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Abstract

In this paper, the quantum logical ‘or’ is analyzed from a physical perspective.
We show that it is the existence of EPR-like correlation states for the quantum
mechanical entity under consideration that make it nonequivalent to the classical
situation. Specifically, the presence of potentiality in these correlation states gives
rise to the quantum deviation from the classical logical ‘or’. We show how this
arises not only in the microworld, but also in macroscopic situations where EPR-
like correlation states are present. We investigate how application of this analysis
to concepts could alleviate some well known problems in cognitive science.

Dedication: We dedicate this paper to Marisa Dalla Chiara, one of the founding figures
of quantum logic. The ideas expressed in this article have been influenced by her
ground-breeaking work in this field.

1 Introduction

We put forward a physical explanation of why, in quantum logic, the logical disjunction
does not behave classically, even for compatible propositions. Most studies of quantum
logic have concentrated on the algebraic structure of the set of propositions, trying to
identify the structural differences between quantum logic and classical logic (von Neu-
mann 1932; Birkhoff and von Neumann 1936; Beltrametti and Cassinelli 1981). These
mathematical studies, have shown that the quantum logical implication and conjunc-
tion can be interpreted as their classical equivalents, while this is not the case for the
quantum logical disjunction and negation. We will show that it is the presence of EPR-
type quantum mechanical correlations that is at the origin of the nonclassical behavior
of the logical disjunction.

In quantum logic, a propositiona is represented by means of the closed subspace
Ma of the Hilbert spaceH used to describe the quantum entity under consideration,
or by means of the orthogonal projection operatorPa on this closed subspace. We
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will use both representations, since some of the logical relations in quantum logic can
be more easily expressed using the ‘closed subspace’ representation of a proposition,
while others are more easily expressed using the ‘orthogonal projection’ representation.
Let us denote the set of propositions of the quantum entity under consideration by
means of P , the set of closed subspaces of the Hilbert space H, describing the quantum
entity by means of L(H) and the set of orthogonal projection operators by means of
P(H). A state p of the quantum mechanical entity under consideration is represented
by means of the unit vector vp of the Hilbert space H.

2 The Quantum Logical Operations

For two propositions a, b ∈ P the quantum logical operations are introduced by the
following expressions:

a �→ b ⇔ Ma ⊂ Mb (1)

Ma∧b = Ma ∩ Mb (2)

Ma∨b = cl(Ma ∪ Mb) (3)

M¬a = M⊥
a (4)

We remark that cl(Ma ∪ Mb) is the topological closure of the linear space generated
by Ma ∪Mb. This means that it is the smallest closed subspace of H that contains Ma

and Mb.
Using these standard definitions of the quantum logical operations, we can retrieve

the ‘ truth’ and ‘ falseness’ of the various possibilities. Suppose that proposition a ∈ P
is true. This means that the state p of the quantum entity is such that whenever a under-
goes a ‘yes-no’ test α, the outcome ‘yes’ can be predicted with certainty (probability
equal to 1). As we know, such a ‘yes-no’ test in quantum mechanics is represented by
the self adjoint operator, the spectral decomposition of which is given by the orthog-
onal projections Pa and I − Pa, where I is the unit operator of the Hilbert space H.
From the formalism of quantum mechanics, it follows that proposition a ∈ P is true
iff the state p of the quantum entity is such that Pavp = vp, which is equivalent to
vp ∈ Ma.

2.1 The Implication

Let us now consider the quantum logical implication. Suppose we have two proposi-
tions a, b ∈ P such that a �→ b, and suppose that a is true. This means that the quantum
mechanical entity under consideration is such that for its state p we have vp ∈ Ma.
Since from equation 1 it follows that Ma ⊂ Mb, we have vp ∈ Mb. This shows that
also b is true. This in turn shows that the meaning of a �→ b is the following: ‘ if a is
true, then it follows that b is true’ . As a consequence, the quantum logical implication
behaves in the same way as the classical logical implication.
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2.2 The Conjunction

Let us consider the quantum logical conjunction. For two propositions a, b ∈ P we
consider a ∧ b to be true. This means that the state p of the quantum entity under
consideration is such that vp ∈ M(a ∧ b). From equation 2, it follows that this is
equivalent to vp ∈ Ma ∩ Mb, which is equivalent to vp ∈ Ma ‘ and’ vp ∈ Ma. This
again is equivalent to a is true ‘and’ b is true. Thus we have shown that a∧ b is true ⇔
a true ‘and’ b true. As a consequence, the quantum logical conjunction behaves in the
same way as the classical logical conjunction.

2.3 The Disjunction

Now we will consider the quantum logical disjunction. For two propositions a, b ∈ P ,
we consider a∨b. Let us find out when a∨b is true. We remark that Ma ⊂ cl(Ma∪Mb)
and Mb ⊂ cl(Ma ∪ Mb), which shows that a �→ a ∨ b and b �→ a ∨ b. This means
that if a ‘ or’ b is true it follows that a ∨ b is true. The inverse implication, however,
does not hold. Indeed, a ∨ b can be true without a ‘ or’ b being true. The reason is that
cl(Ma ∪ Mb) contains, in general, vectors that are not contained in Ma or Mb. If the
quantum entity is in a state p where vp is such a vector, then a ∨ b is true without a or
b being true. This shows that the disjunction in quantum logic cannot be interpreted as
the disjunction of classical logic.

2.4 The Negation

Although it is not the subject of this paper, we can easily see that the quantum logic
negation is also not the same as the classical logic negation. Indeed, consider a propo-
sition a ∈ P and suppose that ¬a is true. This means that the state p of the considered
quantum entity is such that vp ∈ M⊥

a . Since M⊥
a ∩ Ma = ∅ we have that vp /∈ Ma,

and hence a is not true. This means that if the quantum negation of a proposition is
true, then the classical negation of this proposition is true. However the inverse does
not hold. In other words, it is possible that the quantum entity is in a state such that a
is not true, without ¬a being true.

3 EPR-like Correlations and the Nonclassical Nature of
Disjunction

As we have shown in the foregoing section, the reason the quantum logical disjunction
does not behave classically is that, for two propositions a, b ∈ P , the quantum entity
can be in a state p, such that a ∨ b is true without a being true or b being true. For
such a state p we have that vp ∈ cl(Ma ∪ Mb), but vp /∈ Ma and vp /∈ Mb. We now
put forward the main result of this paper: the presence of EPR-like correlations is the
origin of the nonclassical nature of the quantum disjunction for the case of compatible
propositions.
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3.1 Compatible Propositions and Truth Tables

Let us now consider two propositions a, b ∈ P that are compatible, which means that
PaPb = PbPa. In this case, the two ‘yes-no’ experiments α and β that test a and b can
be performed together. The experiment that consists of testing the two propositions
together, which we denote α∧ β, has four possible outcomes (yes, yes), (yes, no), (no,
yes) and (no, no). In classical logic, the logical operations can be defined by means
of truth tables, and for compatible quantum propositions we can also introduce truth
tables. Considering the experiment α ∧ β we say that the conjunction a ∧ b is true iff
the state of the quantum entity is such that for the experiment α ∧ β we obtain with
certainty the outcome (yes, yes). Similarly, we say that the disjunction a ∨ b is true iff
the state of the quantum entity is such that for the experiment α ∧ β we obtain with
certainty one of the outcomes (yes, yes), (yes, no) or (no, yes).

3.2 Compatible Propositions and EPR-like Correlations

Suppose now that we are in a situation where EPR-type correlations exist in relation to
the two propositions a and b. This means that the state of the quantum entity is such
that the measurement α ∧ β always leads to the outcome (yes, no) or (no, yes). As a
consequence, a∨ b is true. But is is clear that neither a nor b are true in general, which
shows that a ‘ or’ b is not true. It is the possibility of such a correlated EPR state that
makes the quantum logical disjunction differ from the classical logical disjunction.

4 Construction of an EPR-like State for a Quantum
Entity

In this section we show that the EPR-like state can be constructed by means of the
superposition principle for any two compatible propositions.

Consider a, b ∈ P compatible propositions of a quantum entity described in a
Hilbert space H, such that Pa(1−Pb)(H) �= ∅ and (1−Pa)Pb(H) �= ∅. A self adjoint
operator that corresponds to the measurement of the experiment α ∧ β is given by:

H = λ1PaPb + λ2Pa(1 − Pb) + λ3(1 − Pa)Pb + λ4(1 − Pa)(1 − Pb) (5)

where λ1, λ2, λ3 and λ4 are real numbers. The values λ1, λ2, λ3 and λ4 correspond re-
spectively to the outcomes (yes, yes), (yes, no), (no, yes) and (no, no) of the experiment
α∧β. Consider unit vectors x, y ∈ H such that Pa(1−Pb)x = x and (1−Pa)Pby = y.

We have
PaPbx = (1 − Pa)Pbx = (1 − Pa)(1 − Pb)x = 0 (6)

PaPby = Pa(1 − Pb)y = (1 − Pa)(1 − Pb)y = 0 (7)

Let us indicate how these equalities are derived. For example PaPbx = PaPbPa(1 −
Pb)x = PaPb(1−Pb)x = 0. The other equalities are derived in an analogous way. Let
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us consider a state p of the quantum entity such that

vp =
1√
2
(x + y) (8)

We have
PaPbvp = (1 − Pa)(1 − Pb)vp = 0 (9)

Pa(1 − Pb)vp =
1√
2
x (10)

(1 − Pa)Pbvp =
1√
2
y (11)

Using the quantum formalism and the just derived formulas we can calculate the prob-
abilities, if the quantum entity is in state vp, for a measurement α ∧ β to lead to the
different outcomes (yes, yes), (yes, no), (no, yes) and (no, no), let us denote them re-
spectively µ(α∧β, yes, yes), µ(α∧β, yes, no), µ(α∧β, no, yes) and µ(α∧β, no, no).
We have

µ(α ∧ β, yes, yes) =< PaPbvp, PaPbvp >= 0 (12)

µ(α ∧ β, yes, no) =< Pa(1 − Pb)vp, Pa(1 − Pb)vp >=
1
2

(13)

µ(α ∧ β, no, yes) =< (1 − Pa)Pbvp, (1 − Pa)Pbvp >=
1
2

(14)

µ(α ∧ β, no, no) =< (1 − Pa)(1 − Pb)vp, (1 − Pa)(1 − Pb)vp >= 0 (15)

This proves that for the quantum entity being in state p the experiment α∧ β gives rise
to EPR-like correlations for the propositions a and b. The possible outcomes are (yes,
no) or (no, yes).

5 The Quantum ‘Or’ in the Macroscopic World

Elsewhere in this volume, is a paper that shows that EPR-like correlations also exist
for macroscopic entities, depending on the state and propositions that are considered
(Aerts et al., 2000). The examples in that paper also shed light on the current subject,
so we touch on them again here briefly. For the ‘connected vessels of water’ example
we consider two propositions a and b. Proposition a is defined by the sentence: ‘ there
is more than 10 liters of water at the left’ , and proposition b by the sentence: ‘ there is
more than 10 liters of water at the right’ .

The measurement α tests proposition a by pouring out the water at the left with a
siphon, and collecting it in a reference vessel, and the measurement β does the same
at the right. If we test proposition a for the state of the connected vessels containing
20 liters of water, we find that α gives the outcome ‘yes’ with certainty, and also β
gives the outcome ‘yes’ with certainty. If we test the propositions separately, we pour
the whole 20 liters out at the left side as well as the right. At first sight this seems to
suggest that both propositions are true at once and hence that a ∧ b is true. But after
getting a better look we see that this is an error. Indeed, obviously when we pour out

5



the water at the left it influences what happens to the water at the right. More concretely
the water at right is also poured out, and hence helps to result in there being more than
10 liters at the left. Indeed, we also know that there cannot be more than 10 liters of
water to left and more than 10 liters of water to the right, because the total must equal
20. Our error was to believe that we can test propositions separately in this situation.
So let us correct this error by introducing the measurement α ∧ β that tests the two
propositions together, by pouring out the water at both sides at once. The result is then
that if we have more than 10 liters at the left, we have less than 10 liters at the right,
and if we have more than 10 liters at the right, we have less than 10 liters at the left.
This means that a ∧ b is certainly not true. On the contrary, each time we find a to be
true, b turns out not to be true, and vice versa. However, a ∨ b is still true, since for
α ∧ β we always have one of the outcomes (yes, no) ‘or’ (no, yes). Would this then
mean that a ‘ or’ b is true, or equivalently a is true ‘or’ b is true? Definitely not.

Indeed if a is true ‘or’ b is true, the measurement α ∧ β should give with certainty
(yes, yes) or (yes, no), in which case a is true, ‘or’ it should give with certainty (yes,
yes) or (no, yes), in which case b is true. The real situation is more subtle. The con-
nected vessels of water potentially contain ‘more than 10 liters of water to the left’ ‘ or’
‘more than 10 liters of water to the right’ , but this potentiality is not made actual before
the measurement α ∧ β is finished. This is expressed by stating that proposition a ∨ b
is true. It also shows that a ∨ b is not equivalent to a ‘ or’ b as a proposition. It is the
possibility of the potential state of the connected vessels of water that makes the ‘or’
proposition nonclassical.

Let us now turn to the example from cognitive science treated in Aerts et al. 2000.
We could restate the insight of the foregoing paragraph for the case of concepts in the
mind as follows. We introduce the set of propositions {an}, where an is the proposi-
tion ‘ the mind thinks of instance n’ , where each n is an instance of the concept ‘cat’ .
Suppose that the state of the mind is such that it thinks of the concept ‘cat’ . Just as
with the vessels of water, we can say that one of the propositions an is true, but only
potentially. This is again expressed by the proposition a1 ∨ a2 ∨ ... ∨ ai ∨ ... ∨ an not
being equivalent to the proposition a1 ‘ or’ a2 ‘ or’ ... ‘ or’ ai ‘ or’ ... ‘ or’ an. Thus we
cannot describe a concept as simply a set of instances. It differs from the instances in
the same way the connected vessels containing 20 liters of water is different from the
set of all separated vessels with water summming to 20 liters. This difference is identi-
cal to the well known difference between the electron as described by modern quantum
mechanics, and the model that was proposed for the electron in the old quantum theory
(before 1926) of a ‘cloud’ of charged particles inside the atom.

We are currently analyzing how this approach to concepts can shed light on well
known problems in cognitive science such as the ‘pet fish problem’ . Experimental
research shows that ‘guppy’ is not a good example of the concept ‘pet’ , nor is it a
good example of the concept ‘fi sh’ , but it is indeed a good example of the concept ‘pet
fish’ (Osherson and Smith, 1981). Prelimenary investigation indicates that many of the
problems that arise with other formal approaches to conceptual dynamics (see Rosch
2000 for a summary) can be resolved using a quantum mechanical approach.
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6 Conclusion

We have shown how the quantum logical ‘or’ and its nonequivalence with the classical
logical ‘or’ can be understood from a physical perspective. The origin of the quantum
logical ‘or’ and its difference with the classical logical ‘or’ , is the presence of ‘potential
correlations’ of the EPR-type.

This type of potentiality does not only appear in the microworld, where it is abun-
dant, but also in the macroworld. Special attention has been given to application of this
insight to concepts in the mind.
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