Skip to main content
Log in

Modeling Human Decision-Making: An Overview of the Brussels Quantum Approach

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

We present the fundamentals of the quantum theoretical approach we have developed in the last decade to model cognitive phenomena that resisted modeling by means of classical logical and probabilistic structures, like Boolean, Kolmogorovian and, more generally, set theoretical structures. We firstly sketch the operational-realistic foundations of conceptual entities, i.e. concepts, conceptual combinations, propositions, decision-making entities, etc. Then, we briefly illustrate the application of the quantum formalism in Hilbert space to represent combinations of natural concepts, discussing its success in modeling a wide range of empirical data on concepts and their conjunction, disjunction and negation. Next, we naturally extend the quantum theoretical approach to model some long-standing ‘fallacies of human reasoning’, namely, the ‘conjunction fallacy’ and the ‘disjunction effect’. Finally, we put forward an explanatory hypothesis according to which human reasoning is a defined superposition of ‘emergent reasoning’ and ‘logical reasoning’, where the former generally prevails over the latter. The quantum theoretical approach explains human fallacies as the consequence of genuine quantum structures in human reasoning, i.e. ‘contextuality’, ‘emergence’, ‘entanglement’, ‘interference’ and ‘superposition’. As such, it is alternative to the Kahneman–Tversky research programme, which instead aims to explain human fallacies in terms of ‘individual heuristics and biases’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. A normalized function \(p: E \in \mathscr {A} \longrightarrow [0,1]\) is said ‘Kolmogorovian’ if it satisfies the following axioms: (i) \(p(\Omega )=1\) and (ii) \(p(\cup _{i}E_i)=\sum _{i}p(E_i)\), for every sequence \(\{E_i\}_i\) of pairwise disjoint events \(E_i\) (Kolmogorov 1933).

  2. The monotonicty law of Kolmogorovian probability is globally expressed by the inequalities \(p(E_A \cap E_B)\le p(E_A),p(E_B)\le p(E_A\cup E_B)\).

  3. We remind that an orthogonal projection operator is a liner operator which satisfies hermiticity, i.e. \(M^{\dag }=M\), and idempotency, i.e. \(M^2=M\cdot M=M\).

  4. Indeed, \(|A\rangle\) and \(|B\rangle\) are orthogonal vectors, and also \(M|A\rangle\) and \((1\!\!1-M)|A\rangle\) and \(M|B\rangle\) and \((1\!\!1-M)|B\rangle\) are, representing three data points \(\mu (A)\), \(\mu (B)\) and \(\mu (A \ \mathrm{and} \ B)\) requires a Hilbert space of at least dimension 3.

  5. The situation in which \(\mu (A)=0\) or \(\mu (B)=0\) requires some further technicalities and a more complex Hilbert space structure, the ‘Fock space’, which will be introduced later. We do not dwell on this aspect here, for the sake of brevity.

  6. In Kolmogorovian probability, one proves the law of total probability, namely, \(p(E_A)=p(E_B)p(E_A|E_B)+p(E'_{B})p(E_A|E'_B)\), where \(E'_B=\Omega \setminus E_B\) denotes the ‘complement event’ with respect to \(E_B\).

References

  • Aerts, D. (2002). Being and change: Foundations of a realistic operational formalism. In D. Aerts, M. Czachor, & T. Durt (Eds.), Probing the structure of quantum mechanics: Nonlinearity, nonlocality, probability and axiomatics (pp. 71–110). Singapore: World Scientific.

    Google Scholar 

  • Aerts, D., & Sozzo, S. (2011). Quantum structure in cognition. Why and how concepts are entangled. Quantum Interaction. Lecture Notes in Computer Science 7052, 116–127. Berlin: Springer.

  • Aerts, D., & Sozzo, S. (2016). Quantum structure in cognition: Origins, developments, successes and expectations. In Haven, E., & Khrennikov, A. (Eds.) The Palgrave handbook of quantum models in social science: Applications and grand challenges (pp. 157–193). London: Palgrave & Macmillan.

    Google Scholar 

  • Aerts, D., Gabora, L., & Sozzo, S. (2013). Concepts and their dynamics: A quantum-theoretic modeling of human thought. Topics in Cognitive Science, 5, 737–772.

    Google Scholar 

  • Aerts, D., Geriente, S., Moreira, C., & Sozzo, S. (2018). Testing ambiguity and Machina preferences within a quantum-theoretic framework for decision-making. Journal of Mathematical Economics. https://doi.org/10.1016/j.jmateco.2017.12.002.

    Article  Google Scholar 

  • Aerts, D., Sassoli de Bianchi, M., & Sozzo, S. (2016). On the foundations of the Brussels operational-realistic approach to cognition. Frontiers in Physics. https://doi.org/10.3389/fphy.2016.00017.

    Article  Google Scholar 

  • Aerts, D., Sassoli de Bianchi, M., Sozzo, S., & Veloz, T. (2018). Modeling meaning associated with documental entities: Introducing the Brussels quantum approach.

  • Aerts, D., Sozzo, S., & Veloz, T. (2015). Quantum structure of negation and conjunction in human thought. Frontiers in Psychology. https://doi.org/10.3389/fpsyg.2015.01447.

    Article  Google Scholar 

  • Aerts, D. (1986). A possible explanation for the probabilities of quantum mechanics. Journal of Mathematical Physics, 27, 202–210.

    Google Scholar 

  • Aerts, D. (1999). Foundations of quantum physics: A general realistic and operational approach. International Journal of Theoretical Physics, 38, 289–358.

    Google Scholar 

  • Aerts, D. (2009). Quantum structure in cognition. Journal of Mathematical Psychology, 53, 314–348.

    Google Scholar 

  • Aerts, D. (2009a). Quantum particles as conceptual entities: A possible explanatory framework for quantum theory. Foundations of Science, 14, 361–411.

    Google Scholar 

  • Aerts, D., & Aerts, S. (1995). Applications of quantum statistics in psychological studies of decision processes. Foundations of Science, 1, 85–97.

    Google Scholar 

  • Aerts, D., Broekaert, J., Gabora, L., & Sozzo, S. (2013). Quantum structure and human thought. Behavioral and Brain Sciences, 36, 274–276.

    Google Scholar 

  • Aerts, D., & Gabora, L. (2005). A theory of concepts and their combinations I: The structure of the sets of contexts and properties. Kybernetes, 34, 167–191.

    Google Scholar 

  • Aerts, D., & Gabora, L. (2005). A theory of concepts and their combinations II: A Hilbert space representation. Kybernetes, 34, 192–221.

    Google Scholar 

  • Aerts, D., Haven, E., & Sozzo, S. (2018). A proposal to extend expected utility in a quantum probabilistic framework. Economic Theory, 65, 1079–1109.

    Google Scholar 

  • Aerts, D., & Sozzo, S. (2014). Quantum entanglement in conceptual combinations. International Journal of Theoretical Physics, 53, 3587–3603.

    Google Scholar 

  • Aerts, D., & Sozzo, S. (2016). From ambiguity aversion to a generalized expected utility. Modeling preferences in a quantum probabilistic framework. Journal of Mathematical Psychology, 74, 117–127.

    Google Scholar 

  • Aerts, D., Sozzo, S., & Veloz, T. (2015). New fundamental evidence of non-classical structure in the combination of natural concepts. Philosophical Transactions of the Royal Society A, 374, 20150095.

    Google Scholar 

  • Aerts, D., Sozzo, S., & Veloz, T. (2015). Quantum structure in cognition and the foundations of human reasoning. International Journal of Theoretical Physics, 54, 4557–4569.

    Google Scholar 

  • Aerts, D., Sozzo, S., & Veloz, T. (2015). Quantum nature of identity in human concepts: Bose-Einstein statistics for conceptual indistinguishability. International Journal of Theoretical Physics, 54, 4430–4443.

    Google Scholar 

  • Alxatib, S., & Pelletier, J. (2011). On the psychology of truth gaps. In R. Nouwen, R. van Rooij, U. Sauerland, & H.-C. Schmitz (Eds.), Vagueness in communication (pp. 13–36). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Bruza, P. D., Wang, Z., & Busemeyer, J. R. (2015). Quantum cognition: A new theoretical approach to psychology. Trends in Cognitive Sciences, 19, 383–393.

    Google Scholar 

  • Busemeyer, J. R., & Bruza, P. D. (2012). Quantum models of cognition and decision. Cambridge: Cambridge University Press.

    Google Scholar 

  • Busemeyer, J. R., Pothos, E. M., Franco, R., & Trueblood, J. S. (2011). A quantum theoretical explanation for probability judgment errors. Psychological Review, 118, 193–218.

    Google Scholar 

  • Costello, J., & Keane, M. T. (2000). Efficient creativity: Constraint-guided conceptual combination. Cognitive Science, 24, 299–349.

    Google Scholar 

  • Dirac, P. A. M. (1958). Quantum mechanics (4th ed.). Oxford: Oxford University Press.

    Google Scholar 

  • Ellsberg, D. (1961). Risk, ambiguity, and the Savage axioms. Quarterly Journal of Economic, 75, 643–669.

    Google Scholar 

  • Fisk, J. E. (2002). Judgments under uncertainty: Representativeness or potential surprise? British Journal of Psychology, 93, 431–449.

    Google Scholar 

  • Fisk, J. E., & Pidgeon, N. (1996). Component probabilities and the conjunction fallacy: Resolving signed summation and the low component model in a contingent approach. Acta Psychologica, 94, 1–20.

    Google Scholar 

  • Hampton, J. A. (1988a). Overextension of conjunctive concepts: Evidence for a unitary model for concept typicality and class inclusion. Journal of Experimental Psychology: Learning, Memory, and Cognition, 14, 12–32.

    Google Scholar 

  • Hampton, J. A. (1988b). Disjunction of natural concepts. Memory & Cognition, 16, 579–591.

    Google Scholar 

  • Haven, E., & Khrennikov, A. Y. (2013). Quantum social science. Cambridge: Cambridge University Press.

    Google Scholar 

  • Haven, E., & Khrennikov, A. (2016). Statistical and subjective interpretations of probability in quantum-like models of cognition and decision making. Journal of Mathematical Psychology, 74, 82–91.

    Google Scholar 

  • Jauch, J. M. (1968). Foundations of quantum mechanics. Reading, MA: Addison Wesley.

    Google Scholar 

  • Kolmogorov, A. N. (1933). Grundbegriffe der Wahrscheinlichkeitrechnung, Ergebnisse Der Mathematik; translated as Foundations of Probability (p. 1950). New York: Chelsea Publishing Company.

  • Kühberger, A., Kamunska, D., & Perner, J. (2001). The disjunction effect: Does it exist for two-step gambles? Organization Behavior and Human Decision Processes, 85, 250–264.

    Google Scholar 

  • Kvam, P. D., Pleskac, T. J., Yu, S., & Busemeyer, J. R. (2016). Interference effects of choice on confidence: Quantum characteristics of evidence accumulation. Proceedings of the National Academy of Sciences, 112, 10645–10650.

    Google Scholar 

  • Lambdin, C., & Burdsal, C. (2007). The disjunction effect reexamined: Relevant methodological issues and the fallacy of unspecified percentage comparisons. Organization Behavior and Human Decision Processes, 103, 268–276.

    Google Scholar 

  • Lu, Y. (2015). The conjunction and disjunction fallacies: Explanations of the Linda problem by the equate-to-differentiate model. Integrative Psychological and Behavioral Science, 1–25.

  • Machina, M. J. (2009). Risk, ambiguity, and the dark-dependence axioms. American Economic Review, 99, 385–392.

    Google Scholar 

  • Melucci, M. (2015). Introduction to information retrieval and quantum mechanics. Berlin: Springer.

    Google Scholar 

  • Morier, D., & Borgida, E. (1984). The conjunction fallacy: A task specific phenomenon? Personality and Social Psychology Bulletin, 10, 243–252.

    Google Scholar 

  • Moro, R. (2009). On the nature of the conjunction fallacy. Synthese, 171, 1–24.

    Google Scholar 

  • Murphy, G. L., & Medin, D. L. (1985). The role of theories in conceptual coherence. Psychological Review, 92, 289–316.

    Google Scholar 

  • Nosofsky, R. (1992). Exemplars, prototypes, and similarity rules. In Healy, A., Kosslyn, S., & Shiffrin, R. (Eds.), From learning theory to connectionist theory: Essays in honor of William K. Estes. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Nosofsky, R. (1988). Exemplar-based accounts of relations between classification, recognition, and typicality. Journal of Experimental Psychology: Learning, Memory, and Cognition, 14, 700–708.

    Google Scholar 

  • Osherson, D., & Smith, E. (1981). On the adequacy of prototype theory as a theory of concepts. Cognition, 9, 35–58.

    Google Scholar 

  • Piron, C. (1976). Foundations of quantum physics. Reading, MA: Reading.

    Google Scholar 

  • Pitowsky, I. (1989). Quantum probability, quantum logic. Lecture Notes in Physics (vol. 321). Berlin: Springer.

    Google Scholar 

  • Pothos, E. M., & Busemeyer, J. R. (2013). Can quantum probability provide a new direction for cognitive modeling? Behavioral and Brain Sciences, 36, 255–274.

    Google Scholar 

  • Pothos, E. M., Busemeyer, J. R., Shiffrin, R. M., & Yearsley, J. M. (2017). The rational status of quantum cognition. Journal of Experimental Psychology: General, 146, 968–987.

    Google Scholar 

  • Rosch, E. (1973). Natural categories. Cognitive Psychology, 4, 328–350.

    Google Scholar 

  • Rosch, E. (1978). Principles of categorization. In E. Rosch & B. Lloyd (Eds.), Cognition and categorization (pp. 133–179). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Rosch, E. (1983). Prototype classification and logical classification: The two systems. In E. K. Scholnick (Ed.), New trends in conceptual representation: Challenges to Piaget theory? (pp. 133–159). New Jersey: Lawrence Erlbaum.

    Google Scholar 

  • Rumelhart, D. E., & Norman, D. A. (1988). Representation in memory. In R. C. Atkinson, R. J. Hernsein, G. Lindzey, & R. L. Duncan (Eds.), Stevens handbook of experimental psychology. New Jersey: Wiley.

    Google Scholar 

  • Savage, L. (1954). The foundations of statistics. New York: Wiley.

    Google Scholar 

  • Shah, A. K., & Oppenheimer, D. M. (2008). Heuristics made easy: An effort-reduction framework. Psychological Bulletin, 134, 207–222.

    Google Scholar 

  • Sozzo, S. (2014). A quantum probability explanation in Fock space for borderline contradictions. Journal of Mathematical Psychology, 58, 1–12.

    Google Scholar 

  • Sozzo, S. (2015). Conjunction and negation of natural concepts: A quantum-theoretic modeling. Journal of Mathematical Psychology, 66, 83–102.

    Google Scholar 

  • Thagard, P., & Stewart, T. C. (2011). The AHA! experience: Creativity through emergent binding in neural networks. Cognitive Science, 35, 1–33.

    Google Scholar 

  • Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185, 1124–1131.

    Google Scholar 

  • Tversky, A., & Kahneman, D. (1983). Extension versus intuitive reasoning: The conjunction fallacy in probability judgment. Psychological Review, 90, 293–315.

    Google Scholar 

  • Tversky, A., & Shafir, E. (1992). The disjunction effect in choice under uncertainty. Psychological Science, 3, 305–309.

    Google Scholar 

  • Van Dantzig, S., Raffone, A., & Hommel, B. (2011). Acquiring contextualized concepts: A connectionist approach. Cognitive Science, 35, 1162–1189.

    Google Scholar 

  • Wang, Z., Solloway, T., Shiffrin, R. M., & Busemeyer, J. R. (2014). Context effects produced by question orders reveal quantum nature of human judgments. Proceedings of the National Academy of Sciences, 111, 9431–9436.

    Google Scholar 

  • Wittgenstein, L. (1953/2001). Philosophical investigations. Blackwell Publishing.

  • Zadeh, L. (1982). A note on prototype theory and fuzzy sets. Cognition, 12, 291–297.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Sassoli de Bianchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aerts, D., Sassoli de Bianchi, M., Sozzo, S. et al. Modeling Human Decision-Making: An Overview of the Brussels Quantum Approach. Found Sci 26, 27–54 (2021). https://doi.org/10.1007/s10699-018-9559-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10699-018-9559-x

Keywords

Navigation