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Abstract

We present an updated exposition of the classical theory of complete first order theories
without the independence property (also called NIP theories or dependent theories).

1 Introduction

The independence property was introduced by Shelah [48]. Our knowledge about theories without
it was extended by Poizat [42]. Shelah answered in an appendix to his paper on simple theories,
to which Poizat replied again [50, 43]. Chapter 12 of Poizat’s book is an excellent account of the
state of the art after this exchange [45]. Some research done much later seems to have its natural
place within this classical theory of NIP. The most obvious case is Shelah’s version of a theorem
due to Baldwin and Benedikt, refining Poizat’s result that indiscernible sequences in NIP theories
do not split [4, 53].

Shelah’s classical theorem which says that (it is consistent with ZFC that) theories with the
independence property have strictly more types than those without, points to the independence
property as a significant dividing line. Unfortunately, not much is known on the order (i. e. NIP)
side of this dividing line, and those results that were not covered in Poizat’s book are a bit
scattered. The current renaissance of theories without the independence property is probably
due to the ebbing of the boom in simplicity theory and to the great success of o-minimality and
related notions. The purpose of this paper is to make explicit and easily accessible the platform
from which recent research in this area starts.

Perhaps even more than the theory of stability, the theory of NIP appears pervaded by infi-
nite combinatorics disguised as indiscernible sequences. In Sections 2 and 3 we will look at this
combinatorial tool, but also at some specific classes of theories that deliver the most important
examples of NIP theories. In Section 4 we will see that having the independence property or not
is the last dividing line that can possibly be detected by counting types in the traditional way.

Section 5 lays the foundation for working with forking and similar notions such as almost
invariance and finite satisfiability in arbitrary theories. In Section 6 we see that a theory is NIP
if and only if the number of non-forking extensions of every complete type stays below a certain
bound, and Section 7 explores criteria for a NIP theory to be stable.

Most sections are independent of each other, except that everything is based on Section 2 and
the last two sections also depend on Section 5.

2 Definitions and basic facts

Throughout this paper we work in the monster model M of a complete first-order theory T . We will
be ambiguous about whether the language is one- or many-sorted, using more general expressions
such as ‘let ā and x̄ be compatible’ rather than ‘let ā and x̄ have the same length’. ‘Tuples’ such
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as ā and x̄ can often be infinite. (The main difference between ‘tuples’ and sequences is that
tuples consist of arbitrary elements, while sequences consist of compatible tuples.) Whenever it
is important that certain tuples can, or cannot, be infinite, it should be mentioned. We write
ā ≡B ā′ if tp(ā/B) = tp(ā′/B).

An indiscernible sequence may be indexed by an arbitrary linearly ordered set, so long as it is
infinite. We will call a sequence of indiscernibles dense or complete if its underlying linear order is
dense or (Dedekind) complete. Model theorists traditionally use Ramsey’s theorem to construct
indiscernible sequences, but the following consequence of the Erdős-Rado Theorem, which was
observed by Shelah, is often more convenient [50]. A detailed proof can be found, for instance, in
Ben-Yaacov’s thesis [6].

Theorem 1. Let B be a set of parameters and κ a cardinal. For any sequence (āi)i<i
(2|T |+|B|+κ)+

consisting of tuples of length |āi| = κ there is a B-indiscernible sequence (ā′j)j<ω with the following
property: For every k < ω there are i0 < i1 < · · · < ik−1 such that ā′0ā

′
1 . . . ā

′
k−1 ≡B āi0 āi1 . . . āik−1 .

In other words, from every sufficiently long sequence a sequence of indiscernibles can be ‘extracted’.
We will use this result frequently and freely.

VC dimension and alternation number

The VC dimension or Vapnik-Chervonenkis dimension of a formula ϕ = ϕ(x̄; ȳ) is best defined as

vc(ϕ(x̄; ȳ)) = max{n < ω | ∃(āi)i<n∃(b̄J)J⊆n(|= ϕ(āi; b̄J) ⇔ i ∈ J)}

if the maximum exists, and ∞ otherwise.1 VC dimension satisfies a weak form of symmetry
in x̄ and ȳ. In order to express this kind of connection conveniently, we define the opposite
ϕopp = ϕopp(ȳ; x̄) of a formula ϕ = ϕ(x̄; ȳ) as the same formula, but with opposite separation of
variables. The dual VC dimension is then simply vc∗(ϕ) = vc(ϕopp), i.e.

vc∗(ϕ(x̄; ȳ)) = max{n < ω | ∃(āI)I⊆n∃(b̄j)j<n(|= ϕ(āI ; b̄j) ⇔ j ∈ I)}.

For example, we always have vc(x = y) = vc∗(x = y) = 1, and in the theory of a dense linear
order we also have vc(x < y) = vc∗(x < y) = 1.

Proposition 2. vc∗(ϕ) < 2vc(ϕ)+1; and dually vc(ϕ) < 2vc∗(ϕ)+1.

Proof. Suppose vc∗(ϕ) ≥ 2n. We will show that vc(ϕ) ≥ n. (The claim then follows by writing
vc∗(ϕ) = 2n+ε, where 0 ≤ ε < 1.) There are tuples āI for I ⊆ 2n and b̄j for j < 2n such that
|= ϕ(āI ; b̄j) holds if and only if j ∈ I. After a mere change of notation we have tuples b̄J for J ⊆ n
and āI for I ⊆ P(n) such that |= ϕ(āI ; b̄J) holds if and only if J ∈ I. For i < n let I(i) be the
principal ultrafilter on n generated by i. Then J ∈ I(i) if and only if i ∈ J . Hence |= ϕ(āI(i); b̄J)
holds if and only if i ∈ J . Therefore vc(ϕ) ≥ n.

This result is from Laskowski [27]. He also observed that the bipartite graph between A = 2n−1
and B = P(A), with edge relation defined by |= R(a, b) ⇐⇒ a ∈ b, shows that the result is
optimal: Clearly vc(R) = 2n−1 and vc∗(R) ≤ n−1. From this it follows that vc(R) ≥ 2vc∗(R)+1−1.

The VC dimension of formulas is a special case of a dimension introduced by Vapnik and
Chervonenkis in a 1971 paper on statistical learning theory; it is finite if and only if a certain
growth function is polynomial rather than exponential [59]. In the same year, one of Shelah’s first
publications contained the following definition. A formula ϕ(x̄; ȳ) has the independence property
(or IP) if for every n < ω there are tuples (āi)i<n and (b̄J)J⊆n such that |= ϕ(āi, b̄J) holds if
and only if i ∈ J [48, 49]. In other words, ϕ has the independence property if vc∗(ϕ) = ∞ or,

1This definition is based on the interpretation of ϕ(x̄; ȳ) as representing the set system {ϕ(x̄; b̄) | b̄ ∈ M} and the
standard definition of VC dimension for set systems; it is also used by Grohe and Turán [12]. In a widely circulated
draft of the present paper I erroneously interchanged the VC dimension with its dual.
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equivalently, if vc(ϕ) = ∞. The connection between VC dimension and the independence property
was first observed twenty years later by Laskowski [27].2

Another related notion is the alternation number of a formula, defined as

alt(ϕ(x̄; ȳ)) = max
{
n < ω

∣∣ ∃(āi)i<ω indiscernible ∃b̄ ∀i < n− 1[
|= ϕ(āi; b̄) ↔ ¬ϕ(āi+1; b̄)

]}
if the maximum exists, or ∞ otherwise. It is due to Poizat [43, 45]. Thus the alternation number
of ϕ(x̄; ȳ) counts the maximal number of segments into which an instance ϕ(x̄; b̄) of ϕ can cut an
indiscernible sequence. This is one more than the number of alternations between truth values.
For example, the alternation number of a formula with constant truth value, like x = x ∧ y = y,
is 1, the alternation number of a linear order is 2, and alt(x = y) = 3.

Proposition 3. alt(ϕ) ≤ 2 vc(ϕ) + 1.

Proof. We will show that alt(ϕ) ≥ 2n implies vc(ϕ) ≥ n. So suppose we have an indiscernible
sequence (āi)i<2n and a tuple b̄ such that ϕ(āi; b̄) holds if and only if i is even, say. Given any subset
J ⊆ n we can find numbers i0 < i1 < · · · < in−1 such that i0 ∈ {0, 1} and ik+1 ∈ {ik + 1, ik + 2}
(so clearly in−1 < 2n) and such that ik is even if and only if k ∈ J . Hence |= ϕ(āik

; b̄) if and only
if k ∈ J . Now āi0 āi1 . . . āik−1 ≡ ā0ā1 . . . āk−1 by indiscernibility, and so there is a tuple b̄J such
that |= ϕ(āk; b̄J) if and only if k ∈ J .

The formula ϕ(x; y0 . . . yn−1) ≡ (x = y0 ∨ · · · ∨ x = yn−1) has vc(ϕ) = n and alt(ϕ) = 2n+ 1.
This shows that the inequality cannot be improved. Moreover, since alt(ϕopp) = 3, we see that
for the alternation number there is no analogue to Proposition 2. But we still have the following
result, essentially due to Poizat [42]:

Proposition 4. The following conditions are equivalent for every formula ϕ(x̄; ȳ).

1. ϕ does not have the independence property.

2. ϕopp does not have the independence property.

3. vc(ϕ) <∞.

4. alt(ϕ) <∞.

5. For every indiscernible sequence (āi)i<ω and every tuple b̄ the set of indices i < ω such that
|= ϕ(āi; b̄) holds is finite or cofinite.

Proof. The equivalence of 1–3 is obvious using Proposition 2. 3 implies 4 by Proposition 3.
4 implies 5: Let (āi)i<ω be indiscernible, and suppose b̄ is such that the set of i < ω for which
|= ϕ(āi; b̄) holds is neither finite nor infinite. Then clearly a suitably chosen subsequence of (āi)i<ω

witnesses that alt(ϕ) ≥ n for all n < ω. 5 implies 3: Suppose 3 does not hold, so vc(ϕ) = ∞. By
compactness, for every cardinal κ we can find a sequence (āi)i<κ such that for all finite subsets
K ⊂ κ there are tuples (b̄J)J⊆K such that for all i ∈ K and J ⊆ K we have |= ϕ(āi; b̄J) if and
only if i ∈ J . By extracting an indiscernible sequence we get a sequence (ā′i)i<ω which also has
this property. By compactness there is a tuple b̄ such that |= ϕ(ā′i; b̄) holds if and only if i is even,
which contradicts 5.

A complete theory is said to have the independence property if there is a formula ϕ(x̄; ȳ)
which has it.3 In informal contexts, it has long been customary to use the acronym IP for brevity.

2Laskowski’s VC dimension is a variant: it is one more than the VC dimension in the usual sense. Following
an old convention of Shelah’s one could denote it by VC(ϕ) = vc(ϕ) + 1. Proposition 2 can then be written as
VC∗(ϕ) ≤ 2VC(ϕ). Laskowski also defines the independence dimension of ϕ, which in our notation is VC∗(ϕ) =
vc∗(ϕ) + 1.

3We will see later that our definition is equivalent to the original definition, which only considered formulas of
the form ϕ(x, ȳ), with a single variable x [48, 49, 42].
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Similarly, a complete theory that does not have the independence property is often said to be,
or have, NIP. More recently, Shelah started calling such theories dependent (and theories with
the independence property independent). Thus we can now choose between certain inelegance
and massive overloading of an adjective, and the new term has encountered some resistance. It is
hard to avoid taking sides; the fact that we are expanding the classical theory here seems to be a
convenient excuse for sticking with the acronym in this paper, as the less anachronistic choice.

Shrinking an indiscernible sequence

We continue with a simple observation that seems to have remained unnoticed until Shelah de-
duced it from his version of the Baldwin-Benedikt theorem [52]. In NIP theories, if we have
an indiscernible sequence and a small set over which it is not indiscernible, we can ‘shrink’ the
sequence, i.e. find an endpiece of the sequence which is indiscernible over the set.

Let us call a sequence (āi)i∈I uniform for a formula ϕ(x̄0, . . . , x̄m−1; b̄) if for any two strictly
ascending tuples ī, j̄ ∈ [I]m we have |= ϕ(āi0 . . . āim−1 ; b̄) if and only if |= ϕ(āj0 . . . ājm−1 ; b̄). (Thus
a sequence is indiscernible over a set B if and only if it is uniform for all formulas with parameters
in B.)

Proposition 5. Let (āi)i∈I be an indiscernible sequence, and let ϕ(x̄0, . . . , x̄m−1; b̄) be a formula
such that all tuples x̄j are compatible with all tuples āi and ϕ(x̄0, . . . , x̄m−1; ȳ) does not have
the independence property. Then the sequence has a non-trivial end piece which is uniform for
ϕ(x̄0, . . . , x̄m−1; b̄).

Proof. If not, there is an ascending tuple ī0 ∈ [I]m such that |= ϕ(āi00
, . . . , āi0m−1

; b̄). Since the end
piece of I that is defined by i > i0m−1 is not uniform for ϕ(x̄0, . . . , x̄m−1; b̄), there is an ascending
tuple ī1 ∈ [I]m such that |= ¬ϕ(āi00

, . . . , āi0m−1
; b̄) and i10 > i0m−1. Continuing in this way we see

that ϕ(x̄0, . . . , x̄m−1; ȳ) has infinite alternation rank, as witnessed by the indiscernible sequence
(āik

0
. . . āik

m−1
)k<ω.

Recall that the cofinality of a linear order I is the smallest cardinal κ such that there is a
subset J ⊆ I of cardinality |J | = κ which is cofinal in I, i. e., for every i ∈ I there is a j ∈ J such
that j ≥ i.

Corollary 6. Let T be a NIP theory. Let (āi)i∈I be a sequence of indiscernibles. Let B be a set
of parameters. If I has cofinality cf I > |T | + |āi| + |B| (any i ∈ I), then a non-trivial end piece
(āi)i∈I,i≥j of the sequence is indiscernible over B.

Proof. For each formula ϕ(x̄0, . . . , x̄m−1; b̄) with parameters in |B| there is a non-trivial end piece
Iϕ(x̄0,...,x̄m−1;b̄) of I, such that the corresponding subsequence is uniform for ϕ(x̄0, . . . , x̄m−1; b̄).
Since there are only |T | + |āi| + |B| < cf I such formulas, the intersection of these end pieces is
again a non-trivial end piece. The corresponding subsequence is indiscernible over B.

For example we can take κ = (|T |+ |āi|+ |B|)+. Then by regularity the non-trivial end piece
actually has the same length as the original sequence. We can use this to give a simple proof of a
classical theorem of Shelah. With a little bit of extra work we could make (āi)i∈I,i≥j indiscernible
over B∪{āi | i < j}. But we will postpone this result until we get it as a corollary of Theorem 20.

Lemma 7. Let T be a complete theory. Let n > 0 be a natural number. Then the following
conditions are equivalent.

1. No formula ϕ(x̄; ȳ) with |ȳ| ≤ n has the independence property.

2. Let (āi)i<|T |+ be an indiscernible sequence and B a parameter set of cardinality |B| ≤ n.
Then a non-trivial end piece (āi)j≤i<|T |+ of the sequence is indiscernible over B.

Proof. 1 ⇒ 2: Like Corollary 6. 2 ⇒ 1: If 1 does not hold, then there is a formula ϕ(x̄; ȳ) of
infinite alternation rank, and such that |ȳ| ≤ n. Hence there is a sequence (āi)i<ω and a tuple b̄
such that 6|= ϕ(āi; b̄) ↔ ϕ(āi+1; b̄) for all i < ω. By compactness this contradicts 2.
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Theorem 8. If no formula ϕ(x; ȳ), with x a single variable, has the independence property, then
T is NIP.

Proof. By symmetry of the independence property we know that also no formula ϕ(x̄; y), with y
a single variable, has the independence property. So it suffices to prove that condition 2 of the
lemma for |B| ≤ n implies condition 2 for |B| ≤ n+ 1. So suppose condition 2 holds for |B| ≤ n,
and let B = {b0, b1, b2, . . . , bn−1, bn}. Let j < ω be such that (āi)j≤i<κ is indiscernible over bn.
Then (āibn)j≤i<ω is indiscernible. Let j′ < ω (j′ ≥ j) be such that (āibn)j′≤i<ω is indiscernible
over b0 . . . bn−1. Now clearly (āi)j′≤i<ω is indiscernible over B.

Shelah originally proved this theorem using the dichotomy of Corollary 24 below and the fact
that the statement of the theorem is absolute [48]. Poizat gave a much more direct proof [45],
of which the above argument using Proposition 5 is a further simplification. Laskowski gave a
combinatorial proof [27].

Some classes of NIP theories

The following observation can be very helpful for showing that a theory is NIP.

Remark 9. The set of formulas which do not have the independence property is closed under
Boolean combinations.

Proof. Clearly alt(ϕ(x̄; ȳ)) = alt(¬ϕ(x̄; ȳ)). And it is easy to see that alt(ϕ(x̄; ȳ) ∧ ψ(x̄; ȳ)) ≤
alt(ϕ(x̄; ȳ)) + alt(ψ(x̄; ȳ))− 1.

Together with Theorem 8 this shows:

Corollary 10. If T is such that no atomic formula of the form ϕ(x; ȳ) has the independence
property, then T is NIP.

Remark 11. Any formula that has the independence property also has the order property. Hence
stable theories are NIP.

Proof. If vc(ϕ) ≥ n, then clearly there are ā0, . . . , ān−1 and b̄0, . . . , b̄n−1 such that |= ϕ(āi, b̄j) if
and only if i < j. Hence if vc(ϕ) = ∞, then by compactness there are (āi)i<ω, (b̄j)j<ω with this
property, i. e., ϕ has the order property.

As a very special case this remark shows that strongly minimal theories are NIP. Some ana-
logues of strong minimality were defined, such as o-minimality, C-minimality and p-minimality [40,
30, 14]. These definitions can be phrased as T0-minimality with respect to an underlying theory
T0. In the cases of o-minimality, C-minimality and p-minimality, these underlying theories are
NIP, and, as we will see, NIP is inherited by T0-minimal theories.

Let T0 be a first-order theory, not necessarily complete. A complete theory T ⊇ T0 (in a
signature extending that of T0) is called T0-minimal if every T -formula ϕ(x) with parameters
but only one free variable is equivalent to a quantifier-free T0-formula with (possibly different)
parameters.4 (In particular, T cannot have more sorts than T0; e.g. T0 and T are both 1-sorted.)

For example, if Tlo is the theory of linear orders, then a theory T containing the symbol <
is o-minimal if and only if it is Tlo-minimal. If TC is the theory of C-structures, then a theory
T containing the ternary symbol C is C-minimal if and only if it is TC-minimal [30, 28]. The
following principle was observed by Macpherson and Steinhorn. It also holds for many other
stability theoretic properties [30].

Proposition 12. Suppose T0 implies that no atomic T0-formula ϕ(x; ȳ) has the independence
property. Then every T0-minimal theory is NIP.

4This definition is an obvious variant of the definition of M-minimality [30, 28].
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Proof. Towards a contradiction, suppose T is not NIP. Then by the previous theorem there is a
formula of the form ϕ(x; ȳ) which has the independence property. By Proposition 4 (equivalence of
1 and 5) there is an indiscernible sequence (ai)i<ω and a tuple b̄ such that the truth value of ϕ(ai; b̄)
alternates infinitely. Since T is T0-minimal, there is a quantifier-free T0-formula ϕ′(x; ȳ′) and a
tuple b̄′ such that ϕ(x; b̄) and ϕ′(x; b̄′) are equivalent. Hence, again by Proposition 4, ϕ′(x; b̄′) also
has the independence property. Since the class of formulas without the independence property is
closed under boolean combinations, we get a contradiction.

Corollary 13. All o-minimal theories are NIP.

Proof. It suffices to check that the formula ϕ(x; y) defined by x < y cannot have the independence
property.

It is not much harder to show that all weakly o-minimal or quasi-o-minimal theories are NIP [29,
5]. Similarly we can also show that all C-minimal or p-minimal theories are NIP [30].

E.g. there is a lot of research on the theory of algebraically closed valued fields as a theory
whose completions are controlled, in some sense, by a stable part and an o-minimal part. They
are C-minimal and therefore NIP [13].

3 More careful shrinking of indiscernibles

In a relatively recent paper, Baldwin and Benedikt proved a theorem about augmenting a the-
ory without the independence property with a new predicate for a (dense complete) sequence of
indiscernibles. We already know that a formula without the independence property has finite
alternation rank. Shelah gave the Baldwin-Benedikt theorem an elegant new formulation as a
higher-dimensional generalisation of this fact: a sharper version of Proposition 5. Our formulation
of the theorem is close to Shelah’s, but the straightforward proof is more similar to the original
one [4, 52].

Uniformity for a single formula

An equivalence relation ∼ on a linearly ordered set I is called convex if its classes i/∼ are convex.
It is called finite if it has only finitely many classes. Given a subset J ⊆ I the equivalence relation
∼J on I is defined by i ∼J j ⇐⇒ i = j or [i, j]∩J = ∅ (where [i, j] is the convex hull of i and j).
∼J is always a convex equivalence relation. ∼J is finite if and only if J is finite. If ∼ is a finite
convex equivalence relation on I, there need not be a finite subset J ⊆ I such that ∼J refines ∼.
However, if I is (Dedekind) complete, as is the case when I is an ordinal, then we can take as J the
set of boundary points of classes of ∼ [52]. (Recall that a linear order is Dedekind complete if every
cut is rational. This is equivalent to the requirement that every non-empty subset bounded from
above has a supremum, or that every non-empty subset bounded from below has an infimum.)

Given a general (i. e. not necessarily indiscernible) sequence (āi)i∈I , a convex equivalence
relation ∼ on I and a formula ϕ(x̄0 . . . x̄m−1; b̄), let us say that the sequence is uniform modulo
∼ for ϕ(x̄0 . . . x̄m−1; b̄) if for any two strictly ascending tuples ī, j̄ ∈ [I]m satisfying ik ∼ jk for
all k < m, we have |= ϕ(āi0 . . . āim−1 ; b̄) if and only if |= ϕ(āj0 . . . ājm−1 ; b̄). Thus a sequence is
indiscernible over a set B if and only if it is uniform (modulo ∼∅) for all relevant formulas over B,
and it is k-indiscernible over B if and only if it is uniform for all relevant formulas ϕ(x̄0 . . . x̄m−1; b̄)
with m ≤ k. (Here by relevant formulas we mean the formulas of the form ϕ(x̄0 . . . x̄m−1; b̄) such
that the tuples of variables x̄k are compatible with the tuples āi in the sequence.) More generally,
we will call a sequence (āi)i∈I indiscernible modulo ∼ over B (or B-indiscernible modulo ∼), if it
is uniform modulo ∼ for all relevant formulas over B. (Of course we can abbreviate ‘modulo ∼J ’
to ‘modulo J ’.)5

5I have chosen not to follow Shelah’s terminology precisely, since his formulation ‘above J ’ seems to be less
suggestive. Uniformity is a substitute for Shelah’s ∆-indiscernibility; it is more fine-grained and therefore easier to
handle. I have not used the word ‘indiscernible’ for this, in order to reserve it for the stronger and more natural
variant in which the tuples ī, j̄ need not be ascending (but must be of the same order type).
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Theorem 14. Let (āi)i∈I be an indiscernible sequence, and let ϕ(x̄0 . . . x̄m−1; b̄) be such that the
formula ϕ(x̄0 . . . x̄m−1; ȳ) does not have the independence property.

1. There is a finite convex equivalence relation ∼ such that (āi)i∈I is uniform modulo ∼ for
ϕ(x̄0 . . . x̄m−1; b̄).

2. If I is complete, then there is a finite subset J ⊆ I such that (āi)i∈I is uniform modulo ∼J

for ϕ(x̄0 . . . x̄m−1; b̄).

Proof. Let us first note that 1 and 2 are equivalent. 1 implies 2: If ∼ is a finite equivalence relation
on I then we can take as J the set of all suprema and infima of ∼-classes which are in I. J is finite,
and if I is complete ∼J refines ∼. Conversely, any sequence of indiscernibles can be extended (in
the monster model) to a complete sequence of indiscernibles, and the restriction of a finite convex
equivalence relation ∼J to a sub-order is again a finite convex equivalence relation. Therefore 2
implies 1. In fact, it suffices to prove 1 for dense complete linear orders I, and therefore it suffices
to prove 2 for such linear orders. So, assuming that I is dense and complete, we will prove 2.

For notational convenience we will write ai for āi, xk for x̄k, b for b̄. For tuples ī ∈ [I]m we write
aī = ai0ai1 . . . aim−1 . Moreover, ī[j/ik] is an abbreviation for the tuple i0 . . . ik−1jik+1 . . . im−1 in
which ik has been replaced by j. We say that j ∈ I is a critical point of I if some strictly ascending
tuple ī ∈ [I]m witnesses it, i. e., j = ik for some k < m, and every open interval containing j also
contains some j′ such that 6|= ϕ(aī; b) ↔ ϕ(aī[j′/ik]; b). Let J ⊆ I be the set of all critical points.
The two claims below finish the proof of the theorem.

Claim 1. (āi)i∈I is uniform modulo ∼J for ϕ(x̄0 . . . x̄m−1; b̄).
Proof of Claim 1. Let ī, j̄ ∈ [I]m be two strictly ascending tuples such that ik ∼J jk for all

k < m. We will show that |= ϕ(aī; b) ↔ ϕ(aj̄ ; b). We will use induction on the last index k such
that ik 6= jk.

Let k < m be the greatest index such that ik 6= jk. (If there is no such index, the statement
is trivial.) Without loss of generality ik < jk. Note that ī[jk/ik] is also a strictly ascending tuple.
Using completeness of I it is easy to see that |= ϕ(aī[jk/ik]; b) ↔ ϕ(aī; b). (Towards a contradiction,
suppose 6|= ϕ(aī[jk/ik]; b) ↔ ϕ(aī; b). Let j′ = inf{j ∈ I | j > ik and 6|= ϕ(aī[j/ik]; b) ↔ ϕ(aī; b)}.
Clearly ik ≤ j′ ≤ jk, and j′ ∈ J . Hence [ik, jk] ∩ J 6= ∅. Therefore ik 6∼J jk, a contradiction.) On
the other hand |= ϕ(aī[jk/ik]; b) ↔ ϕ(aj̄ ; b) by the induction hypothesis, so we are finished.

Claim 2. J is finite.
Proof of Claim 2. Let (M, I,<, f) be a structure consisting of the following data. M |= T is

a model containing the sequence (ai)i∈I . I is the index set of the set of indiscernibles, in a new
sort. < is the linear order on I, and f : I → M is the function given by f(i) = ai. (Here we
are stretching the notational convenience a bit.) For k < m consider the following formula ψk(ū)
(over b) in the language of (M, I,<, f):

u0 < u1 < · · · < um−1 ∧ ∀v, v′
(
v < uk < v′ →

∃w
(
v < w < v′ ∧ ¬

[
ϕ(f(ū); b) ↔ ϕ(f(ū[w/uk]; b))

] ) )
.

Clearly (M, I,<, f) |= ψk (̄i) if and only if ī witnesses that ik is critical.
Towards a contradiction, let us assume that J is infinite. Then for some k < m there is an

infinite set of tuples ī with pairwise different ik such that |= ψk (̄i). We fix such a k. For a very big
cardinal κ let (M ′, I ′, <, f) be an elementary extension of (M, I,<, f) which is κ-saturated. By
compactness and saturation, in I ′ there are arbitrarily long sequences of tuples ī as above, and so
we can extract a sequence (̄in)n<ω of indiscernibles over b such that |= ψ(̄in; b) and ink 6= in

′

k for
all n < n′ < ω.

By indiscernibility |= ϕ(f (̄in); b) holds either for all n < ω or for no n < ω. To ease notation,
let us assume without loss of generality that |= ϕ(f (̄in); b) holds for all n < ω. Now we construct
a sequence (j̄n)n<ω by induction. For n even we simply define j̄n = īn. For n odd we define
jn
k′ = ink′ for all k′ 6= k and choose j̄n

k as follows. By compactness and saturation there is an
element j− < ink in I ′ which is greater than all elements of In =

⋃
`<ω ī

` ∪ {j`
k | ` < n} that are
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themselves less than ink . There is also an element j+ > ink in I ′ which is less than all elements
of In that are themselves greater than ink . Since |= ψ(̄in), the open interval (j−, j+) contains an
element jn

k such that |= ¬ϕ(f (̄in[jn
k /i

n
k ]); b), i. e. |= ¬ϕ(f(j̄); b).

Now note that the sequence (j̄n)n<ω is indiscernible with respect to quantifier-free formulas
because (̄in)n<ω is. As an elementary extension of (M, I,<, f), the structure (M ′, I ′, <, f) also
has the property that the type in M ′ of a tuple f (̄i) only depends on the quantifier-free type
in I of the tuple ī. Therefore the sequence (f (̄in))n<ω is an indiscernible sequence in M ′. But
|= ϕ(f (̄in); b) holds if and only if n is even. Therefore the alternation rank of ϕ(x0 . . . xm−1; y) is
infinite, a contradiction.

Indiscernibility

We have seen that the failure of a sequence of indiscernibles to be uniform for a single formula
ϕ(x̄0 . . . x̄m−1; b̄)—where ϕ(x̄0 . . . x̄m−1; ȳ) does not have the independence property—can be de-
scribed by a finite convex equivalence relation. The failure of a sequence of indiscernibles to be
uniform for a ‘small’ set of such formulas can therefore be described by the intersection of ‘few’
finite convex equivalence relations, which is a convex equivalence relation with ‘few’ classes. How-
ever, in the presence of a dense linear order, the precise bound for the number of classes may be
greater than the number of formulas: If we take I to consist of the reals, the intersection of the
equivalence relations ∼{q} on I, where q is rational, has 2ℵ0 classes—one for every real.

By compactness we can extend any sequence of indiscernibles (āi)i∈I to a complete sequence
of indiscernibles (āi)i∈Ī , obtain a subset J ⊆ Ī using Theorem 14.2, and consider the restriction
of ∼J to I. Remains the problem of counting the classes of ∼J�I.

In Theorem 20 below we would be able to ignore this minor nuisance concerning many-formulas
versions of Theorem 14.1 by stating only the analogue of Theorem 14.2. Readers who are not
interested in the ‘moreover’ part of Theorem 20.1 can jump to that theorem immediately after the
following observation.

Remark 15. Let J be a subset of the completion of a linear order I. The number of classes of
∼J�I is bounded by 1 plus twice the cardinality of the completion of J . In particular, it is finite
if J is finite, and at most 2|J| otherwise.

Proof. Clearly we may assume that I is complete. Let J̄ consist of the greatest lower bounds (in I)
of all non-empty subsets of J that are bounded from below in I. Then J ⊆ J̄ ⊆ I, J̄ is Dedekind
complete, and J̄ is minimal with these properties. It does not follow that J̄ is isomorphic to the
completion of J (since the greatest lower bound of a subset of J may exist in J but not be the
greatest lower bound as evaluated in I). But it is easy to see that the worst that can happen is
that some points get a duplicate, and even that is impossible if J is finite. Therefore J̄ has the
same cardinality as the completion of J .

It suffices to show that the number of classes of ∼J̄ is bounded by 1 plus twice the size of J̄ .
First, we have

∣∣J̄∣∣ 1-element classes consisting of an element of J̄ each. Next, there may be one
class which is greater than all elements of J̄ . Each of the remaining classes is disjoint from J̄ and
bounded from above by an element of J̄ , hence by a least element b ∈ J̄ . Since b determines the
class, the number of remaining classes is at most |J |.

A linear order is called scattered if it does not contain a copy of the rationals as a suborder.
For example all ordinals are scattered. Note that every suborder of a scattered linear order is
scattered. An ordered sum of linear orders Ik, indexed by a linear order K, is the obvious linear
order defined on the disjoint union

⋃
k∈K Ik. A classical theorem of Hausdorff implies that being

scattered or not is a surprisingly strong dichotomy [15, 41, 47, 16].

Theorem 16 (Hausdorff’s Theorem on scattered linear orders).

1. Every linear order has a unique decomposition as an ordered sum
⋃

k∈K Ik, where each Ik is
non-empty and scattered, and K is dense unless |K| ≤ 1.
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2. The class of scattered linear orders is the smallest class of linear orders which contains the 1-
element order and is closed under isomorphism, order-reversing, and ordinal-indexed ordered
sums.

Proof. (Sketch only.) 1. Let A be the smallest class of linear orders which contains the 1-element
order and is closed under isomorphism, order-reversing and ordinal-indexed ordered sums. Given
a linear order I, the relation defined by i ∼ j ⇐⇒ [i, j] ∈ A is a convex equivalence relation, with
classes (i/∼) ∈ A. We can take K = I/∼ and Ik = k. 2. Let S be the class of scattered linear
orders. We can easily verify A ⊆ S using the inductive definition of A. On the other hand, if
we decompose I ∈ S as in 1, then clearly |K| ≤ 1. Hence by uniqueness of the decomposition, I
consists of a single ∼-class I ∈ A.

We prove some straightforward consequences that are probably well known, although I could
not find a reference for them.
Remark 17. If (Ik)k∈K is a sequence of complete linear orders Ik with endpoints, indexed by a
complete linear order K, then the ordered sum of the sequence is complete.

Proposition 18. The completion of a scattered linear order is scattered and has the same cardi-
nality.

Proof. The class of linear orders whose completion is scattered contains the 1-element order, and
it is clearly closed under isomorphism and order-reversing. It follows from the previous remark
that it is also closed under ordinal-indexed ordered sums. Using Hausdorff’s Theorem it follows
that the completion of a scattered linear order is scattered.

Next we show that for scattered linear orders completion is cardinality-preserving. The class
of linear orders with cardinality-preserving completions contains all finite linear orders, and it
is clearly closed under isomorphism and order-reversing. It remains to check that it is closed
under ordinal-indexed ordered sums of sequences (Ik)k<α. We may assume that each term Ik is
non-empty. Now for each Ik consider Īk, the smallest complete linear order with endpoints which
contains Ik. Note that

∣∣Īk∣∣ = |Ik|. Thus the ordered sum of (Ik)k<α is embedded in the ordered
sum of (Īk)k<α, which is complete and has the same cardinality.

It easily follows from this that a linear order is scattered if and only if every suborder has a
cardinality-preserving completion. But we will not use this nice characterisation.

Proposition 19. Let J be a subset of the completion of a scattered linear order I. The number
of classes of ∼J�I is at most 2 |J |+ 1.

Proof. Since I is scattered its completion is also scattered, and so is J . Therefore the completion
of J has cardinality |J |. Apply Remark 15.

Theorem 20. Suppose T has NIP. Let (āi)i∈I be a sequence of indiscernibles. Let B be a set of
parameters, and let κ = |T |+ |āi|+ |B| (any i ∈ I).

1. There is a convex equivalence relation ∼ on I with at most 2κ classes such that the sequence
(āi)i∈I is indiscernible modulo ∼ over B.
Moreover, if I is scattered, then we can find such ∼ with at most κ classes.

2. If I is complete, then there is a subset J ⊆ I of cardinality |J | ≤ κ such that the sequence
(āi)i∈I is indiscernible modulo J over B.

Proof. 1 follows from 2 (using Proposition 19 for the ‘moreover’ part), so we only prove 2. There
are |T | + |āi| + |B| formulas ϕ(x̄0, . . . , x̄m−1) with parameters in B for which x̄k and āi are
compatible. For each of them we get a set Jϕ from Theorem 14. If we take J =

⋃
ϕ Jϕ, then the

sequence is uniform modulo J for every such ϕ, hence indiscernible modulo J over B.

Corollary 21. Let T be a NIP theory. Let (āi)i∈I be a sequence of indiscernibles. Let B be a set
of parameters. If I has cofinality cf I > |T | + |āi| + |B| (any i ∈ I), then a non-trivial end piece
(āi)i∈I,i≥j of the sequence is indiscernible over B ∪ {āi | i < j}.
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Proof. We may assume that I is complete. Let J be as in part 2 of the theorem. Since |J | < cf I,
we have j = supJ ∈ I.

By Proposition 4 and compactness, it is not hard to rephrase Theorem 20.1, Theorem 20.2
or Corollary 6 as characterisations of NIP. These characterisations even work with larger bounds
(instead of 2κ, κ or |T | + |āi| + |B|, respectively). But if we make the bounds smaller, we get
new, stronger variants of NIP such as the notion of a strongly dependent theory. (See Section 8
for more on this.)

4 Counting types

For notational convenience we will discuss only 1-sorted theories in this section. The stability
function of a complete theory T is the function

gT (κ) = sup
M |=T, |M |=κ

|S(M)| = sup
M |=T, |M |=κ

∣∣S1(M)
∣∣ .

As usual, Sn(M) denotes the set of all complete n-types over M , i.e. the set of all complete types
over n in some fixed set of n free variables, and S(M) =

⋃
n<ω S

n(M). The stability spectrum,
which we will not use, is the set of infinite cardinals κ such that gT (κ) = κ. Clearly κ ≤ gT (κ) ≤ 2κ

for all κ ≥ |T |.
The classification of the possible stability functions (in the countable case) was finished by

Keisler, but much of the work was done earlier by Shelah [22, 48]. For countable T , only the
following six functions are possible.

κ κ+ 2ℵ0 κℵ0 dedκ (dedκ)ℵ0 2κ,

where ded(κ) is defined as the supremum of the cardinalities of all linear orders which contain a
dense subset of cardinality κ.

The five dividing lines between these functions are total transcendence, superstability, stability,
multi-order and the independence property [21]. But there is some fine print. Since κ < dedκ ≤
(dedκ)ℵ0 ≤ 2κ for all infinite cardinals κ, the generalised continuum hypothesis implies a collapse
of the last three functions; I believe it is still unknown whether it is consistent that dedκ <
(dedκ)ℵ0 for some cardinal κ.

We will now look more closely at the last dividing line. We will not need any previous results.
For a formula ϕ(x̄; ȳ) and a set B, Sϕ(B) denotes the set of all complete ϕ-types (i.e. maximal
consistent sets of instances ϕ(x̄; b̄) of ϕ and instances ¬ϕ(x̄; b̄) of ¬ϕ) over B.

Remark 22. If ϕ(x̄; ȳ) has the independence property, then for every κ ≥ |T | there is a model M
of cardinality |M | = κ such that |Sϕ(M)| = 2κ.

Shelah proved the following theorem, which provides a converse to the remark under the set-
theoretical hypothesis dedκ < 2κ [48].

Theorem 23. Let ϕ(x̄; ȳ) be a formula and A an infinite set such that |Sϕ(A)| > ded |A|. Then
ϕ(x̄; ȳ) has the independence property.

Proof. To avoid some boring complications, we assume that ȳ = y is a single variable. Let B ⊆ A
be a subset of minimal cardinality µ = |B| such that still |Sϕ(B)| > ded |A|. Let (bi)i<µ be an
enumeration of B, and let Bα = {bi | i < α} for all α < µ. We will need the following sets.

Sα =
{
p ∈ Sϕ(Bα)

∣∣ |Sϕ(B)�p| > ded |A|
}

for all α < µ

Sµ =
{
p ∈ Sϕ(B)

∣∣ ∀α < µ : p�Bα ∈ Sµ

}
S<µ =

⋃
α<µ

Sα S≤µ =
⋃

α≤µ

Sα.
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Here and in the following we are slightly abusing notation by writing W �q = {p ∈W | p ⊇ q} if q
is a type and W is a set of types.

First we observe that for any q ∈ Sα (where α < µ) we have |Sµ�q| > ded |A|. Towards proving
this, using the identity

Sϕ(B) \ Sµ =
⋃

α<µ

⋃
q∈Sϕ(Bα)\Sα

Sϕ(B)�q

we can check that |Sϕ(B) \ Sµ| ≤ ded |A|. (The index sets in the second union have cardinality
≤ ded |A| because |Sϕ(Bα)| ≤ ded |A| by minimality of µ.) Now the claim easily follows from
Sϕ(B)�q ⊆ Sµ�q ∪ (Sϕ(B) \ Sµ). We note for later use that

|Sµ�q| > dedµ.

With this out of the way, we define a linear order on S≤µ, as follows. For p, q ∈ S≤µ such that
p 6= q there is a minimal α < µ such that p ∈ Sα, or q ∈ Sα, or p�Bα+1 6= q�Bα+1. We set p < q
if one of the following holds.

• ϕ(x̄; bα) ∈ p and ¬ϕ(x̄; bα) ∈ q,

• p ∈ Sα and ¬ϕ(x̄; b̄α) ∈ q, or

• ϕ(x̄; b̄α) ∈ p and q ∈ Sα.

Otherwise clearly q < p, and it is easy to check that this is in fact a linear order. We will use it
to prove the following claim, which concludes the theorem.

Claim. Let n < ω. For all q ∈ S<µ there are elements cq0, . . . , c
q
n−1 ∈ B such that for all w ⊆ n

the set q(x̄) ∪ {ϕ(x̄; cqi ) | i ∈ w} ∪ {¬ϕ(x̄; cqi ) | i ∈ n \ w} is consistent.
The proof is by induction, the case n = 0 being trivially true. So suppose the claim is true for

all numbers smaller than n. Note that S<µ�q ⊂ S≤µ�q is a dense subset. Since |S≤µ�q| > dedµ,
it follows that |S<µ�q| > µ, and so |Sα�q| > µ for an ordinal α < µ.

For every type p ∈ Sα�q the induction hypothesis yields a tuple cp0, . . . , c
p
n−2 ∈ B such that for

all w ⊆ n − 1 the set p(x̄) ∪ {ϕ(x̄; cpi ) | i ∈ w} ∪ {¬ϕ(x̄; cpi ) | i ∈ (n − 1) \ w} is consistent. Since∣∣Bn−1
∣∣ = µ < |Sα�q|, we can find two distinct types p1, p2 ∈ Sα�q giving rise to the same tuple.

For some β < µ we have ϕ(x̄; bβ) ∈ p1 and ¬ϕ(x̄; bβ) ∈ p2. (If not, exchange p1 and p2.) Now it
is easy to see that cq0 = cp1

0 = cp2
0 , . . . , c

q
n−2 = cp1

n−2 = cp2
n−2, c

q
n−1 = bβ are as in the claim.

Corollary 24. If T does not have the independence property, then

gT (κ) ≤ (dedκ)|T |.

If T has the independence property, then

gT (κ) = 2κ.

A result of Mitchell says that for any cardinal κ such that cf κ > ℵ0, there is a cardinal
preserving Cohen extension of the set-theoretical universe such that dedκ < 2κ holds in the
extension [31]. If we apply this to a suitable κ > |T |, we see that having the independence
property or not can always be detected by counting types, just not (in general) in the original
model of ZFC.

5 Forking and related notions

Shelah’s notion of forking, although somewhat complicated, is a fundamental tool for stable the-
ories. A big breakthrough for simple theories was Byunghan Kim’s discovery that forking is
symmetric in that context as well [25]. Forking in unstable NIP theories is not symmetric, but
recently it is becoming more and more clear that it plays a fundamental, albeit still mysterious,
role even when it is not symmetric. Therefore it makes sense to develop the theory of forking and
some related notions for arbitrary theories. Most of this can be found in Shelah’s book [49], but
we will be a bit more methodical in our presentation.
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Three preindependence relations

A (partial) type p(x̄) is finitely satisfied in a set C if for every finite subset p0(x̄) ⊆ p(x̄) there is a
tuple ā ∈ C which realises p0(x̄). An important case is when p is a complete type over a set B and
M ⊆ B is a model in which p is finitely satisfied. In this case the type p is called a coheir of its
restriction to M . We write A |̂u

C
B if tp(ā/BC) is finitely satisfied in C for every tuple ā ∈ A.6

We will say that a complete type p(x̄) over B quasidivides7 over a set C if there are tuples
b̄0, b̄1 ∈ B that start an indiscernible sequence over C, but no sequence starting with b̄0, b̄1 is indis-
cernible over āC for a realisation ā of p(x̄). We write A |̂s

C
B if tp(ā/BC) does not quasidivide

over C for any ā ∈ A.
A formula ϕ(x̄; b̄) divides over a set C if there is a sequence (b̄i)i<ω of realisations of tp(b̄/C)

such that for some n < ω every n-element subset of the set {ϕ(x̄; b̄i) | i < ω} is inconsistent.
A complete type p(x̄) divides over C if it contains a formula that divides over C [49]. We write
A |̂d

C
B if tp(ā/BC) does not divide over C for any tuple ā ∈ A.

In all three definitions it was deliberately left open whether the tuples must be finite or can
be infinite—in each case it is easily seen that it does not matter. The following characterisations
are also easy, and left to the reader.

Remark 25. 1. A |̂u
C
B if and only if

every formula ϕ(x̄) over BC satisfied by some ā ∈ A
is also satisfied by some ā′ ∈ C.

2. A |̂s
C
B if and only if

for every indiscernible sequence (b̄i)i<ω over C such that b̄0, b̄1 ∈ BC
there is an indiscernible sequence (b̄′i)i<ω over AC such that b̄′0b̄

′
1 = b̄0b̄1.

3. A |̂d
C
B if and only if

for every indiscernible sequence (b̄i)i<ω over C such that b̄0 ∈ BC
there is (b̄′i)i<ω ≡b̄0C (b̄i)i<ω which is indiscernible over AC.

Preindependence relations were first defined in my thesis. I chose the axioms for the technical
reason that they are, in any complete theory, the greatest common denominator of the relations
|̂u, |̂s, |̂d, and also of many other similarly defined notions. This includes notions derived in
an equally obvious way from splitting, forking, semiforking, thorn-forking, thorn-dividing, and
modular pairs in the lattice of algebraically closed sets. Taking this ubiquity into account, the
axioms are remarkably strong in their combination [1, 2].

A preindependence relation is a ternary relation |̂ between the small subsets of the monster
model, which satisfies the following subset of the traditional forking calculus for stable (and simple)
theories.

(invariance) If A |̂
C
B and (A′, B′, C ′) ≡ (A,B,C), then A′ |̂

C′ B
′.

(monotonicity) If A |̂
C
B, A′ ⊆ A and B′ ⊆ B, then A′ |̂

C
B′.

(base monotonicity) Suppose D ⊆ C ⊆ B. If A |̂
D
B, then A |̂

C
B.

(transitivity) Suppose D ⊆ C ⊆ B. If B |̂
C
A and C |̂

D
A, then B |̂

D
A.

(normality) A |̂
C
B implies AC |̂

C
B.

(strong finite character) If A 6 |̂
C
B, then there are finite tuples ā ∈ A, b̄ ∈ B and a formula

ϕ(x̄) ∈ tp(ā/BC) such that ā′ 6 |̂
C
b̄ for all ā′ that satisfy ϕ(x̄).

6The letter ‘u’ is for ‘ultrafilter’, see Proposition 29.
7In an earlier version I called this notion ‘strong splitting’, although it is a bit weaker than Shelah’s notion

of this name [49]. It follows from Proposition 34 below that for global types the two definitions are equivalent.
Using quasidividing rather than strong splitting was necesary to ensure that |̂s satisfies the transitivity axiom.
Unfortunately there are types that quasidivide but do not split. The letter ‘s’ is still reminiscent of the other term.
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Proposition 26. |̂u is a preindependence relation.

Proof. Invariance, monotonicity, base monotonicity and strong finite character are obvious. Tran-
sitivity: Suppose D ⊆ C ⊆ B, B |̂u

C
A and C |̂u

D
A. Then every formula over AD which is

satisfied in B is (over AC and therefore) satisfied in C, hence satisfied in D. Therefore B |̂u
D
A.

Normality: Suppose A |̂
C
B, and ϕ is a formula over BC. If ϕ is satisfied by a tuple āc̄ ∈ AC,

where ā ∈ A and c̄ ∈ C, then the formula ϕ(x̄, c̄) is over BC, hence satisfied in C. Therefore ϕ is
satisfied in AC.

Proposition 27. |̂s is a preindependence relation.

Proof. Invariance, monotonicity, transitivity and normality are clear. Base monotonicity: Suppose
D ⊆ C ⊆ B and A |̂s

D
B. Let (b̄i)i<ω be indiscernible over C, with b̄0, b̄1 ∈ B. Let c̄ be

an enumeration of C. Then (b̄ic̄)i<ω is an indiscernible sequence over D. Hence there is an
AD-indiscernible sequence (b̄′ic̄

′
i)i<ω such that b̄′0c̄

′
0b̄
′
1c̄
′
1 = b̄0c̄b̄1c̄. It follows that (b̄′i)i<ω is AC-

indiscernible and b̄′0b̄
′
1 = b̄0b̄1. Therefore A |̂s

C
B. Strong finite character: If A 6 |̂s

C
B, then

there are b̄0, b̄1 ∈ B which witness this: There is a C-indiscernible sequence (b̄i)i<ω but no such
AC-indiscernible sequence. Hence the type expressing that b̄0, b̄1, ȳ2, ȳ3, ȳ4, . . . is AC-indiscernible
is inconsistent. For this inconsistency a single formula ϕ(ā, ȳ0ȳ1) ∈ tp(b̄0b̄1/AC) (ϕ over C) is
sufficient. Now clearly ϕ(x̄, b̄0b̄1) ∈ tp(ā/BC), and ā′ 6 |̂s

C
b̄0b̄1 for all ā′ that satisfy ϕ(x̄, b̄0b̄1).

Proposition 28. |̂d is a preindependence relation.

Proof. Left to the reader [1, 2].

Three extensible preindependence relations

We will call a preindependence relation extensible if it also satisfies the following axiom. Note that
the empty relation is an extensible preindependence relation.

(extension) If A |̂
C
B and B̂ ⊇ B, then there is A′ ≡BC A such that A′ |̂

C
B̂.

By invariance, it is equivalent to require that there is a set B̂′ ≡BC B̂ such that A |̂
C
B̂′. The

relation |̂s is never extensible, because a |̂s ∅ a holds for every single element a. On the other hand,
|̂d is extensible in all simple theories and also in many, though not in all, non-simple theories.

|̂u is even better, but before we can see this we need a few more definitions. If x̄ is a tuple
of variables, Ax̄ denotes the tuples of elements in A that are compatible with x̄. An ultrafilter
on a small subset A ⊆ Mx̄ is a subset U ⊂ P(A) with the following properties. Every superset
of a member of U is in U , U is closed under finite intersections, and for every set X ⊆ C x̄

exactly one of X and A \ X is in U . If A = Ax̄, we may just say that U is an ultrafilter
on A. If U is an ultrafilter on A ⊆ Mx̄, then the average type of U over a set B is defined as
Av(U/B) =

{
ϕ(x̄; b̄)

∣∣ {ā ∈ A | |= ϕ(ā; b̄)} ∈ U
}
.

Proposition 29. 1. |̂u is an extensible preindependence relation.

2. ā |̂u
C
B if and only if tp(ā/BC) = Av(U/BC) for some ultrafilter U on C.

Proof. 1: This is an immediate consequence of 2 and Proposition 26. If ā |̂u
C
B, then there

is an ultrafilter U on C as in 1. Given any B̂ ⊇ BC, let ā′ satisfy Av(U/BC). Then clearly
ā′ ≡BC ā and ā′ |̂u

C
B. 2: First suppose ā |̂u

C
B. Let F = {C ⊆ C x̄ | for some formula ϕ ∈

tp(ā/BC) we have C ⊇ ϕ[C]}. Then it is easy to see that F contains C x̄ and is closed under finite
intersections. Hence by the ultrafilter theorem there is an ultrafilter U ⊇ F on C x̄ which extends
F . Since ϕ(x̄) ∈ tp(ā/BC) implies {c̄ ∈ C | |= ϕ(c̄)} ∈ F ⊆ U , we have tp(ā/BC) ⊆ Av(U/BC),
hence tp(ā/BC) = Av(U/BC). Conversely, if tp(ā/BC) = Av(U/BC), then for every formula
ϕ(x̄) over BC the set {c̄ ∈ C | |= ϕ(c̄)} is in U , hence not empty.
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If we have an arbitrary preindependence relation |̂ , we can use it to define a new relation |̂∗
as follows.

A |̂∗
C

B ⇐⇒
(

for all B̂ ⊇ B there is A′ ≡BC A s.t. A′ |̂
C

B̂
)
.

It is not surprising that the new relation |̂∗ will satisfy the extension axiom. But it turns out
that the other axioms are preserved under this operation, and so we have the following result.

Proposition 30. Suppose |̂ is a preindependence relation. Then A |̂∗
C
B implies A |̂

C
B, and

|̂∗ is the weakest extensible preindependence relation with this property.

Proof. Left to the reader [1, 2].

The idea behind Proposition 30 is by no means new. Recall that a formula ϕ(x̄; b̄) forks (or
implicitly divides) over a set C if it implies a formula

∨
i<n ϕi(x̄; b̄i) such that each ϕi(x̄; b̄i) divides

over C. A complete type over a superset of C forks over C if it contains a formula that forks
over C [49]. Let us write A |̂f

C
B if there is no ā ∈ A such that tp(ā/BC) forks over C.

Remark 31. |̂f = ( |̂d )∗. Hence |̂f is an extensible preindependence relation.

Proof. Left to the reader.

By analogy, if C ⊆ B and ā 6 |̂s∗
C
B, we will say that tp(ā/B) quasiforks over C.

Exercise 1.3 in Chapter III of Shelah’s book contains an example of a theory without the
independence property where a type can fork over its domain; so |̂d need not be extensible in
a theory with NIP [49]. But this does not imply that |̂f is useless in such theories. This is
demonstrated by Itay Ben-Yaacov’s compact abstract theories, a generalisation of complete first-
order theories. He has shown that the natural generalisations of stability and simplicity to this
context entail most of the good properties that hold in the classical context, but |̂d = |̂f can fail
in general [7].

So we now have three extensible preindependence relations: |̂u, |̂f and ( |̂s)∗. In the next
subsection we will compare them.

Strong splitting, quasiforking, and almost invariant types

An automorphism of the monster model is a Lascar strong automorphism over C if it is a com-
position of automorphisms each of which fixes a model M ⊇ C pointwise [26]. The Lascar strong
type lstp(ā/C) is the orbit of ā under Lascar strong automorphisms over C or, equivalently, the

equivalence class of ā under
lstp
≡ C , the transitive closure of having the same type over a model

M ⊇ C.

Lemma 32. If ā ≡M ā′ for a model M , then there is a sequence (āi)i<ω of M -indiscernibles
such that both āa(āi)i<ω and ā′a(āi)i<ω are M -indiscernible. On the other hand, every sequence
(āi)i<ω indiscernible over a set C is also indiscernible over a model M ⊇ C.

Proof. Let p(x̄) be a global type which extends tp(ā/M) and which is finitely satisfiable in M .
(Such a type exists by compactness and is called a global coheir of tp(ā/M).) Let ān realise
p�āā′ā0 . . . ān−1, for all n < ω. It is not hard to check that the sequences ā, ā0, ā1, . . . and
ā′, ā0, ā1, . . . are both indiscernible over M . (Such sequences are called coheir sequences.) For
the converse choose a model M , extend the sequence sufficiently, and extract an indiscernible
sequence over the model. Hence there is an isomorphic model over which the original sequence is
indiscernible.

Corollary 33. Having the same Lascar strong type over a set C is the transitive closure of
occurring in a C-indiscernible sequence together.

14



A global type p(x̄) is almost invariant over a set C if it is setwise fixed under every automor-
phism of the monster model that fixes a model M ⊇ C pointwise. (It is invariant over C if it
is setwise fixed under every automorphism that fixes C pointwise. We will not need this notion
here.) We write A |̂i

C
B if for every tuple ā ∈ A the type tp(ā/BC) has a global extension that

is almost invariant over C.
The idea behind the statement of the next proposition is to consider a tuple ā which is outside

the monster model. What we really do is replace the monster model by a sufficiently ‘big’ model
N , so we can stay within the monster model. Recall that a structure is called strongly κ-homo-
geneous if every partial isomorphism between subsets of cardinality < κ can be extended to an
automorphism. Every theory has κ-saturated, strongly κ-homogeneous models for arbitrary κ [16].

Proposition 34. If N ⊇ C is a (|T |+ |C|)+-saturated, strongly (|T |+ |C|)+-homogeneous model,
then the following conditions are equivalent.

1. ā |̂i
C
N .

2. ā |̂s
C
N .

3. If a sequence (b̄i)i<ω in N is indiscernible over C, then it is also indiscernible over āC.

4. For b̄0, b̄1 ∈ N , b̄0
lstp
≡ C b̄1 =⇒ b̄0

lstp
≡ āC b̄1.

5. tp(ā/N) is invariant under all Lascar strong automorphisms of N over C.

6. tp(ā/N) is invariant under all automorphisms of N that fix a model M (such that C ⊆M ⊆
N) pointwise.

7. The type tp(ā/N) does not split over any model M s.t. C ⊆M ⊆ N , i.e.:
For b̄0, b̄1 ∈ N and every model M (such that C ⊆M ⊆ N), b̄0 ≡M b̄1 =⇒ b̄0 ≡āM b̄1.

8. For b̄0, b̄1 ∈ N and every model M (such that C ⊆M ⊆ N), b̄0 ≡M b̄1 =⇒ b̄0 ≡āC b̄1.

9. The type tp(ā/N) does not split strongly8 over C, i.e.:
If (b̄i)i<ω is indiscernible over C and b̄0, b̄1 ∈ N , then b̄0 ≡āC b̄1.

Proof. 3 ⇒ 4: Easy using both directions of Corollary 33. 4 ⇒ 5 ⇒ 6: Obvious. 6 ⇒ 7: Easy using
homogeneity of N . 7 ⇒ 8: Trivial. 8 ⇒ 9: Easy using Corollary 33. 9 ⇒ 3: Suppose 3 holds and
(b̄i)i<ω is a C-indiscernible sequence in N . Let i0 < i1 < · · · < im < ω and j0 < j1 < · · · < jm < ω.
We need to show that b̄i0 . . . b̄im ≡āC b̄j0 . . . b̄jm . It suffices to do the case im < j0. Apply 9 to an
indiscernible sequence starting with b̄i0 . . . b̄im and b̄j0 . . . b̄jm .

7 ⇒ 1: Fix a model M , C ⊆ M ⊆ N , of cardinality |M | ≤ |T | + |C|. By 7 we have an
obvious map associating to every type q(ȳ) ∈ S(M) a type rq(x̄, ȳ) ∈ S(M). The global type
p(x̄) =

⋃
b̄∈M rtp(b̄/M)(x̄, b̄) extends tp(ā/N) and is clearly complete, consistent, and invariant over

M . It is not hard to see that it is also invariant over every other model containing C. Thus it is
almost invariant over C. 1 ⇒ 7: Easy using homogeneity of the monster model. 3 ⇒ 2: Obvious
using saturation of N . 2 ⇒ 9: Obvious.

By the equivalence of 1 and 2, a complete type quasiforks over a subset of its domain if and
only if it has no global extension that is almost over the subset.

Corollary 35. |̂i = ( |̂s )∗ is an extensible preindependence relation.

Proof. Both relations satisfy the extension axiom, so by the equivalence of 3 and 2 in Proposition 34
they agree. ( |̂s )∗ is an extensible preindependence relation by Propositions 27 and 30.

Corollary 36. A |̂u
C
B =⇒ A |̂i

C
B =⇒ A |̂f

C
B.

8For the definitions of splitting and strong splitting see, e. g., Shelah’s book [49].
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Proof. Since |̂u and |̂i are extensible, for both implications we may assume that B = N ⊇ C is a
model as in Proposition 34. If ā 6 |̂i

C
B, and hence condition 6 of Proposition 34 does not hold,

then there are tuples b̄0 ≡C b̄1 such that b̄0 6≡āC b̄1. Let ϕ(x̄, ȳ) be such that |= ϕ(ā, b̄0)∧¬ϕ(ā, b̄1).
Then ϕ(ā, b̄0) ∧ ¬ϕ(ā, b̄1) is clearly not satisfied in C, so ā 6 |̂u

C
B. The second implication is easy

using Remark 25.3 and condition 4 of Proposition 34.

6 Bounded forking

We say that a preindependence relation |̂ is bounded if it satisfies the following axiom. Moreover,
if f is as in the axiom we say that |̂ is bounded by f .

(bound) There is a function f such that for every type p(x̄) ∈ S(C) (x̄ a finite tuple) and every
model M ⊇ C the set

{
tp(ā/M) ⊇ p(x̄)

∣∣ ā |̂
C
M

}
has cardinality at most f(|T |+ |C|).

Proposition 37. 1. |̂i is bounded by f(κ) = 22κ

.

2. |̂i is the weakest bounded extensible preindependence relation.

Proof. 1: A global type p(x̄) that is almost invariant over a set C can be described by the map
associating to every formula ϕ(x̄, ȳ) the set {lstp(b̄/C) | ϕ(x̄, ȳ) ∈ p(x̄)}. Let M ⊇ C be a model
of size |T |+ |C|. Then the number of Lascar strong types over C is at most the number of types
over M , which is at most 2|T |+|C|. Thus there can be at most 22|T |+|C|

such sets. 2: If |̂ is an
extensible preindependence relation which is not stronger than |̂i, then for some model N ⊇ C as
in Proposition 34 condition 9 is violated. It easily follows that there is a formula ϕ(ā; ȳ) and a
sequence of indiscernibles (b̄j)j∈Z such that either |= ϕ(ā; b̄j) if and only if j = 0, or |= ϕ(ā; b̄j) if
and only if j ≥ 0. Now for every extension (b̄j)j∈J of the sequence which is still indiscernible over
C, using strong finite character of |̂ and compactness we can build |J | different |̂ -independent
extensions of tp(ā/C) to C ∪ {b̄j | j ∈ J}.

Corollary 38. The following conditions are equivalent.

1. |̂f is bounded.

2. |̂f is bounded by f(κ) = 22κ

.

3. |̂f = |̂i.

Proof. 3 ⇒ 2 by Proposition 37.1. 2 ⇒ 1 is trivial. 1 ⇒ 3: By Corollary 36 |̂f is always weaker
than |̂i. If |̂f is bounded, then by Proposition 37.2 |̂f is also stronger than |̂i.

Remark 39. In a theory with NIP the equivalent conditions of Corollary 38 are satisfied.

Proof. By extensibility it is sufficient to show that ā |̂f
C
N =⇒ ā |̂i

C
N for N ⊇ C as in

Proposition 34. We check condition 3 of the proposition. If (b̄i)i<ω is C-indiscernible and b̄0, b̄1 ∈
N , hence ā |̂d

C
b̄0b̄1, then b̄0 ≡āC b̄1 since otherwise by applying Remark 25.3 we would get a

violation of finite alternation rank.

The fact that in NIP theories |̂f = |̂i (and therefore |̂f is bounded) is from Observation 5.4 in a
recent preprint of Shelah’s paper Sh783 [53]. It explains to a large extent Alf Dolich’s observation
that forking seems to play an important role in o-minimal theories [9]. The converse to Remark 39
looks much too strong to be true, but I could not find a counterexample.

The study of splitting in unstable theories by Ivanov and Macpherson is related to this section,
since similar results should hold for quasidividing or strong splitting [20, 19].
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Special indiscernible sequences

Recall that the type of an infinite sequence of C-indiscernibles (āi)i∈I is uniquely determined by its
order type (the isomorphism class of the linear order I) together with its Ehrenfeucht-Mostowski
set over C (which is essentially the sequence of types p(x̄0 . . . x̄n−1) = tp(āi0 . . . āin−1/C), where
i0 < · · · < in−1). We will call an Ehrenfeucht-Mostowski set over a model M special if for any
system of sequences (āj

i )i∈Ij (where j ranges over some set J) that realise it there is a tuple
ā∞ = āj

∞ (for all j ∈ J) such that the concatenated sequences (āj
i )i∈Ij

aā∞ = (āj
i )i∈Ij∪{∞} are

all indiscernible over M .9 A special sequence over M is an infinite sequence of M -indiscernibles
whose Ehrenfeucht-Mostowski set is special over M .
Remark 40. Suppose T is NIP. Let ϕ(x̄; b̄) be a formula with parameters. Every sequence of
C-indiscernibles has an extension (āi)i∈I which has the following property: For all ā such that
(āi)i∈I

aā is indiscernible over C, the formula ϕ(ā; b̄) has the same truth value. Moreover, if C = M
is a model and we have two realisations of an Ehrenfeucht-Mostowski set that is special over M ,
and if both have the above property, then this ‘eventual’ truth value is the same for both of them.

Proof. Let (āi)i∈I realise the Ehrenfeucht-Mostowski set. Suppose the truth value of ϕ(āi; b̄)
changes n times. As long as the sequence does not have the desired property, we can extend it and
get another realisation for which the truth value changes more than n times. Since ϕ(x̄; ȳ) has
finite alternation rank, this process must stop, at a realisation that has the desired property. Now
suppose that, moreover, the Ehrenfeucht-Mostowski set is special over M = C. If we have two
realisations with the desired property, then we can choose as ā a common continuation of both
realisations.

In a theory without the independence property, we define the eventual type Ev((āi)i∈I/B) ∈
S(B) over B of a special sequence over M as the set of all formulas ϕ(x̄; b̄) with parameters in B
which are eventually true in the sense of the last remark. The eventual type was used (implicitly)
by Poizat, who proved the following [43].

Lemma 41. Let p(x̄) be a global type which is (almost) invariant over a model M . If an infinite
sequence (āi)i∈I is such that for all i ∈ I, āi realises p(x̄)�(Mā<i), then (āi)i∈I is a special sequence
over M . Conversely, if T is NIP and (āi)i∈I is a special sequence over M , then Ev((āi)i∈I/M)
does not split over M , and āi realises Ev((āi)i∈I/Mā<i) for all i ∈ I.

Thus in a theory with NIP there is a bijection between global types that are (almost) invariant
over M and special Ehrenfeucht-Mostowski sets over M .

Proof. Suppose (āi)i∈I is such that each āi realises the type p(x̄)�Mā<i. The sequence is clearly
1-indiscernible over M . We show that if it is n-indiscernible over M , then it is also (n + 1)-
indiscernible over M . So suppose i0 < · · · < in and j0 < · · · < jn. For this purpose we may assume
that in > jn−1 and jn > in − 1. By induction hypothesis we have āi0 . . . āin−1 ≡M āj0 . . . ājn−1 .
Now āin realises p�Māi0 . . . āin−1 and ājn realises p�Māj0 . . . ājn−1 , and moreover p does not split
over M . Therefore āi0 . . . āin ≡M āj0 . . . ājn . Thus the sequence is indiscernible over M . It is also
special over M : Given any sequences (āj

i )i∈I of the same type over M , let ā realise p�MāJ
I . Then

clearly each of the sequences (āj
i )

a
i∈I ā is M -indiscernible.

For the converse, suppose b̄ ≡M b̄′ and consider a formula ϕ(x̄, ȳ). Let (āi)i∈J be an extension
of (āi)i∈I such that whenever (āi)i∈J

aā is indiscernible, then ϕ(ā, b̄) has the same truth value. Let
(ā′i)i∈J be such that (ā′i)i∈J b̄

′ ≡M (āi)i∈J b̄. Then clearly (ā′i)i∈J has the analogous property with
respect to ϕ(x̄, b̄′), and with the same truth value. Therefore Ev((āi)i∈I/M) does not split over
M . Finally we have to show that each āi realises Ev((āi)i∈I/Mā<i). For i0 < i1 < · · · < in−1 < i
and a formula ϕ(x̄0, . . . , x̄n) over M let (āi)i∈J be a M -indiscernible extension of (āi)i∈I such that
whenever (āi)i∈J

aā is M -indiscernible ϕ(āi0 , . . . , āin−1 , ā) has the same truth value. But then by
M -indiscernibility ϕ(āi0 , . . . , āin−1 , āin) also has the same truth value.

9 By compactness it is sufficient to check this condition for one particular order type, e. g. I = I′ = ω (and finite
J). Hence our definition is equivalent to Poizat’s. Moreover, in the definition we could require |J | = 2 without
changing any of the arguments below. This shows that in NIP theories the resulting weaker notion is actually
equivalent.
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Theorem 42. The following conditions are equivalent.

1. T is NIP.

2. |̂f is bounded by f(κ) = 2κ, i. e., for every parameter set A, there are at most 2|T |+|A| global
types that do not fork over A.

3. There is a cardinal λ ≥ |T | such that every 1-type over a model of size λ has strictly less
than 22λ

global coheirs.

Proof. 2 ⇒ 3: Choose any λ ≥ |T |. Take any model M of cardinality λ and any p(x) ∈ S1(M).
The global coheirs of p are finitely satisfiable in M , so they do not fork over M . By 2 there are
at most 2λ global types that do not fork over M , which is in fact strictly less than 22λ

. 1 ⇒ 2:
By Löwenheim-Skolem we may assume that A = M is a model. By Remark 39 it is sufficient to
show that there are at most 2|T |+|M | global types that are special over M . By Lemma 41 the
global types that are special over M are in bijection with the Ehrenfeucht-Mostowski sets that are
special over M . Clearly there are at most 2|T |+|M | Ehrenfeucht-Mostowski sets over M . 3 ⇒ 1:
If T has the independence property, then there is a formula ϕ(x; ȳ) such that alt(ϕ(x; ȳ)) = ∞,
and an indiscernible sequence (ai)i<λ which witnesses this. Let M ⊇ {ai | i < λ} be a model
of size |M | = λ. By Hausdorff’s Theorem on ultrafilters there are 22λ

ultrafilters U on the set
{ai | i < λ} [45, Theorem 8.11]. For each of them let pU = Av(U/M) be its global average type. It
is a coheir of its restriction to M . For two distinct ultrafilters U ,U ′ there is a set A ⊂ {ai | i < λ}
such that A ∈ U and A 6∈ U ′. By compactness there is a tuple b̄ such that |= ϕ(ai; b̄) ⇐⇒ ai ∈ A.
Hence ϕ(x; b̄) ∈ pU and ϕ(x; b̄) 6∈ pU ′ .

Except for a minor improvement in the last theorem ( |̂f instead of |̂i in condition 2), every-
thing in this section is due to Poizat [42, 43].

7 Stability

A formula ϕ(x̄; ȳ) is said to have the strict order property if for every n < ω there are tuples
b̄0, . . . , b̄n−1 such that ϕ(x̄; b̄0)M ( ϕ(x̄; b̄1)M ( . . . ϕ(x̄; b̄n−1)M.10 The following result was already
in Shelah’s paper that introduced the independence property [48].

Lemma 43. A formula ϕ(x̄; ȳ) has the order property if and only if ϕ(x̄; ȳ) has the independence
property or there is a formula, with parameters, χ(ȳ) such that ϕ(x̄; ȳ) ∧ χ(ȳ) has the strict order
property.

Proof. It is easy to check that if ϕ(x̄; ȳ) has the independence property, or if some ϕ(x̄; ȳ) ∧ χ(ȳ)
has the strict order property, then ϕ(x̄; ȳ) has the order property.

Now suppose ϕ(x̄; ȳ) has the order property but not the independence property. We are looking
for a formula χ(x̄) with parameters such that ϕ(x̄; ȳ) ∧ χ(x̄) has the strict order property. Since
there are arbitrarily long sequences witnessing that ϕ has the order property, we can extract an
indiscernible sequence that also exhibits the order property. So let (āib̄i)i<ω be an indiscernible
sequence such that |= ϕ(āi; b̄j) holds if and only if i < j. Since ϕ does not have the independence
property, ϕ has finite alternation rank, and so there is a number n < ω such that the formula

ϕ(ā0; ȳ) ∧ ¬ϕ(ā1; ȳ) ∧ ϕ(ā2; ȳ) ∧ ¬ϕ(ā3; ȳ) ∧ . . .

∧ ϕ(ā2n−2; ȳ) ∧ ¬ϕ(ā2n−1; ȳ)

10It is customary to abbreviate the strict order property as SOP. This has become problematic since Shelah
introduced the (slightly weaker) strong order property, which he also abbreviates as SOP, and various weaker
variants of it that he called SOP3, SOP4, SOP5, etc. [51].
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cannot be satisfied. On the other hand, if we push all negations to the right we get the formula

ϕ(ā0; ȳ) ∧ ϕ(ā1; ȳ) ∧ · · · ∧ ϕ(ān−1; ȳ) ∧
∧ ¬ϕ(ān; ȳ) ∧ · · · ∧ ¬ϕ(ā2n−2; ȳ) ∧ ¬ϕ(ā2n−1; ȳ),

which can be satisfied. (In fact, it is satisfied by b̄n−1. This is all we needed the b̄i for.) We can
do the pushing stepwise, in each step going from a formula

α(ā0 . . . āk−1; ȳ) ∧ ¬ϕ(āk; ȳ) ∧ ϕ(āk+1; ȳ) ∧ β(āk+2 . . . ā2n−1; ȳ)

to the formula

α(ā0 . . . āk−1; ȳ) ∧ ϕ(āk; ȳ) ∧ ¬ϕ(āk+1; ȳ) ∧ β(āk+2 . . . ā2n−1; ȳ).

At one of these steps we must get from a non-satisfiable formula to a satisfiable formula. Let
α, β, k be as in such a step, let χ(ȳ) be the formula α(ā0 . . . āk−1; ȳ)∧ β(āk+2 . . . ā2n−1; ȳ), and let
ϕ′(x̄; ȳ) be ϕ(x̄; ȳ) ∧ χ(ȳ). Now we have

|= ∀ȳ(ϕ′(āk+1; ȳ) → ϕ′(āk; ȳ)) ∧ ∃ȳ(¬ϕ′(āk+1; ȳ) ∧ ϕ′(āk; ȳ)).

Let (āq)q∈Q be an indiscernible extension of (āi)i<ω. For i < ω let ā′i = āk+i/(i+1), so ā′0 = āk,
and let ā′ω = āk+1. Then (ā′i)i≤ω is indiscernible over the parameters of ϕ′. Thus we have

|= ∀ȳ(ϕ′(ā′i+1; ȳ) → ϕ′(ā′i; ȳ)) ∧ ∃ȳ(¬ϕ′(ā′i+1; ȳ) ∧ ϕ′(ā′i; ȳ))

for all i < ω, so ϕ′ has the strict order property.

Theorem 44. The following conditions are equivalent for a NIP theory T .

1. There is no formula ϕ(x, y) with parameters, with single variables x and y, which defines a
partial order with infinite chains on the universe.

2. T does not have the strict order property.

3. T is simple.

4. T is stable

Proof. It is well known and easy to check that a stable theory is simple, a simple theory cannot
have the strict order property, that not having the strict order property is preserved under adding
parameters, and that a theory without the strict order property does not have a formula which
defines a partial order with infinite chains. Therefore it only remains to show that 1 implies 4.
In an unstable theory there is a formula ϕ(x; ȳ), with x a single variable, which has the order
property [49]. Hence there is also a formula ϕ(x̄; y), with y a single variable, which has the order
property. By the lemma there is a formula ϕ′(x̄; y) with parameters which has the strict order
property. Hence the formula ψ(y; y′) defined as ∀x̄(ϕ′(x̄; y) → ϕ′(x̄; y′)), which is clearly reflexive
and transitive, has infinite chains. In a final step we can define a formula ψ′(y; y′) in which we
make incomparable any two elements that are equivalent according to ψ: ψ(y; y′) ∧ ¬ψ(y′; y).
This formula clearly defines an irreflexive partial order with infinite chains.

The observation that in an unstable NIP theory there is a partial order with infinite chains on
the single elements is apparently due to Shelah. The rest of the theorem is, of course, also due to
him. Finally, stability is characterised by ‘nice’ behaviour of |̂i in the same way as simplicity is
characterised by ‘nice’ behaviour of non-forking:

Theorem 45. The following conditions are equivalent:

1. T is stable.

19



2. T is simple and |̂i = |̂f.

3. |̂i satisfies the local character axiom.

4. |̂i is an independence relation (see [1]).

5. |̂i is symmetric.

Proof. 1 implies 2: If T is stable, then T is simple and NIP. 2 implies 1: If T is simple unstable, then
T has the independence property and so there is a formula ϕ(x̄; ȳ) with infinite alternation number.
Thus there is a tuple b̄ and an indiscernible sequence (āi)i<ω such that 6|= ϕ(āi; b̄) ↔ ϕ(āi+1; b̄) for
all i < ω. We may assume that the sequence of pairs (ā2ia2i+1)i<ω is indiscernible over b̄, and we
can extend to a sequence (āi)i<ω+ω such that the pairs are still indiscernible over b̄ and the above
condition holds for all i < ω + ω. Then ā<ω+ω |̂f

ā<ω
b̄ by Corollary 36, hence b̄ |̂f

ā<ω
ā<ω+ω by

forking symmetry. But clearly b̄ 6 |̂s
ā<ω

ā<ω+ω. 2 implies 3: If T is simple, |̂f satisfies the local

character axiom. 3 implies 2: If |̂i satisfies the local character axiom, then so does |̂f, and therefore
T is simple. Moreover, |̂i is a preindependence relation satisfying the local character axiom, hence
an independence relation. Since |̂f is the strongest independence relation [1], A |̂f

C
B implies

A |̂i
C
B, so |̂i = |̂f. 3 implies 4 by definition, because |̂i is an extensible preindependence relation.

4 implies 5 by Kim’s symmetry argument [25, 1]. 5 implies 3 because |̂u satisfies the dual of local
character (left and right sides reversed) [2] and A |̂u

C
B =⇒ A |̂i

C
B.

8 Further research

Shelah showed that unstable theories have the maximal number of models in all cardinalities κ ≥
|T |. Poizat gave a much simpler proof showing that theories with the independence property have
the maximal number of models (even λ-resplendent models) in all cardinalities κ = 2λ ≥ |T | [44].

Pillay recently gave a new proof of a remarkable theorem by Shelah which says that part of the
definability of types in stable theories can be salvaged in the NIP context [53, 39]. Many of Shelah’s
more technical results around NIP also did not find their place in this paper [49, 52, 53, 56, 58].

Keisler and his student Siu-Ah Ng studied a notion of non-forking for certain measures that
generalise types, in a theory without the independence property [23, 24, 32, 33, 34, 35]. So far
Keisler measures have not become part of the mainstream, but this is about to change, since they
were used recently in the proofs of Pillay’s o-minimal group conjecture and the o-minimal case of
the compact domination conjecture [17, 18]. One of the results of this line of work was that every
type-definable group in a NIP theory with an invariant measure has a minimal type-definable
subgroup of bounded index. Shelah then proved, without using measures, that this is true for all
NIP theories [55]. Ben-Yaacov introduced the randomisation of a theory. The randomisation of
a NIP theory is again NIP, and its elements may turn out to play the role of new ”imaginaries”
that can ”realise” measures[8].

In his initial paper on simple theories, Shelah introduced the tree property of the second kind,
which was already implicit (‘κrinp < ∞’) in his book [50, 49]. The tree property of the second
kind implies the tree property and the independence property. Hence theories without the tree
property of the second kind are a common generalisation of simple theories and of NIP theories.
So far they have not been examined systematically.

In a sense, the independence property is about ‘weak interpretations’ of a random bipartite
graph. In a similar way we can look for ‘weak interpretations’ of ‘n+1-partite n+1-hypergraphs’.
As a result we get the notion of being n-dependent, for 1 ≤ n < ω. Shelah recently became
interested in this hierarchy of generalisations of NIP [54, 57].

As to strengthenings of NIP, Shelah has been looking for a notion of ‘super-dependent’ that
would be related to NIP roughly as superstability is to stability. The most fruitful approximation
so far seems to be the class of strongly dependent theories, which are precisely those in which
Theorem 20 holds with κ = ℵ0 if B is finite. There are also other variants, most notably the
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stronger notion called strongly+ dependent. There are strict implications from being superstable
to being strongly+ stable (i. e. stable and strongly+ dependent), to being strongly stable (i. e. stable
and strongly dependent), to just being stable [53, 54]. Using certain ranks which are defined in
strongly dependent theories, Shelah achieved the very fundamental result that every sufficiently
long sequence in such a theory has a subsequence which is indiscernible [54]. A stable theory is
strongly dependent if and only if all types have finite weight [3].

Even stronger is the notion of dp-minimality, which generalises strong minimality, o-minimality
and p-minimality [38]. Apparently this notion was first defined in a still unpublished paper by
Firstenberg and Shelah. A stable theory is dp-minimal if and only if every 1-type has weight ≤ 1.

One could say that the main point about NIP is that it is a natural common generalisation
of stability and o-minimality. It appears that stability theory takes much of its strength from
the coincidence of a nice ‘combinatorial’ machinery (indiscernibles and the definition of forking;
bounded multiplicity of types; notions such as superstability) and nice ‘geometric’ notions (an
independence relation whose properties include symmetry; notions such as triviality and being
one-based). O-minimal theories behave nicely from both points of view, but the combinatorial
and geometric notions do not coincide. NIP generalises the nice combinatorial aspects that are
common to stable and o-minimal theories.

A notion weaker than forking was developed by Onshuus, Scanlon and Ealy and called thorn-
forking. It is the key to generalising the geometric aspects of stability and o-minimality. A
theory is called rosy if thorn-forking is symmetric (is an independence relation). Simple theories
and o-minimal theories are rosy. A large part of geometric simplicity theory can be extended
to rosy theories, and as one would expect, o-minimal theories are in fact superrosy of finite Uþ-
rank [36, 37, 11, 1].

A priori, NIP and rosiness do not have much to do with each other. Nevertheless, in algebraic
contexts there are already encouraging results from combining the two with a group-theoretic
condition called finitely satisfiable generics. In particular, a superrosy NIP group with finitely
satisfiable generics must be abelian-by-finite if it is of Uþ-rank 1, and solvable-by-finite if it is of
Uþ-rank 2 [17, 10].

Acknowledgements

This paper grew out of my talks in the model theory seminar in Barcelona. I thank John Baldwin,
Itay Ben-Yaacov, Enrique Casanovas, Artem Chernikov, Davide Penazzi, Anand Pillay, Martin
Ziegler, and the stability theory groups in Barcelona and Berlin for many helpful discussions and
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