ȳ ∼0 x̄. Since β� z̄
and z̄ ∼1 x̄ then β � x̄. Now {α, β} ⊆↓Y and β � x̄ ∼0 α. This shows that
x̄ ∈ Y �. Thus we have shown that (`Yx ) holds, and x ∈ ∂(Y ) as desired.
This concludes our proof of (4). �

We define some subsets of P . Let n ∈ ω, p ∈ Π and σ ∈ S ω
^.

Σn = {t ∈ Σ : n(t) = n} ;
Σ≥n = {t ∈ Σ : n(t) ≥ n} ;
Sp = {x ∈ P : x ≤ sp} ;
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Sσ = {sq ∈ Pπ : σ ∈ q} ∪ {x ∈ Σ : ¬{x� (σ, σ)}} .
Tp = {(s, t) ∈ Σ : s 6∈ p} .

Notice that for p ∈ Π, Sp \{sp} is the set of all x ∈ Σ such that for all s ∈ p,
¬{x� (s, s)}. From this, it follows that

Sp =
⋂

σ∈p

Sσ .

We can observe that Σn (called the n-level in Σ) as an ordered subset of Σ
is isomorphic to the disjoint union of 2n copies of the ordered set S

ω
^, and

Σ≥n =↓ Σn is isomorphic to the disjoint union of 2n copies of Σ, namely
the sets ↓ (s, s) with s ∈ S ω

^, |s| = n. To easily understand the proofs that
follow, it helps to observe that for x ∈ Σn and y ∈ Σ, we have x � y iff y
belongs to the same connected component of Σ≥n as x.

Lemma 20.

(i) We have Σ = Σ≥0 =↓ (∅, ∅); and for all n ∈ ω, p ∈ Π and σ ∈ Σ,
the sets Σ≥n, Sp, Sσ and Tp are members of L.

(ii) For each p ∈ Π, we have L |= Sp ∨ Tp = 1L and L |= Sp =
∧

σ∈p Sσ.
(iii) For each {p, q} ⊆ Π, p 6= q implies Sp ∧ Sq ≤ Σ and Sp ∨ Sq = Sσ

where σ is the least element of p ∩ q.
(iv) L has no meet-prime elements and no join-prime elements.

Proof. The verification of (i) is left to the reader. For (ii), we have already
observed that Sp =

⋂
σ∈p Sσ. Now let p ∈ Π and let i ≺ ∅ be the subcover

of ∅ in S
ω
^ that lies outside p. Then (i, ∅) ∈ Tp, and with conditions C2 it

follows that (∅, ∅) ∈ Sp∨Tp. Thus Σ ⊆ Sp∨Tp. Then for any sq ∈ Pπ, q 6= p,
conditions C3 yield that sq ∈ Sp ∨ Tp. We have shown that Sp ∨ Tp = 1L.

To prove (iii), let us suppose that p and q are maximal chains in S
ω
^,

σ ∈ p ∩ q, σ0 ∈ p \ q and σ1 ∈ q \ p. Now if (s, t) ∈ Σ and t 6≥ σ then
t 6∈ p∩q, hence (s, t) ∈ Sp∪Sq. Thus Sσ∩Σ ⊆ Sp∨Sq. Next, it follows from
Lemma 19 (2) that Sσ∩Pπ ⊆ Sp∨Sq. We have now shown that Sσ ≤ Sp∨Sq.
Since it is clear that Sp ∪ Sq ⊆ Sσ, we conclude that Sp ∨ Sq = Sσ. That
Sp ∧ Sq ≤ Σ is obvious.

In proving (iv), we first show that there are no join-prime elements. Sup-
pose, to the contrary, that J ∈ L is join-prime in L. Choose any p, q ∈ Π
with 0 ∈ p and 1 ∈ q where 0, 1 ≺ ∅ in S

ω
^. Now it follows from (iii) that

Σ ∨ Sp ∨ Sq = 1L. Thus, if J 6≤ Σ then it easily follows that either J ≤ Sp

for every p ∈ Π with 0 ∈ p, or else J ≤ Sq for every q ∈ Π with 1 ∈ q;
but then J ≤ Sr ∧ Sr′ for some r 6= r′, so in all cases, we conclude that
J ≤ Σ =↓(∅, ∅). Now if s ∈ S ω

^ and J ≤↓(s, ∅), then since

↓(s, ∅) =↓(s0, ∅)∨ ↓(s1, ∅) ,
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(a consequence of conditions C0), either J ≤↓ (s0, ∅) or J ≤↓ (s1, ∅). Obvi-
ously, it follows that there is some p ∈ Π with

J ≤
∧

s∈p

↓(s, ∅) = 0L .

However, 0L by definition is not join-prime. This is a contradiction.
Next, assume that J ∈ L is meet-prime. First we show that J ⊇ Σ.

Suppose not. Then (∅, ∅) 6∈ J . Whenever s ∈ S
ω
^ and (s, ∅) 6∈ J , then also

either (s0, ∅) or (s1, ∅) lies outside J (by conditions C0). Thus we have a
path p ∈ Π with (s, ∅) 6∈ J whenever s ∈ p. Since Tp ∨Sp = 1L (by (ii), then
either Tp 6≤ J or Sp 6≤ J . Now choose u = (i, ∅) with i ≺ ∅, i ∈ p. Since
↓u 6⊆ J , and J is meet-prime, either Tp∩ ↓u 6⊆ J or Sp∩ ↓u 6⊆ J . Observe
that Sp∩ ↓u ⊆ Tp∩ ↓u. Thus in both cases, we have some x = (t, r) ∈ Tp\J .
Here t 6∈ p and so there is some s ∈ p with S

ω
^ |= (↓ s) ∩ (↓ t) = ∅. Then

[↓(s, ∅)]∩ [↓(t, r)] = ∅ = 0L. Since we have both ↓(s, ∅) 6⊆ J and ↓(t, r) 6⊆ J ,
here is a contradiction to our assumption that J is meet-prime. We conclude
that Σ ⊆ J .

Now it follows from (iii) that for {p, p′} ⊆ Π, p 6= p′, we have Sp ≤ J or
Sp′ ≤ J . Thus we certainly have that Sp ⊆ J for some p. For such a p,

1L = Sp ∨ Tp ⊆ J .

However 1L is, by definition, not meet-prime, so we have a contradiction,
and that finishes our proof of (iv). �

Lemma 21. Let Y ⊆ P , Y 6⊆ Σ, and choose any p ∈ Π with sp ∈ Y . If
Y 6⊆ Sp then choose any x0 = (t, r) ∈ {(↓Y ) ∩ Σ} \ Sp with n(x0) = |r| the
minimum for all elements of {(↓Y ) ∩ Σ} \ Sp.

(i) If Y ⊆ Sp then Y = Sp = {sp}.
(ii) If Y 6⊆ Sp, then Y = {sp, x0}. In this case, if n(x0) = 0 then

Y = 1L, while if n(x0) > 0 then, letting σ be the member of p with
|σ| = n(x0)− 1, we have that Y = Sσ.

Proof. Statement (i) being obvious, we strive to prove (ii). First, assuming
that n(x0) = 0, we show that {sp, x0} = 1L. Let i be the unique sequence
of length one off of p, and xp = (i, ∅). Now (i, i) < sp and (xp, (i, i), x0) is a
condition in C1, hence xp ∈ {sp, x0}. Next, ((∅, ∅), xp, sp) is a condition in
C2, hence (∅, ∅) ∈ {sp, x0}. Thus Σ ⊆ {sp, x0}. Now Sp ∨ Σ ⊇ Sp ∨ Tp = 1L

(the last equality is by Lemma 20(ii)).

Now we assume that n(x0) ≥ 1. It is easily verified that in this case, Y ⊆
Sσ. Thus, we need to show that in this case, {sp, x0} = Sσ. For the sake of
notational convenience, we now assume that σ0 ∈ p (instead of σ1 ∈ p), and
σ01 6∈ p (instead of σ00 6∈ p). We have that x0 = (t, r) with r ∈ p and |r| =
|σ0|, hence r = σ0. Now (σ01, σ01) < sp and ((σ01, σ0), (σ01, σ01), x0) is a
condition in C1, hence (σ01, σ0) ∈ {sp, x0}. Next, ((σ0, σ0), (σ01, σ0), sp) is
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a condition in C2, hence (σ0, σ0) ∈ {sp, x0}. Letting q ∈ Π with σ1 ∈ q, we
see that (sq, sp, (σ0, σ0)) is a condition in C3, so it follows that sq ∈ {sp, x0}.
Finally, Lemma 20 (iii) gives that {sp, sq} = Sσ. Thus we have proved that
{sp, x0} = Sσ and this ends our proof. �

Lemma 22.
(1) Suppose that J ∈ L, J 6⊆ Σ and J 6= 1L. Then J = Sp for some

p ∈ Π or J = Sσ for some σ ∈ S ω
^. Thus

L = {1L} ∪ (↓Σ) ∪ {Sp : p ∈ Π} ∪ {Sσ : σ ∈ S ω
^} .

(2) |L| = c (the continuum).
(3) Every member of L outside the interval Σ/0L is a compact element

of L.

Proof. Statements (1) and (3) follows from Lemma 21. Statement (2) is
then a consequence of the fact that |Pπ| = c and ↓Σ is a set of subsets of
the countable set Σ. �

Lemma 23. L is meet semi-distributive.

Proof. We assume that J, J0, J1 ∈ L and J ∧ J0 = J ∧ J1 = M . We need to
prove that J ∧ (J0 ∨ J1) = M . So let α ∈ J ∧ (J0 ∨ J1).

Suppose first that J0 ∪ J1 ⊆ Σ so that α ∈ Σ. Then by Lemma 19(4),
there is a finite set

Q ⊆ (↓ [J0 ∪ J1])�∩ ↓α ⊆ (J0 ∪ J1)� ∩ J
with α ∈ Q†. We have Q ⊆ J and we need to show that Q ⊆ M . So let
x ∈ Q. Then there are y, z ∈ J0 ∪ J1 so that y ∼0 x and z � x. We can
assume that y ≤ x; indeed, if x = (s, t), we can replace y by (s, s). Then
y ∈ J ∩ Ji0 ⊆ M (i0 = 0 or i0 = 1). Now by Lemma 19(2), x ∈ {y, z},
and also y ∈ M and z ∈ Ji1 (i1 = 0 or i1 = 1). Thus {y, z} ⊆ Ji1 , giving
x ∈ J ∩ {y, z} ⊆ J ∩ Ji1 ; and x ∈M as desired. This concludes our proof in
the case J0 ∪ J1 ⊆ Σ.

In the arguments below, we will use several times the elementary fact that
if x ∈ J and x ∈ {y, z} with {y, z} ⊆ J0 ∪ J1 and y ≤ x, then x ∈ M . The
proof of this elementary fact is contained the final three sentences of the last
paragraph.

Now assume that J0∪J1 6⊆ Σ. As in Lemma 21, we choose any sp ∈ J0∪J1

with p ∈ Π. If J0 ∪ J1 ⊆ Sp, then J0 ∨ J1 = Sp = {sp} and this is equal
to Ji where sp ∈ Ji, thus this case is trivial. Hence we assume further that
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J0 ∪ J1 6⊆ Sp. Following Lemma 21, we choose x0 = (t, r) ∈ J0 ∪ J1 with
r ∈ p so that

J0 ∨ J1 = J0 ∪ J1 = {sp, x0};
and if n(x0) = |r| = 0 then J0∨J1 = 1L, while if n(x0) > 0 then we take σ to
be the unique sequence with r ≺ σ and we are guaranteed that J0∨J1 = Sσ

in this case.
We next show that every element of J ∩ (J0 ∨ J1) ∩ Σ belongs to M .

Suppose that α ∈ J ∩(J0∨J1)∩Σ. Say α = (u, v). Here we have v ≤ r since
α ∈ {sp, x0}. If u 6∈ p then (u, u) ≤ α and (u, u) < sp hence (u, u) ∈ M .
Since (u, v) ∈ {(u, u), (t, r)} by C1 (because v ≤ r), then α ∈ J ∩ (J0∪J1) ⊆
M . If u ∈ p then we actually must have u ≤ r. In this case, let u′ ≺ u,
u′ 6∈ p. Then (u′, u′) < α and (u′, u′) ∈ M by what we just proved. Then
(u′, v) ∈ {(u′, u′), x0} by C1; since (u′, v) < α then (u′, v) ∈ M . Finally,
(u, v) = α ∈ {(u′, v), sp} by C2, so we get α ∈M . Thus in all cases, α ∈M
if α ∈ Σ.

Finally, suppose that α = sq, q ∈ Π. We assume that q 6= p. Choose
u ∈ p∩q with ui ≺ u and ui ∈ p\q. Now (ui, ui) < α and so by what we have
just proved in the last paragraph, (ui, ui) ∈M . Also, sq = α ∈ {(ui, ui), sp}
by C3. Thus in this final case also, we get α ∈M . �

Theorem 24. The lattice L is algebraic, meet semi-distributive, has com-
pact 1, is of cardinality 2ℵ0 , and has no meet-prime elements and no join-
prime elements.

Proof. This summarizes Lemma 20(iv), Lemma 22 (2), (3) and Lemma 23.
�

Corollary 25. There exists a lattice that possesses all known properties of
lattices of sub-quasivarieties except JKP.

Proof. Let M be a lattice obtained by adding a new 0 to the lattice dual to
L of Theorem 24, so that M has a smallest non-zero element b and the filter
↑b is isomorphic to the dual of L. Then M is join semi-distributive, atomic
(every element contains an atom) and dually algebraic. Also, M supports
an equa-closure operator h. We can just define h(x) = 1 for x 6= 0 and
h(0) = 0. On other hand, M has no join-prime element other than b, thus
JKP fails. �
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