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Abstract

This paper is about a special version of PDL, designed by Mar-
cus Kracht for reasoning about sibling ordered trees. It has four basic
programs corresponding to the child, parent, left- and right-sibling re-
lations in such trees. The original motivation for this language is rooted
in the field of model-theoretic syntax. Motivated by recent develop-
ments in the area of semistructured data, and, especially, in the field of
query languages for XML (eXtensible Markup Language) documents,
we revisit the language. This renewed interest comes with a special
focus on complexity and expressivity aspects of the language, aspects
that have so far largely been ignored. We survey and derive complex-
ity results, and spend most of the paper on the most important open
question concerning the language: what is its expressive power? We
approach this question from two angles: Which first order properties
can be expressed? And which second order properties? While we are
still some way from definitive answers to these questions, we discuss
two first order fragments of the PDL language for ordered trees, and
show how the language can be used to express some typical (second
order) problems, like the boolean circuit and the frontier problem.

1 Introduction

The purpose of this paper is to revive interest in a version of PDL proposed
by Marcus Kracht [18, 19]. This version, here called PDLtree, is specially
designed for models which are sibling ordered trees. Such models are of
interest in at least two research communities: linguistics, in particular the
field of model-theoretic syntax, and computer science, in particular those
working with the world wide web, semi structured data and XML (eXtensible
Markup Language).

Model-theoretic syntax is an uncompromisingly declarative approach to
natural language syntax: grammatical theories are logical theories, and
grammatical structures are their models. These models consists of parse
trees, i.e., node labelled, sibling ordered finite trees. Perhaps the best known
work in this tradition is that of James Rogers (for example [27]) in which
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grammatical theories are stated in monadic second-order logic. However
other authors (in particular [4, 18, 19, 25]) use various kinds of modal logic
(in essence, variable free formalisms for describing relational structures) to
specify grammatical constraints. Palm [25] contains some interesting lin-
guistic examples and is a good introduction to (and motivation for) this
approach.

The World Wide Web is a freely evolving, ever-changing collection of
data with flexible structure. The Web’s nature escapes the conventional
database scenario of manipulating data: data on the Web simply do not
comply with the strict schemas used for conventional databases. Web data
such as home pages, news sites, pages on commercial sites, usually enjoy
some amount of structure, but that is not strictly enforced, and there are no
uniformly adopted standards, not even for simple bits of information such
as addresses. Hence, data on the Web is essentially semi-structured [1]. In
search for suitable models for semi-structured data, the World Wide Web
Consortium proposed the eXtensible Markup Language (XML) [6]. XML
is a standard for textual representation of semi-structured data and was
designed to describe any type of textual information. It looks like a flexible
variant of HTML, allowing for the mark-up of data with information about
its content rather than its presentation. The logical abstraction of an XML
document (the so called DOM) is a finite node labelled ordered tree.

Motivated by the renewed need for clean, well-understood declarative
tree description formalisms brought about by the developments in semistruc-
tured data outlined above, we want to revive interest in the special variant
of PDL developed for sibling ordered trees. We focus on complexity and
expressivity aspects of the language. Section 2 introduces the language.
Section 3 discusses complexity, and in Section 4 and Section 5 we address
expressivity issues. Section 4 is devoted to the expressiveness of the lan-
guage in terms of first order properties; we discuss the first order fragment
of PDLtree, recall some known results, and show the language in action by
expressing the until modality over the document order relation.

Several proposals for languages that are complete for unary monadic sec-
ond order logic have been made, but none of these is as simple and easy to
learn as PDLtree. So the most pressing issue seems to be to determine the
exact expressive power of PDLtree compared to unary monadic second order
logic. This remains an open problem, but to improve our understanding of
PDLtree’s expressive power, we adopt a well-known strategy by examining
a number of ‘typical’ second order problems and properties. Specifically,
in Section 5 we show how we can express the boolean circuit and the fron-
tier problem, and we discuss infinity axioms. These examples suggest that
PDLtree is expressive enough to encode natural hard second order problems.
Boolean circuits is one of the main problems used to show that a logic is
weaker than MSO. The frontier problem is a typical linguistical application.
Being able to express finiteness shows a certain robustness of the language.
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We conclude in Section 6.

2 PDL for ordered trees

We recall the definition of PDLtree from [18, 19]. PDLtree is a propositional
modal language identical to Propositional Dynamic Logic (PDL) [16] over
four basic programs left, right, up and down, which explore the left-sister,
right-sister, mother-of and daughter-of relations. Recall that PDL has two
sorts of expressions: programs and propositions. We suppose we have fixed
a non-empty, finite or countably infinite, set of atomic symbols A whose
elements are typically denoted by p. PDLtree’s syntax is as follows, writing
π for programs and φ for propositions:

π ::= left | right | up | down | π;π | π ∪ π | π∗ | ?φ
φ ::= p | > | ¬φ | φ ∧ φ | 〈π〉φ.

We sometimes write PDLtree(A) to emphasize the dependence on A. We
employ the usual boolean abbreviations and use [[π]]φ for ¬〈π〉¬φ.

We interpret PDLtree(A) on finite ordered trees whose nodes are labeled
with symbols drawn from A. We assume that the reader is familiar with
finite trees and such concepts as ‘daughter-of’, ‘mother-of’, ‘sister-of’, ‘root-
node’, ‘terminal-node’, and so on. If a node has no sister to its immediate
right we call it a last node, and if it has no sister to its immediate left we call
it a first node. Note that the root node is both first and last. The root node
will always be called root. A labelling of a finite tree associates a subset of
A with each tree node.

Formally, we present finite ordered trees1 (tree for short) as tuples T =
(T,Rright, Rdown). Here T is the set of tree nodes and Rright and Rdown are
the right-sister and daughter-of relations respectively. A pair M = (T, V ),
where T is a finite tree and V : A −→ Pow(T ), is called a model , and we
say that V is a labelling function or a valuation. Given a model M, we
simultaneously define a set of relations on T × T and the interpretation of
the language PDLtree(A) on M:

Rup = R−1
down Rπ∪π′ = Rπ ∪Rπ′

Rleft = R−1
right Rπ;π′ = Rπ ◦Rπ′

Rπ∗ = R∗
π R?φ = {(t, t) | M, t |= φ}.

1A sibling ordered tree is a structure isomorphic to (N, R↓, R→) where N is a set
of finite sequences of natural numbers closed under taking initial segments, and for any
sequence s, if s · k ∈ N , then either k = 0 or s · k − 1 ∈ N . For n, n′ ∈ N , nR↓n

′ holds iff
n′ = n · k for k a natural number; nR→n′ holds iff n = s · k and n′ = s · k + 1.
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M, t |= p iff t ∈ V (p), for all p ∈ A
M, t |= > iff t ∈ T

M, t |= ¬φ iff M, t 6|= φ

M, t |= φ ∧ ψ iff M, t |= φ and M, t |= ψ

M, t |= 〈π〉φ iff ∃t′ (tRπt
′ and M, t′ |= φ).

If M, t |= φ, then we say φ is satisfied in M at t. For any formula φ, if there
is a model M such that M, root |= φ, then we say that φ is satisfiable. For
Γ a set of formulas, and φ a formula, we say that φ is a consequence of Γ
(denoted by Γ |= φ) if for every model in which Γ is satisfied at every node,
φ is also satisfied at every node.

Note that we could have defined PDLtree by taking down and right as
the sole primitive programs and closing the set of programs under converses.
As converse commutes with all program operators, these two definitions are
equally expressive.

Let’s consider some examples: if universally true, (1) says that every a
node has a b and a c daughter, in that order, and no other daughters; and
(2) says that every a node has a b first daughter followed by some number
of c daughters, and no other daughters.

a → 〈down〉(¬〈left〉> ∧ b ∧ 〈right〉(c ∧ ¬〈right〉>)) (1)
a → 〈down〉(¬〈left〉> ∧ b ∧ 〈(right; ?c)∗〉¬〈right〉>). (2)

Now consider (3). This projects a label p down to some leaf node:

〈(?p; down)∗〉(p ∧ ¬〈down〉>) (3)

That is, whenever this formula is satisfied in some model at some point
t, there will be a path from t to some leaf node l such that every node
on the path is marked p. We end the short examples with a list of useful
abbreviations:

abbreviation of

root ¬〈up〉>
leaf ¬〈down〉>
first ¬〈left〉>
last ¬〈right〉>
π+ π;π∗.

3 Complexity

We now look at the complexity of the PDLtree consequence problem: how
difficult is it to decide whether, on finite ordered trees, Γ |= χ, for finite Γ.

4



Decidability of this problem follows from the interpretation of PDLtree into
L2

K,P [27]. (The decidability of the satisfiability problem for L2
K,P follows, in

turn, via an interpretation into Rabin’s SωS.) But although this reduction
yields decidability, it only gives us a non-elementary decision procedure. So
what is the complexity of the consequence problem?

Recall that exptime is the class of all problems solvable in exponential
time. A problem is solvable in exponential time if there is a deterministic
exponentially time bounded Turing machine that solves it. A deterministic
Turing machine is exponentially time bounded if there is a polynomial p(n)
such that the machine always halts after at most 2p(n) steps, where n is
the length of the input. To prove exptime-completeness we have to do two
things: prove an exptime lower bound (that is, show that some problem
instances require exponential time) and an exptime upper bound (that is,
give an algorithm that handles any problem instance in exponential time).
Let’s first deal with the lower bound.

Theorem 3.1 ([12, 28]). The consequence problem for the PDLtree frag-
ment with only down is exptime-hard.

Proof. This is an immediate corollary of the analysis of the lower bound
result for PDL given by [28], based on the work of [12]. She notes that
the following fragment of PDL is exptime-hard: formulas of the form ψ ∧
[a∗]θ (where ψ and θ contain only the atomic program a and no embedded
modalities) that are satisfiable at the root of a finite binary tree. Identifying
the program a with ↓, the result follows (because [[down∗]]θ ∧ ψ is satisfiable
at the root of a finite tree iff θ 6|= root → ¬ψ). a

For full PDL this bound is optimal. There is even a stronger result: every
satisfiable PDL formula φ can be satisfied on a model with size exponential
in the length of φ. However with tree-based models there is no hope for such
a result for it is easy to show that:

For every natural number n, there exists a satisfiable formula of
size O(n2) in the language with only ↓ and ↓∗ which can only be
satisfied on at least binary branching trees of depth at least 2n.

A formula containing most of the requirements to force such a deep branch
is given in Proposition 6.51 of [2]. To this formula we only have to add
the conjunct [[down∗]](〈↓〉p∧〈↓〉¬p) for some new variable p to enforce binary
branching. Note that the size of such a model is double exponential in the
size of the formula. This means that a decision algorithm which tries to
construct a tree model must use at least exponential space, as it will need
to keep a whole branch in memory.

So we’re going to have to think more carefully about the upper bound.
One way to precede is to take a cue from the completeness proof for a
related language in [4]. Instead of constructing a model it is possible to
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design an algorithm which searches for a “good” set of labellings of the
nodes of a model. Label sets consist of subformulas of the formula φ whose
satisfiability is to be decided. From a good set of labels we can construct a
labeled tree model which satisfies φ. The number of labels is bound by an
exponential in the number of subformulas of φ, and the search for a good set
of labels among the possible ones can be implemented in time polynomial in
the number of possible labels using the technique of elimination of Hintikka
sets developed in [26]. A direct proof using this technique was given in [3]
for the language Lcp (see Section 4). Unfortunately, the technique cannot
be straightforwardly applied to PDLtree. Here we show how an old result of
Vardi and Wolper [29] on deterministic PDL with converse yields the desired
upper bound.

Theorem 3.2. The PDLtree consequence problem is in exptime.

Proof. First note that γ1, . . . , γn |= χ if and only if |= root → ([[down∗]](γ1 ∧
. . . ∧ γn) → χ). Thus we need only decide satisfiability of PDLtree formulas
at the root of finite trees.

Now consider the language L2, the modal language with only the two
programs {↓1, ↓2} and their inverses {↑1, ↑2}. L2 is interpreted on finite at
most binary-branching trees, with ↓1 and ↓2 interpreted by the first and
second daughter relation, respectively. We will effectively reduce PDLtree

satisfiability to L2 satisfiability. L2 is a fragment of deterministic PDL with
converse. [29] shows that the satisfiability problem for this latter language
is decidable in exptime over the class of all models. This is done by con-
structing for each formula φ a tree automaton Aφ which accepts exactly all
tree models in which φ is satisfied. Thus deciding satisfiability of φ reduces
to checking emptiness of Aφ. The last check can be done in time polynomial
in the size of Aφ. As the size of Aφ is exponential in the length of φ, this
yields the exponential time decision procedure.

But we want satisfiability on finite trees. This is easy to cope with in
an automata-theoretic framework: construct an automaton Afin tree , which
accepts only finite binary trees, and check emptiness of Aφ ∩ Afin tree . The
size of Afin tree does not depend on φ, so this problem is still in exptime.

The reduction from PDLtree to L2 formulas is very simple: replace the
PDLtree programs down, up, right, left by the L2 programs

↓1; ↓∗2, ↑∗2; ↑1, ↓2, ↑2,

respectively. It is straightforward to prove that this reduction preserves sat-
isfiability, following the reduction from SωS to S2S as explained in [30]: an
PDLtree model (T,Rright, Rdown, V ) is turned into an L2 model (T,R1, R2, V )
by defining

R1 = {(x, y) | xRdowny and y is the first daughter of x}
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and R2 = Rright. Turn an L2 model (T,R1, R2, V ) into an PDLtree model
(T,Rright, Rdown, V ) by defining Rright = R2 and Rdown = R1 ◦R∗

2. a

4 Expressivity 1: First Order Logic

Let LFO denote the first-order language over the signature with binary pred-
icates {Rdown+ , Rright+} and countably many unary predicates. LFO is in-
terpreted on ordered trees in the obvious way: Rdown+ is interpreted by the
transitive closure of the daughter relation, and Rleft+ is interpreted by the
transitive closure of the left-sister relation. Note that the language is first
order, even though we interpret the two primitive relations as second or-
der relations over a more primitive relation. This is not strange, but just
another perspective: we take descendant as primitive instead of the imme-
diate daughter relation. Of course the latter is first order definable from the
descendant relation.

Two other modal languages proposed in the model-theoretic syntax lit-
erature can be considered as first order fragments of PDLtree. That is, they
can be considered as versions of PDLtree with a more limited repertoire of
programs. Palm [25] even argues that for linguistic applications one must
restrict the language to its first order fragment. As first order logic is a
natural point of reference for the expressivity of languages it is useful to
consider first order fragments of PDLtree. We consider two, one predating
and one postdating the introduction of PDLtree.

The language proposed by Blackburn, Meyer-Viol and de Rijke [5], here
called LCore , contains only the core machinery for describing trees: the four
basic programs plus their transitive closures, denoted by a superscript (·)+.
This language is precisely as expressive as the fragment of PDLtree generated
by the following programs:

π ::= left | right | up | down | π∗,

or equivalently by

π ::= left | right | up | down | π;π | π ∪ π | ?φ |
a∗, for a one of the four atomic programs.

The language proposed by Palm [25], here called Lcp (with cp abbreviating
conditional path), lies between LCore and PDLtree with respect to expressive
power. It can be thought of as the fragment of PDLtree generated by the
following programs:

π ::= left | right | up | down | π; ?φ | π∗,

or equivalently by

π ::= left | right | up | down | π;π | π ∪ π | ?φ |
(a; ?φ)∗, for a one of the four atomic programs.
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Note that (a; ?φ)+ and (?φ; a)∗ are definable, and we will use these as ab-
breviations below. Both languages are easily seen to be fragments of LFO,
the first order language for ordered trees. In fact we know exactly which
fragments:

Theorem 4.1 ([20]). The following are equivalent on ordered trees. For
N a set of nodes:

• N is definable by an Lcp formula;

• N is definable by an LFO formula in one free variable.

Theorem 4.2 ([21]). The following are equivalent on ordered trees. For
N a set of nodes:

• N is definable by an LCore formula;

• N is definable by an LFO formula in one free variable which

1. contains at most two (free and bound) variables (possibly reused),
and

2. which may use additional atomic relations corresponding to the
right-sister and daughter-of relation.

The first theorem can be seen as a generalization of Kamp’s Theorem
[17] to ordered trees. The theorem was announnced in [24], but the proof is
hard to follow. [20] contains a proof based on Gabbay’s notion of separation
[13]. The second theorem is also a generalization of a result for temporal
logic on linear structures, this time due to Etessami, Vardi and Wilke [11].

We end this section by giving some insight in the expressive power of
Lcp. First note that the temporal until(φ, ψ) modality can be expressed, in
all four directions. For the downward direction, until(φ, ψ) is expressed as

〈(down; ?ψ)∗〉〈down〉φ.

Indeed, this formula is true at a node n if and only if there exists a desendent
n′ of n at which φ is true and at all nodes strictly in between ψ is true.

In the context of XML documents, the order in which the nodes are
written is an important relation, called document order. Figure 1 contains
an example of an XML file, its corresponding tree model (called the DOM)
and the ordening. The document order relation � is defined as

�≡ down+ ∪ up∗; right+; down∗.

On finite trees it makes sense to speak about the successor relation of the
document order. The simple definition is � ∩� ◦ �. It can be defined also
with the Lcp programs as

down; ?first ∪ ?leaf; right ∪ (?last; up)+; right. (4)
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<AA1>
<BB2>

<CC/3>
<CC/4>

</BB>
<DD5>

<EE/6>
<FF/7>

</DD>
<GG8>

<HH/9>
<JJ/10>

</GG>
</AA>

AA1

���
����

HHH
HHHH

BB2
�� HH

CC3 CC4

DD5
�� HH

EE6 FF7

GG8
�� HH

HH9 JJ10

Figure 1: XML document and its DOM.

Now we show how to define the relation

x� y ∧ φ(y) ∧ ∀z(x� z � y → φ(z)), (5)

from the Lcp programs. Having this it is easy to express the “until in
document-order” modality: until�(ψ, φ) holds at x iff ∃yz((5)∧y down; ?ψ z).
Note that Theorem 4.1 ensures that this set is Lcp definable, but not that
the relation (5) is definable from the Lcp programs.

We must use the definition of Lcp programs containing union and compo-
sition. The definition is a case distinction based on the definition of x� y:

1. xdown+y

2. xup+; right+; down+y

3. xup+; right+y

4. xright+; down+y

5. xright+y.

We only show the easiest (first) and the hardest (second) case. The others
are variations of these. For the first case we want to express that

x down+y ∧ φ(y) ∧ ∀z(x� z � y → φ(z)).

We explain our formulas by examples. Suppose x is node 1 and y is node 7
in Figure 1. Then φ must hold at nodes 2–7. This holds just in case

x (down; ?φ ∧ [[left+]][[down∗]]φ)+ y (6)
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holds.
For the second case we want to express that

x up+; right+; down+y ∧ φ(y) ∧ ∀z(x� z � y → φ(z)). (7)

This holds exactly when x and y are related by

?[[down+]]φ ; (8)
(?[[right+]][[down∗]]φ; up)+ ; (9)

(right; ?[[down∗]]φ)∗ ; (10)
right?φ ; (11)

(down; ?φ ∧ [[left+]][[down∗]]φ)+. (12)

This formula is best explained using a more elaborate tree, as in Figure 2.
Suppose nodes C and R stand in the relation (7). Then (8) ensures that
{A,B} makes φ true; the test [[right+]][[down∗]]φ in (9) will be evaluated at
nodes C and G, thereby ensuring that φ holds in {F,D,E} and {J,H, I},
respectively. The test [[down∗]]φ in (10) will be evaluated at all nodes strictly
in between K and U , so here taking care that φ holds at {N,L,M}. (11)
ensures that φ is true at U . Now (12) is just the formula (6) from the first
case, ensuring that φ holds at {Q,O, P, T,R}.

V

���
����

HHH
HHHH

K

�
��

H
HH

G
�

��
H

HH

C

A B

F

D E

J

H I

N
��HH
L M

U
�� HH

Q

O P

T

R S

Figure 2: Example tree for the second case.

5 Expressivity 2: Second Order Properties

In this section we look at three concrete examples of non-trivial second
order properties of trees that are expressible in PDLtree; first though, some
background. The language PDLtree can express properties beyond the reach
of LFO. For example, PDLtree can express the property of having an odd
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number of daughters:

〈down〉(first ∧ 〈(right; right)∗〉last). (13)

Note that the second conjunct 〈(right; right)∗〉last says that by chaining
together a succession of double right steps we can reach the rightmost
daughter node — which means that there must be an odd number of daugh-
ter nodes. This is not a property that any LFO formula can express.

On the other hand, PDLtree is contained in L2
K,P , Rogers monadic second-

order logic of variably branching trees [27]. L2
K,P just extends LFO by

quantification over unary predicates. The translation of PDLtree formulas
into L2

K,P is straightforward. Note, in particular, that we can use second-
order quantification to define the transitive closure of a relation: for R any
binary relation, xR∗y holds iff

x = y ∨ ∀X(X(x) ∧ ∀z, z′(X(z) ∧ zRz′ → X(z′)) → X(y)).

This brings us to the most important open problem concerning PDLtree:

Open Problem. Characterize the expressive power of PDLtree interpreted
on finite ordered trees in terms of a suitable fragment of monadic second
order logic.

Within the context of query languages for XML documents a number of
proposals for second order languages have been made. The goal then is to
express unary MSO, MSO formulas denoting a set of nodes. We mention
monadic datalog of [14] and the efficient tree logic of [22], which are both as
expressive as unary MSO.

Neven and Schwentick [22] argue that unary MSO rather than LFO is the
gold standard for a language designed for specifying nodes in finite ordered
trees. Their most convincing example is a variant of the Boolean circuit
problem. In order to obtain a better understanding of the second order
expressivity of PDLtree, we encode a number of second order properties in
PDLtree. In addition to the Boolean circuit problem just mentioned, we
encode the frontier problem and we show that finiteness of ordered trees can
be expressed in PDLtree. The frontier problem is a typical linguistic problem.
Expressing finiteness within a large class of tree like structures shows the
robustness of the language. We look at the upshot of these examples at the
end of this section. We start with the frontier problem.

5.1 The frontier problem

The frontier of a tree is the set of leaves ordered from left to right. In a parse
tree of a natural language sentence, the frontier is exactly that sentence.
Usually the frontier is where the actual data contained in a tree is located.
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Given a condition φ on the frontier, we want to write an PDLtree expres-
sion which is true at the root of a tree iff the frontier of the tree satisfies
φ. For instance, φ could be a regular expression over variables, like (p; q)∗.
The most natural application is when we know that each leaf node makes
exactly one variable true. Then a tree satisfies φ if and only if the frontier
is a word in (p; q)∗. But nothing forbids us to use arbitrary complex PDLtree

formulas in place of p and q. E.g., 〈up∗〉np states that the first word of the
parsed sentence (the first leaf of the frontier) is part of a noun-phrase (an
np). Thus we do not view the frontier as a unique string, but as an infinite
collection of strings, made up from formulas which are true at the respective
nodes. Now let r be a regular expression in which arbitrary PDLtree formulas
are the letters. We say that a tree’s frontier l1 . . . , ln satisfies r iff there are
PDLtree formulas φi such that for all i, li |= φi and the string φ1, . . . , φn is
a word in r.

What we need for expressing the frontier condition is the successor re-
lation between frontier nodes. This is naturally defined using the so called
document order relation, abbreviated by �. For x, y nodes in a tree, we
define

x� y ⇐⇒ xR(down+ ∪ up∗;right+;down∗)y.

Figure 1 on page 9 exemplifies the document order, the numbers of the nodes
correspond to their document ordering. The XML representation of the tree
motivates the name of the ordering.

A frontier node y is the successor of a frontier node x if and only if
x� y and there is no leaf node in between x and y in the document order.
An intuitive definition of the next frontier node relation between leaves can
now be given as:

?leaf; right; ?leaf ∪ ?leaf; (?last; up)+; right; (down; ?first)∗; ?leaf. (14)

Because we evaluate the PDLtree formula at the root, we should add the step
from the root to the first leaf to (14). So define the next frontier node
relation as

?root; (down; ?first)∗; ?leaf ∪ (14).

Let last frontier node be an abbreviation of leaf ∧ 〈(?last; up)∗〉root, which
indeed is true exactly at the last frontier node (or simply at the root, if the
model only has a root).

Now let r be a regular expression over a set of PDLtree formulas. Then
for any tree T , T ’s frontier satisfies r if and only if the root of T satis-
fies 〈r◦〉last frontier node, where r◦ is r with ; placed between all PDLtree

formulas which act as letters in r and any such formula φ is replaced by
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next frontier node; ?φ. For instance, the frontier is in (ab)∗ iff the root
satisfies

〈(next frontier node; ?a; next frontier node; ?b)∗〉last frontier node.

Note that the formula is true on a tree containing only a root; thus it
correctly recognizes the empty string.

5.2 The boolean circuit problem

We show how the boolean circuit problem can be expressed in PDLtree. Our
PDLtree formula is based on the same idea as in [23]: use a depth first
traversal of the tree. We start with defining the boolean circuit problem.

Definition 5.1 (Boolean circuits). Boolean circuits are finite {1, 0,C,D}–
labeled ordered binary trees such that

1. each leaf is labeled with exactly one of {1, 0} and

2. each non–leaf is labeled with exactly one of {C,D}.

If B is a boolean circuit and b ∈ B then with Bb we denote the subtree
of B rooted at b. With Bb we denote then tree which we obtain by removing
everything below b. So in particular we have that b is a leaf of Bb.

The intended meaning of the labels is as one might expect: 1 means
‘true’, 0 means ‘false’, C means conjunction and D means disjunction. For
any boolean circuit B, define the boolean function eval from the domain
of B to {‘true’, ‘false’} in the expected way. For instance, as the Datalog
program:

eval(x) :- 1(x).
eval(x) :- D(x), Rdown(x,y), eval(y).
eval(x) :- C(x), Rdown(x,y), Rright(y,z), eval(y), eval(z).

Also for any b ∈ B let height(b) denote the length of the longest path starting
at, but not including, b to a leaf. So if b is a leaf, then height(b) = 0.

General idea. To check if a boolean circuit evaluates to true we look for
substructures that can be constructed as follows. We start at the root and
move down. At disjunctive nodes we select one child. At conjunctive nodes
we take both children. When we reach a leaf, it should be labeled with 1.
We check if such a substructure exists in a depth first fashion. So, we walk
down the tree, where at conjunctive nodes we always take the left route and
make sure (by selecting the correct child at disjunctive nodes) we end up in
a leaf labeled 1. We let the relation R0 denote such a path. That is, for all
x and y we have xR0y iff the following three cases apply.

1. ∃ k ≥ 1 t1, . . . , tk s.t. x = t1downt2down · · · downtk = y
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2. For all 1 ≤ i < k if ti 
 C, then ti+1 
 first

3. tk 
 1

Next we walk up again until we are at a left child of a conjunctive node.
We move right, to node br say, and repeat the procedure. When we return
at node br we realize that we are about to enter a conjunctive node from
the right and move further up until the next conjunctive node. With R1 we
denote this relation. So for all x and y we have xR1y iff the following two
cases apply.

1. ∃k ≥ 1 t1, . . . , tk s.t. x = t1upt2up · · · uptk = y

2. For all 1 ≤ i < k, ti 
 〈up〉C → last

When we reach the root of the boolean circuit the procedure stops. We
can express both relations R0 and R1 by regular expressions π0 and π1 as
follows. Let π0 be the regular expression which corresponds to R0. That is

π0 = ((?D; down) ∪ (?C; down; ?first))∗; ?1.

Let π1 be the regular expression corresponding to R1. That is

π1 = (?(〈up〉C → last) ∧ ¬root; up)∗.

Finally define

β = 〈π0;π1; (right;π0;π1)∗〉root.

Before we move on let us make a remark. On first sight one might think
that we need in the definition of R1 a third clause. Namely

3. tk 
 〈up〉C ∧ ¬last or tk 
 root.

And, consequently, in stead of π1 we should have

π1; ?(〈up〉C ∧ ¬last) ∨ root.

This is not necessary. With the current definition of R1 we allow for a check
(but do not consider it necessary) that the second child of a disjunctive node
is true when we already know that the first child is. This is just as harmless
as it is useless. Nevertheless the proof below (in particular Lemma 5.5) does
not work without this omission.

Theorem 5.2. β is forced at the root r of a boolean circuit iff. eval(r) is
true.

Lemma 5.3. Let B be a boolean circuit. For all nodes b ∈ B we have the
following.
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1. b 
 β ∧ C → [[down]]β

2. b 
 β ∧D → 〈down〉β

Proof. First we show 1. Suppose b 
 β ∧C. Let bl be the left child of b and
br be the right child of b. It is easy to see that bl 
 β. To show that br 
 β
we need a lemma.

Lemma. For any x for which not x(up)∗bl (e.a. x 6∈ Bbl
) we have that if

bl(π0;π1; (right;π0;π1)∗)x then bl(right;π0;π1)∗x.

Proof. Choose x as stated. We show with induction on n that

if bl(π0;π1; (right;π0;π1)n)x then bl(right;π0;π1)∗x.

If n = 0 then for some t, blπ0tπ1x. Clearly t(up)∗bl and t(up)∗x. So, by
choice of x, bl(up)+x. But this is clearly in contradiction with the definition
of π1.

Now suppose bl(π0;π1; (right;π0;π1)n+1)x. Choose t such that

bl(π0;π1; (right;π0;π1)n)t and t(right;π0;π1)x.

We can assume that t(up)∗bl (otherwise we are done by (IH)). We also can as-
sume that t 6= bl and thus t(up)+bl. Fix some t′ for which t(right;π0)t′π1x.
By the above we obtain t′(up)+bl. Similar as in the case n = 0 this leads us
to a contradiction.

a

Now we continue with showing that br 
 β. Since bl 
 β we can find
some x1, x2, . . . such that

bl = x1(π0;π1)x2(right;π0;π1)x3 · · · (right;π0;π1)r.

Where r is the root of B. Let i be that smallest number such that not
xi(up)∗bl. Note that i > 2. So, by the above lemma and by choice of i, we
have bl(right;π0;π1)xi. So, br(π0;π1)xi and thus br 
 β. We have shown
1.

Item 2 is rather trivial. For if we suppose that b 
 β ∧D then it is easy
to verify, using the definition of π0, that b 
 〈down〉β.

a

Corollary 5.4. . Let B be a boolean circuit. For all nodes b ∈ B we have
that if b 
 β then eval(b) is true.

Proof. Induction on height(b). If height(b) = 0 then the claim is clear by
the definition of π0. So suppose height(b) > 0. There are two cases to
consider.

Case: b 
 C. By Lemma 5.3 we have b 
 [[down]]β. So, by (IH), we have
that for all children b′ of b that eval(b′) is true and thus eval(b) is true.
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Case: b 
 D. By Lemma 5.3 we have b 
 〈down〉β. So, by (IH), for some
child b′ of b we have eval(b′) is true and thus eval(b) is true.

a

Lemma 5.5. Let B be a boolean circuit. For all b ∈ B for which eval(b) is
true we have that b(π0;π1; (right;π0;π1)∗)b.

Proof. induction on height(b). If height(b) = 0 then this is clear. So suppose
height(b) > 0. There are two cases to consider.

Case: b 
 C. Then for both children bl and br of b we have eval(bl) is true
and eval(br) is true. By (IH), bl(π0;π1; (right;π0;π1)∗)bl and br(π0;π1; (right;π0;π1)∗)br.
So,

b(?C; down; ?first;π0;π1; (right;π0;π1)∗;
right;π0;π1; (right;π0;π1)∗; ?last; up)b.

Thus, as one can easily verify, we have

b(π0;π1; (right;π0;π1)∗)b.

Case: b 
 D. Then for at least one child bi of b we have eval(bi) is true.
So by (IH) we obtain bi(π0;π1; (right;π0;π1)∗)bi. Thus

b(?D; down; (π0;π1; (right;π0;π1)∗); ?¬〈up〉C; up)b.

Which implies b(π0;π1; (right;π0;π1)∗)b. a

Now we are ready to prove Theorem 5.2.

Proof of Theorem 5.2. (⇒) Immediate from Corollary 5.4. (⇐) Suppose
eval(r) is true. By Lemma 5.5 we have r(π0;π1; (right;π0;π1)∗)r. So in
particular r 
 〈π0;π1; (right;π0;π1)∗〉root, e.a. r 
 β. a

5.3 Expressing finiteness

In this subsection we let go the restriction to finite trees. Normally one
would define arbitrary trees as partially ordered sets (W,<) with a unique
root and such that for each w ∈W the set {v | v < w} is well–ordered by <.
The height of a node w is then defined as the ordertype of {v | v < w} and
we say that a tree is of height ω when the height of each node is finite. We
can do a little bit better. Below we define first order definable structures
such that the part that PDLtree can see is a tree of height ω.

Fist, for a binary relation R we say that y is a direct successor of x
when xRy and for no z we have xRzRy. We define direct predecessor in
a similar way. We say that R is discrete when for any xRy such that y is
not a direct successor of x, there exists some direct successor z of x with
xRzRy. Notice that discrete relations are always irreflexive. We say that a
structure 〈T,Rdown+ , Rright+〉 (Note that in this context, Rdown+ and right+

are primitive relation symbols themselves.) is tree–like when
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1. Rdown+ is a discrete and partial order on T with a unique root,

2. each t ∈ T has at most one direct Rdown+–predecessor,

3. Rright+ is discrete and linearly orders the direct successors of any
t ∈ T , in particular if xRright+y then x and y have the same direct
Rdown+–predecessor.

Clearly this class of structures is first order definable within the class
of Kripke frames with two accessibility relations and any tree is a tree–like
structure. We define the relations Rdown, Rright and all the other relations
Rπ that may occur within PDLtree–modalities as above in Section 2. But
please note that although we do have R+

down ⊆ Rdown+ , R+
right ⊆ Rright+ , in

general these inclusions will be proper. If T = 〈T,Rdown+ , Rright+〉 is a tree–
like structure with root r, then we write Tr for the structure 〈r〉〈T,Rdown,Rright〉,
the substructure of 〈T,R+

down, R
+
right〉 generated by r using the defined rela-

tions Rdown and Rright, in the usual modal logic sense. Of course for any
PDLtree formula φ we have that T , r 
 φ iff. Tr, r 
 φ. So without danger of
confusion we can write r 
 φ.

As a sort of corollary to the proof of the definability of boolean circuits
we will show here that PDLtree can define finiteness of tree–like structures.

Theorem 5.6. There exists a PDLtree–formula Fin such that for any tree–
like structure T with root r we have T , r 
 Fin iff. T is finite.

Proof. Let δ and γ be as defined in (15) and (16) below and let Fin be δ∧γ.
The proof proceeds in stages. In Lemma 5.7 we show that it is sufficent to
show that Tr, r 
 Fin iff. Tr is finite. This latter task is performed in the
Lemmata 5.8, 5.9 and 5.10 a

Lemma 5.7. For any tree–like structure T with root r, Tr is an ordered2

tree of height ω, and Tr is finite iff. T is finite.

Proof. The first assertion is a direct consequence of the definition of tree–
like structures. The second assertion follows from the fact that if x is a leaf
in Tr then by discreteness there does not exist any Rdown+ descendant of x
in T . a

As a first approximation for finiteness put

δ = [[down∗]](〈left∗〉first ∧ 〈right∗〉last). (15)

Lemma 5.8. For any tree–like structure T with root r we have that Tr, r 
 δ
iff. Tr is finitely branching.

2In case the tree is infinitely branching the sibling order Rright might be non–total, but
no matter, see Lemma 5.8.

17



Proof. The left to right direction holds since if t ∈ Tr has infinitely many
children then by discreteness we can find an infinite, to the left or to the
right, Rright–chain. The converse is obvious. a

So in order to define the class of finite tree–like structures it is enough
to define the class of finite trees as a subclass from the class of ordered trees
of height ω which are finitely branching. To this end put

π0 = (down; ?first)∗; ?leaf,
π1 = (?last; up)∗

and

γ = 〈π0;π1; (right;π0;π1)∗〉root. (16)

Before we move on let us introduce some terminology. A branch b in a
finitely branching tree T of height ω is a sequence

r = x1(down)x2(down) · · · (down)xn(down) · · ·

where r is the root of T and either b is infinite and in this case is (down)
closed, or its last element is a leaf. If b and b′ are branches then we say that
b is to the left of b′ whenever if i is the smallest i such that bi 6= b′i then
bi(right)+b′i. Clearly, since T is finitely branching, this gives us a linear
ordering on the branches of some fixed tree. For t ∈ T and b a branch of T
we write t < b if t 6∈ b and t occurs on some branch to the left of b. t ≤ b
means t < b or t ∈ b. Similar definitions hold for b < t, b ≤ t.

Lemma 5.9. Suppose T is finitely branching tree of height ω and t ∈ T . If
Tt is finite then t(π0;π1; (right;π0;π1)∗)t.

Proof. Induction on height(t). Similar to the proof of Lemma 5.5. a

Lemma 5.10. Suppose T is finitely branching tree of height ω with root r.
If T is infinite then not r(π0;π1; (right;π0;π1)∗)r.

Proof. Since T is infinite, finitely branching and of height ω, T must contain
an infinite branch. Let b be the leftmost infinite branch of T . Such a branch
can easily be constructed by starting from r and in each successive step select
the leftmost child of the previously selected node which roots an infinite
subtree. The following is obvious.

1. x ≤ b and x(π0)y imply y < b

2. x < b and x(π1)y imply y < b

3. x < b and x(right)y imply y ≤ b
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1 is clear, since π0 only walks to leftmost children. 2 is clear, since π1 only
walks from rightmost children. 3 is clear, by definition of the ordering on
branches.

Now let us assume that r(π0;π1; (right;π0;π1)∗)r. Then there exists
some sequence

r = a0(π0)a1(π1)a2(right)a3(π0)a4 · · · ak−2(π1)ak−1 = r.

By the above three points it follows, with induction on i, that

for all i < k, ai ≤ b. (17)

Since ak−3(π0)ak−2 we have that ak−2 must be a leaf, and since ak−2(π1)t
we also have that the branch in T ending in ak−2 only contains rightmost
nodes. But this implies that b, as the leftmost infinite branch of T , must
be on the left of the branch ending in ak−2. So in particular b ≤ ak−2. But
since ak−2 is a leaf we even have b < ak−2, in contradiction with (17). a

5.4 The upshot

What is the upshot of these examples? First and foremost they were in-
tended to show the language in action. To show that semantic reasoning is
naturally captured in PDLtree formulas, even when it comes to hard prob-
lems. Even though we provided rigorous correctness proofs, we feel that
once the semantic argument is understood, correctness of the PDLtree for-
malisation is almost self evident.

Although Boolean circuits looks like a canonical MSO problem it has
certain pecularities which we could exploit, in particular that one depth-
first traversal of the tree is sufficient to determine the truth of the formula.
The problem suggest a possible strengthening of the language: intersection
of programs with ?>. With this we can specify the set of all points t at
which eval(t) is true, and not just the root.

6 Conclusions

We hope that we convinced the reader that PDL is a very natural formalism
for reasoning about ordered trees. Of course we could do all we did in
monadic second order logic, but the absence of variables, and the restriction
of the program connectives to the regular expression operators has a number
of advantages. We mention three, which are all speculative and debatable.

Firstly, we believe that using intersection and complementation in creat-
ing relations is difficult, and gives rise to specifications whose down-to-earth
meaning is not immediately obvious. The regular expression operators stay
much closer to the semantics.
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Secondly, there is the difference in complexity. Consider the sublanguage
Lcp, which is equally expressive as first order logic LFO on ordered trees.
The satisfiability problem for LFO (and a fortiori for MSO) is hard for
non elementary time, while the equally expressive Lcp can be decided in
single exponential time. This is an enormous improvement of course, and
makes one think that Lcp is much better. On the other hand, LFO is non
elementary more succinct than Lcp, meaning that there are LFO formulas
whose smallest equivalent Lcp formula has size roughly a tower of 2’s whose
lenght is bounded by the quantifier depth of the first order formula. From
this perspective one could prefer LFO as a more user or programmer friendly
language. On the other hand, writing Lcp formulas seems more honest:
compare the first order characterization of until in document order versus the
Lcp characterization. The latter is close to programming a tree automaton,
and gives a plan how to check whether the formula is true on a specific tree.
The first order formula does not provide a clue how to evaluate it.

We also strongly believe that languages without variables are easier to
work with. Independent evidence for this comes from the W3C endorsed
language XPath 1.0 [7] whose navigational version [15] is almost as expressive
as LCore [21] and has virtually the same syntax, also without variables.
XPath 1.0 is language designed for selecting nodes from XML documents.
XPath plays a crucial role in other XML technologies such as XSLT [10],
XQuery [9] and XML schema constraints, e.g., [8].

Let us return to the main open problem of the paper. Several proposals
for unary MSO complete languages have been made, but none of these is
as simple and easy to learn as PDLtree. So the most pressing open problem
seems to be to determine the exact expressive power of PDLtree compared
to unary MSO and —assuming there is a difference— to determine whether
the extra expressivity given by unary MSO is useful in specific applications
as linguistics or the XML-world.
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