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Abstract

In this paper we introduce the concept of conservative translation between logics. We present
some necessary and su0cient conditions for a translation to be conservative and study some
general properties of logical systems, these properties being characterized by the existence of
conservative translations between the systems. We prove that the class constituted by logics and
conservative translations between them determines a co-complete subcategory of the bi-complete
category constituted by logics and translations. c© 2001 Elsevier Science B.V. All rights re-
served.

0. Introduction

A historical survey of the use of translations for the study of the inter-relations
between logical systems is presented in [6], where the di(erent approaches to the use
of the term “translation” are discussed.

Prawitz and Malmn=as [17] constitute the >rst known paper in the literature in which
a general de>nition for the term translation is introduced. But [22] and [5] are the
>rst works with a general systematical study on translations between logics, study-
ing inter-relations between propositional calculi by the analysis of their mutual trans-
lations.

Da Silva et al. [20] propose a more general de>nition of this concept. Logics are
characterized simply as pairs constituted by a set and a consequence operator, and
translations between logics are de>ned as maps that preserve consequence relations.
The authors show, among other basic results, that logics together with translations
form a bi-complete category of which topological spaces with topological continuous
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functions constitute a full subcategory, and study some connections between transla-
tions between logics and uniformly continuous functions between the spaces of their
theories.

The aim of this paper is to investigate an important subclass of translations, the con-
servative translations, which strongly preserve logical consequence and were introduced
in [6].

We begin with the basic concepts, properties and results on translations between
logics, introduced by da Silva et al. [20], necessary for the development of the work.

In Section 1 we also characterize some logical properties that may be preserved via
translations.

In Section 2 we introduce the concept of conservative translation. Before discussing
the historical translations of Kolmogoro(, Glivenko, G=odel and Gentzen, we analyse
the general de>nitions of translation between logics of Prawitz, W#ojcicki and Epstein,
in the terms of our de>nition of conservative translation.

In the following section we study necessary and su0cient conditions for a translation
to be conservative.

We then study some general properties of logical systems, which are characterized
by the existence of conservative translations between them.

In Section 5 we prove that the class constituted by logics and conservative transla-
tions between them determines a co-complete subcategory of the bi-complete category
constituted by logics and translations.

Finally, in the last section, we prove an important necessary and su0cient condi-
tion for the existence of a conservative translation between two logics, which was
fundamental to obtain several conservative translations we have studied.

This initial segment of a theory of conservative translations was developed with a
grant from the “Conselho Nacional de Pesquisas do Brasil” (CNPq) and also constitutes
part of the results of a more general research project on the subject Mathematical and
Computational Aspects of Translations between Logics, which was developed spon-
sored by the “FundaMcão de Amparo Oa Pesquisa do Estado de São Paulo” (FAPESP),
Brazil. This project is reported in [1].

1. Translations between logics

In this section we present the de>nitions of logic and translation between logics
introduced in [20] and also some basic results that allow us to characterize the structure
of the class constituted by logics and translations.

Logics are characterized, in the most general sense, as sets with consequence relation
and translations between logics as consequence relation preserving maps.

1.1. De�nition. A logic A is a pair (A; C) such that A is a set, called the domain or
the universe of A, and C is a consequence operator in A, that is, C :P(A)→P(A) is
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a function that satis>es, for X; Y ⊆A, the following conditions:
(i) X ⊆C(X );

(ii) If X ⊆Y , then C(X )⊆C(Y );
(iii) C(C(X ))⊆C(X ).

It is trivial that, for every X ⊆A; C(C(X )) =C(X ). Thus, a logic is a set A together
with an inRationary (i), increasing (ii) and idempotent (iii) operator on 2A.

In general, we identify a logic A with its domain A.
It’s clear that our de>nition does not take into consideration the so-called non-

monotonic logics.

1.2. De�nition. Given a logic (A; C), X ⊆A is a theory, or a closed set in A, if
C(X ) =X . And X is open if the complement of X is closed.

1.3. De�nition. A consequence operator C in A is :nitary if, for every X ⊆A, there
are Xi ⊆X; Xi >nite, for i∈ I , such that

C(X ) =
⋃

i∈I

C(Xi):

1.4. De�nition. Let C and C∗ be consequence operators in A. The operator C is
stronger than C∗, what is denoted by C∗¡C, if every closed set according to C
is also a closed set according to C∗. In this case we also say that C∗ is weaker
than C.

1.5. Proposition. Let C and C∗ be consequence operators in A. Then C is stronger
than C∗ if; and only if; C∗(X )⊆C(X ); for every X ⊆A.

Proof. If C∗¡C, then C∗(C(X )) =C(X ). As X ⊆C(X ), then C∗(X )⊆C∗(C(X ))
=C(X ).

On the other hand, if X is closed according to C, as C∗(X )⊆C(X ) =X , then
X =C∗(X ), that is, X is closed, according to C∗.

1.6. De�nition. Let A= (A; C) be a logic and X a set. Given a map F :A→X , we
de>ne the co-induced consequence operator by F and A in X; CX , in the following
way: given Y ⊆X; Y is a closed set in X if F−1(Y ) is a closed set in A. In these
conditions we say that the logic (X; CX ) is co-induced by F and A.

Dually, given G :Y → A we de>ne the consequence operator induced by G and A:
given Z ⊆Y; Z is closed in Y if Z =G−1(W ), with W a closed set in A.

Since closure is preserved by intersections and intersections by the inverse image of
maps, relative to a given consequence operator, De>nition 1.6 determines exactly one
co-induced and one induced consequence operator.
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1.7. Proposition. Let A be a logic; B a set; F :A→B a function and CB the conse-
quence operator co-induced by F and A in B. Then CB is the weakest consequence
operator that makes F a translation.

Proof. CB is a consequence operator and makes F a translation. Let C∗ be another
consequence operator in B that makes F a translation. If C ⊆B is closed according to
C∗, then F−1(C) is a closed set in A. So, by the de>nition of CB, we have that C is
a closed set in B relatively to CB, that is, CB¡C∗.

Dually, CA is the strongest consequence operator that makes a function G :A→B a
translation, where A is the logic induced in A by G and the logic B.

1.8. De�nition. Let F :A1 →A2 be a map between logics. A subset A⊆A1 is said to
be saturated relatively to F if, for a∈A and for every b∈A1; F(a) =F(b) implies
b∈A.

In [22] logics are seen in a more restrictive way as algebras with consequence
operators, that is, a logic (A; C) is such that A is a formal language and C is a
consequence operator in the free algebra Form(A) of the formulas of A. A conse-
quence operator C in Form(A) is said to be structural if s(C(�))⊆ (C(s(�)), for every
�⊆ Form(A) and every endomorphism s of Form(A).

We characterize logical systems as particular cases of logics.

1.9. De�nition. A logical system de>ned over L is a pair L= (L; C), where L is a
formal language and C is a structural consequence operator in Form(L).

Da Silva et al. [20] introduce the following de>nition, that captures the essential
feature of a logical translation, that is, captures the intuition of a map preserving the
consequence relation.

1.10. De�nition. A translation from the logic A1 into the logic A2 is a map
T :A1 →A2 such that, for every X ⊆A1:

T (C1(X ))⊆C2(T (X )):

If T is a translation, it is obvious that, for every x∈A1:

x ∈ C1(X ) ⇒ T (x) ∈ C2(T (X ));

but the converse does not hold in general.
In the particular case in which A1 and A2 are logical systems and their syntactical

consequence relations are correct relatively to C1 and C2, respectively, that is, for
�∪{�}⊆ Form(A1) and �∪{�}⊆ Form(A2), � �C1 � if and only if �∈C1(�) and
� �C2 � if and only if �∈C2(�), one has that T is a translation if, and only if

� �C1 � ⇒ T (�) �C2 T (�): (1)
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We observe that, if �= ∅ then T (∅) = ∅ and, therefore, every translation between
logical systems takes theorems into theorems, that is

�C1 �⇒�C2T (�):

The following theorem, introduced in [20], with a proof similar to the proof of the
equivalent topological results concerning continuous functions, is related to some of
the results of the next sections.

1.11. Theorem. The following assertions are equivalent:
(i) T is a translation from A1 into A2;
(ii) For every X ⊆A1; C2(T (C1(X )) =C2(T (X ));

(iii) The inverse image of a closed set is closed;
(iv) For every Y ⊆B; C1(T−1(Y ))⊆T−1(C2(Y )).

1.12. De�nition. Two logics A1 and A2 are said to be L-homeomorphic if there is a
bijective function T :A1 →A2 such that T and T−1 are translations. The function T is
called a L-homeomorphism.

1.13. Proposition. Given a bijection T :A1 →A2; T is a L-homeomorphism if; and only
if; for every A⊆A1; T (C1(A)) =C2(T (A)).

In the same paper by da Silva, D’Ottaviano and Sette, the authors show that the
category 1 Tr constituted by logics and translations between them is bi-complete, that
is, it is both complete and co-complete.

1.14. Theorem. The category Tr whose objects are logics and whose morphisms are
translations between logics has products and equalisers; and has co-products and
co-equalisers.

The proof of this theorem is presented in detail in [6].
It is well known that topological spaces can be de>ned as sets with closure operators,

which besides the conditions of De>nition 1.1 also satisfy the conditions:
(iv) C(∅) = ∅;
(v) C(X ∪ Y ) =C(X )∪C(Y ).
The category of topological spaces with continuous functions is a full subcategory

of Tr, that is, translations between topological spaces are continuous functions in the
topological sense.

The following de>nition and results are well known in the topological case.

1.15. De�nition. A closed mapping is a function for which the image of every closed
set is a closed set.

1 In what follows we will be using some fundamental concepts and results of Category Theory, which can
be found in any introductory text on the subject.
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1.16. Proposition. Let T :A1 →A2 be a translation. Then T is closed if; and only if;
for every A⊆A1; C2(T (A))⊆T (C1(A)).

1.17. Corollary. A function T :A1 →A2 is a closed translation if; and only if; for
every A⊆A1; T (C1(A)) =C2(T (A)).

1.18. Proposition. Let T1 :A1 →A2 be a surjective closed translation. Then a function
T2 :A2 →A3 is a translation if; and only if; T2 ◦T1 :A1 →A3 is a translation.

In the following results we characterize some logical properties that may be preserved
via translations.

1.19. De�nition. Let L1 be a language containing only unary and binary connectives
and such that p0; p1; p2; : : : denote the atomic formulas of L1. If L2 is a language, we
say that ∗ :L1 →L2 is a schematical mapping if there are schemata of formulae A; B]

and C⊥ of L2 such that:
(i) p∗ =A(p), for every atomic formula p of L1;
(ii) (]’)∗ =B](’∗), for every unary connective ] of L1;

(iii) (’⊥  )∗ =C⊥(’∗;  ∗), for every binary connective ⊥ of L1.

A schematical application is a homeomorphism between languages, for it preserves
the algebraic structure of the algebra of formulae associated with the respective lan-
guages.

1.20. De�nition. A schematical mapping ∗ is said to be literal relatively to a given
connective ], or ⊥, if this connective is mapped by ∗ into itself, that is, (]’)∗ = ]’∗

or (’⊥  )∗ =’∗ ⊥  ∗, respectively.

A schematical application ∗ :L1 →L2 is literal if it is literal relatively to every
connective of L1.

1.21. De�nition. A translation T between logical systems is schematical if it is a
schematical mapping.

1.22. De�nition. A translation T :L1 →L2 is trivial-invariant if, for every set
�⊆Form(L1), T (�) is trivial in Form(L2).

1.23. Proposition. Let T :L1 →L2 be a translation. The following conditions are
equivalent:

(i) T is trivial-invariant;
(ii) The set Im(T ) is trivial;

(iii) There is a subset of Im(T ) that is trivial.
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Proof. (iii) ⇒ (i)) If �⊆Form(L1) is trivial, then Im(T ) =T (C1(�))⊆C2(T (�)). As
there is a trivial set contained in Im(T ), by Proposition 3:2:14 Im(T ) and C2(T (�))
are trivial. Hence C2(C2(T (�)) =C2(T (�)) =Form(L2), that is, T (�) is trivial.

1.24. De�nition. Given a logical system L, a set �⊆Form(L) is non-trivial if
C(�)=Form(L) and is trivial otherwise.

The logical system L is trivial if C(∅) =Form(L), that is, Theo(L) =Form(L),
Theo(L) being the set of theorems of L.

1.25. De�nition. Let L be a logical system, the language L having as a symbol of
negation the symbol ¬. A set �⊆Form(L) is ¬-inconsistent if there is a formula �
such that �∈C(�) and ¬�∈C(�). The set � is ¬-consistent if it is not ¬-inconsistent.

The logic L is ¬-consistent if Theo(L) is ¬-consistent, that is, it is not the case that
�∈C(∅) and ¬�∈C(∅), for every formula �.

1.26. De�nition. A logical system L is a vacuum logic if C(∅) = ∅, that is, if Theo
(L) = ∅.

We observe that every trivial set is inconsistent, relatively to any negation. Usually,
to be trivial is equivalent to being inconsistent, but there are logical systems, as for
instance the paraconsistent systems (see [2]), such that to be inconsistent is not the
same as to be trivial. Therefore, in these systems, it is possible to have a ¬-inconsistent
set without every formula being among its consequences.

1.27. Proposition. Let L1 and L2 be logical systems whose languages have the nega-
tion ¬ and let T :L1 →L2 be a literal translation relatively to ¬. If L2 is ¬-consistent;
then L1 is ¬-consistent.

1.28. Proposition. There is no translation from a non-vacuum system into a vacuum
system.

As is known, two interesting examples of vacuum systems are the three-valued calculi
of Kleene Kl1 and of Bochvar B3I (see [15]). According to the previous results there is
no translation into these logics from, for instance, classical logical, intuitionistic logic,
etc.

2. The concept of conservative translation

In the literature, de>nitions of translations between logics require, in general, that
the converse of (1), that appears right after De>nition 1.10, also holds. We prefer to
addopt the concept as de>ned in [20] in order to accommodate certain maps that seem
to be obvious examples of translations, such as the identity map from intuitionistic
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into classical logic and the forgetfulness map from modal logic into classical logic, but
which would be ruled out if equivalence were substituted for implication in (1).

In this section we de>ne the concept of conservative translation, introduced in [6],
for those functions for which the converse of (1) holds. Conservative translations char-
acterize a special subclass of translations.

2.1. De�nition. Given two logics A1 = (A1; C1) and A2 = (A2; C2), a conservative
mapping from A1 into A2 is a function T :A1 →A2 such that, for every x∈A1:

x ∈ C1(∅)⇔T (x) ∈ C2(∅):

2.2. De�nition. A conservative translation from A1 into A2 is a function T :A1 →A2

such that, for every set B∪{x}⊆A1:

x ∈ C1(B)⇔T (x) ∈ C2(T (B)):

If L1 = (L1; C1) and L2 = (L2; C2) are logical systems, a conservative translation is
a function T :Form(L1)→Form(L2) such that, for every subset �∪{�}⊆Form(L1):

� �C1 �⇔T (�) �C2 T (�):

The term conservative, for these translations which strongly preserve consequence
relations, was chosen by analogy to the term conservative extension of a theory.

2.3. Translations for Prawitz and Malmn-as. According to the general de>nition in-
troduced in [17], a translation from a logical system S1 into a logical system S2 is a
function t such that, for every formula � of S1:

�S1 �⇔ �S2 t(�):

If such a function exists, S1 is said to be interpretable in S2.
If, for every set �∪{�} of formulas in S1:

� �S1 �⇔ t(�) �S2 t(�);

where t(�) = {t(�) | �∈�}, S1 is said to be interpretable in S2 by t with respect to
derivability.

Prawitz’s de>nition of translation coincides with our de>nition of conservative map-
ping, constituting in fact a particular case of our conservative translations. But, in
general, a translation according to Prawitz is neither conservative, nor even a transla-
tion in our sense.

When a system is interpretable into another by a translation with respect to deriv-
ability, then this Prawitz’s translation is a conservative translation according to our
de>nitions.
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Prawitz also introduces the concept of schematical translation, for those translations
that are de>ned by schemata of formulae of S2.

2.4. Translations for W/ojcicki. For [22], given two propositional languages S1 and S2

with the same set of variables, a mapping t from S1 into S2 is said to be a translation
if, and only if, two conditions are satis>ed:

(i) there is a formula ’(p0) in S2 in one variable p0 such that, for each variable
p, t(p) =’(p);

(ii) for each connective  i of S1 there is a formula ’i in S2 in the variables p1; : : : ; pk ,
such that, for all �1; : : : ; �k in S1, k being the arity of  i, we have that

t( i(�1; : : : ; �k)) = ’i(t�1 |p1; : : : ; t �k |pk):

A propositional calculus is de>ned as a pair C= (S; C), where C is a consequence op-
eration in the language S. If for the propositional calculi C1 = (S1; C1) and C2 = (S2; C2)
there is a translation t from S1 into S2, such that for every X ⊆ S1 and every �∈ S1,

� ∈ C1(X )⇔ t(�)∈C2(t(X ));

W#ojcicki says that the calculus C1 has a translation into the calculus C2.
According to these de>nitions, translations between logical systems for W#ojcicki

are strict cases of conservative translations in our sense, that is, they are derivability
preserving schematical translations in Prawitz’s sense.

2.5. Translations for Epstein and Krajewski. In [5], Epstein and Krajewski de>ne a
validity mapping of a propositional logic L into a propositional logic M as a map t
from the language of L into the language of M such that, for every formula �:

|=L �⇔ |=M t(�):

A translation is a validity mapping t such that, for every set � of formulas and
every formula � of L:

� |=L �⇔ t(�) |=M t(�):

As Epstein’s book deals with strongly complete propositional calculi, his validity
mappings coincide with our conservative mappings and with Prawitz’s translations;
and his translations are our conservative translations.

The functions called grammatical translations by Epstein are particular cases of
Prawitz’s schematical translations with respect to derivability and coincide with our
schematical translations.

Epstein proves the following result, concerning the non-classical logics he studies in
his book.

Theorem. If L is a non-classical propositional system in whose language the symbols
¬ and → occur as primitive connectives, then there is no schematical translation from
L into the classical propositional calculus.
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Epstein also introduces the concept of semantically faithful translations, but we will
not deal with such a concept in this paper.

2.6. Kolmogoro3’s translation. Kolmogoro(’s [14], is apparently the >rst paper on
the “translability” of classical logic into intuitionistic logic. Kolmogoro( introduces the
system B of the General Logic of Judgments and the system H of the Special Logic
of Judgments.

Kolmogoro(’s system B, which constitutes in fact the >rst axiomatization for intu-
itionistic logic introduced in the literature, preceeding Heyting’s system H of 1930, is
constructed on a formal language with two primitive connectives, ¬ for the negation
and → for the conditional, and is characterized by the following axioms and rules:

Axiom K1 :’→ ( →’);

Axiom K2 : (’→ (’→  ))→ (’→  );

Axiom K3 : (’→ ( → %))→ ( → (’→ %));

Axiom K4 : ( → %)→ ((’→  )→ (’→ %));

Axiom K5 : (’→  )→ ((’→¬ )→¬’);

R1 (MP) : �; �→ �=�;

R2 (Substitution) :� �(p)=� �(p | �)):

The >rst four axioms coincide with the axioms introduced by Hilbert in 1923 in
order to formalize the classical propositional calculus. Nowadays, we know that Kol-
mogoro(’s system B is equivalent to the minimal logic J introduced in [13].

The system B is extended to the formal system H by adding

Axiom K6 : ¬¬’ → ’

and it is proved that H is equivalent to the classical propositional calculus presented
in [12].

A function is inductively de>ned that, to each formula ’ of H associates a formula
’K of B by adding a double negation to each subformula of ’:

K : H → B;

(p)K =df ¬¬p;

(¬’)K =df ¬¬(¬’K);

(’→  )K =df ¬¬(’K →  K):

The following result is proved:

Theorem. Let + = {+1; : : : ; +n} be a set of axioms and +K = {+K
1 ; : : : ; +K

n }. If +�H ’,
then +K �B ’K .
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Kolmogoro( extends his systems B and H to the systems of quanti>cation theory
BL and HL, respectively. He suggests that the above theorem is provable relative to
these systems and we think that it is reasonable to assert that he does foresee that the
system of classical number theory is translatable into intuitionistic theory and therefore
is intuitionistically consistent. But Kolmogoro(’s paper was known only when the
results of G=odel and Gentzen on the relative consistency of classical arithmetic with
respect to intuitionistic arithmetic were already well known.

Prawitz and Malmn=as [17] prove that, for each set of formulae �∪{’}:

� �HL ’⇔K(�) �BL K(�):

Hence, according to our de>nitions, K is an example of a schematical conservative
translation from classical into intuitionistic >rst-order predicate logic; and so it is a
translation according to the general de>nitions in the literature that we have mentioned.

2.7. Glivenko’s translation. The main result of Glivenko [8], which was used by G=odel
[9], is the following:

Theorem. If ’ is a theorem of the classical propositional calculus, then ¬¬’ is a
theorem of the intuitionistic propositional calculus.

We are considering here a function G which maps each formula of the classical
calculus into its double negation in the intuitionistic calculus (that is, G(’) =¬¬’)
and preserves theorems.

The following corollary follows immediately.

Corollary. A formula ¬’ is a theorem of the classical propositional calculus if, and
only if, ¬’ is a theorem of the intuitionistic propositional calculus.

Feitosa [6] shows by using algebraic semantics that, besides being a translation,
Glivenko’s function G is also a conservative translation. This result is not presented
in this paper.

2.8. G-odel’s interpretations. G=odel knew [8], but apparently he did not know [14].
G=odel [9] extends the result he presented in 1932 in Vienna. The paper introduces

a function Gd1 from classical propositional logic CL into the Heyting intuitionistic
propositional logic H :

Gd1 :CL → H;

(p)Gd1 =df p;

(¬’)Gd1 =df ¬’Gd1 ;

(’∧  )Gd1 =df ’Gd1 ∧  Gd1 ;
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(’∨  )Gd1 =df ¬(¬’Gd1 ∧¬  Gd1 );

(’→  )Gd1 =df ¬(’Gd1 ∧¬  Gd1 ):

This interpretation is extended to a function from classical arithmetic PA into a
modi>ed version H ′ of Heyting’s intuitionistic arithmetic and the following result is
proved.

Theorem. If �PA ’; then �H ′ ’Gd1 .

In fact, it can be proved that

�PA ’⇔ �H ′ ’Gd1 ;

as conjectured by G=odel in his paper. But it is easy to see that G=odel’s “translation”
does not preserve derivability, even in the propositional case. For, as

¬¬p �CL p;

if the interpretation Gd1 preserves derivability, we have that

Gd1(¬¬p)�H Gd1(p)

¬¬Gd1(p)�H Gd1(p)

¬¬p�H p

�H ¬¬p→p;

which is false.
Hence, G=odel’s interpretation is a translation in the sense of Prawitz, but is not a

translation according to our de>nition.
In 1933 G=odel also introduced an interpretation from intuitionistic propositional logic

into his “modal” system G.
In [10] the system G has the classical connectives ∼;∧;∨;→ and the connective B,

such that B� is read “� is provable” but not necessarily in a certain formal system.
Besides the classical propositional axioms; G has the following axioms and rule:

Axiom G1 :B’→’,
Axiom G2 :B’→ (B(’→  )→B ),
Axiom G3 :B’→BB’,
Rule: ’=B’.

The system G is equivalent to the Lewis’ system of strict implication, to which the
Becker axiom (Np¡NNp) is added, with Bp interpreted by “necessary p” (Np).

The G=odel interpretation Gd2 is de>ned by

Gd2 : H → G

(p)Gd2 =df p;
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(¬’)Gd2 =df ¬B’Gd2 ;

(’∧  )Gd2 =df ’Gd2 ∧  Gd2 ;

(’∨  )Gd2 =df B’Gd2 ∨B Gd2 ;

(’→  )Gd2 =df B’Gd2 →B Gd2 :

Theorem. �H ’⇒�G ’Gd2 .

Answering a0rmatively a conjecture of G=odel, McKinsey and Tarski [16] prove that
the converse of the above theorem also holds, and Rasiowa and Sikorski [18] prove
the extension of both results to the predicate calculi HP and GP, that is

�HP ’⇔ �GP ’Gd2 :

Feitosa [6] studies several other papers related to this G=odel’s interpretation.
Prawitz and Malmn=as [17] show that the interpretation Gd2 does not preserve deriv-

ability. Hence, G=odel’s function Gd2 is not a translation in our sense.

2.9. Gentzen’s translation. The aim of [7] is to show that the applications of the
law of double negation in proofs of classical arithmetic can in many instances be
eliminated. As an important consequence of this fact, Gentzen presents a constructive
proof of the consistency of pure classical logic and elementary arithmetic with respect
to the corresponding intuitionistic theories, which is obtained from the de>nition of an
adequate translation between their languages and consequently relation preserving.

Gentzen de>nes an interpretation from Peano classical arithmetics (PA) into intu-
itionistic arithmetics (IA), very similar to the one introduced in [9]. The di(erence
between the two functions is in the interpretation of the atomic formulas and of the
implication:

Gz : PA → IA;

(p)Gz =df ¬¬p;

(¬’)Gz =df ¬’Gz;

(’∧  )Gz =df ’Gz ∧  Gz;

(’∨  )Gz =df ¬(¬’Gz ∧¬  Gz);

(’→  )Gz =df (’Gz →  Gz);

(∀x’)Gz =df ∀x’Gz;

(∃x’)Gz =df ¬(∀x¬’Gz):

The other formulas are translated into themselves.
In Gentzen’s paper the proofs are carried out intuitionistically. The consistency of

classical arithmetic relatively to intuitionistic arithmetic is proved as an immediate
consequence of the following theorem.
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Theorem. If � is classically provable from �; then �Gz is intuitionistically provable
from �Gz. That is

� �CL ’⇔�Gz �H ’Gz:

Hence, in spite of G=odel’s interpretation not being a translation, the Gentzen inter-
pretation is a conservative translation.

Ending this section, we observe that among the historical “translations” of the liter-
ature, developed mainly in order to study inter-relations between logics, only the two
G=odel interpretations are not conservative translations, for in fact they are not even
translations according to our de>nition, since they simply preserve theoremhood.

3. Basic results on conservative translations

The following results introduce two necessary and two su0cient conditions for a
translation to be conservative.

3.1. Proposition. Let A1 and A2 be logics and T :A1 →A2 a map and let every
closed subset A⊆A1 be saturated relative to T . If T (C1(A)) =C2(T (A)); then T is a
conservative translation.

Proof. Since T (C1(A))⊆C2(T (A)), it follows that T is a translation. If T (x)∈
C2(T (A)) =T (C1(A)), then there is a y∈C1(A) such that T (x) =T (y). As C1(A) is
closed, by hypothesis it is saturated and therefore x∈C1(A).

3.2. Proposition. Let T : A1 →A2 be an injective mapping between the logics A1 and
A2. If; for every A⊆A1; T (C1(A)) =C2(T (A)); then T is a conservative translation.

Proof. If T is injective, then every subset of A1 is saturated relatively to T .

3.3. Proposition. Let T :A1 →A2 be a map such that; for every A⊆A1; C2(T (A))⊆
Im(T ). If T is a conservative translation; then T (C1(A)) =C2(T (A)).

Proof. Since T is a translation, we have T (C1(A))⊆C2(T (A)): On the other hand,
if y∈C2(T (A)), then y∈ Im(T ) and so there is an x∈A1 such that T (x) =y; as
T is conservative and T (x)∈C2(T (A)), we have that x∈C1(A) and therefore T (x) =
y∈T (C1(A)), that is, C2(T (A))⊆T (C1(A)).

3.4. Corollary. Let T :A1 →A2 be a surjective mapping. If T is a conservative
translation; then T (C1(A)) =C2(T (A)); for every A⊆A1.

3.5. Corollary. Let T :A1 →A2 be a bijective mapping. Then T is a conservative trans-
lation if; and only if; T (C1(A)) =C2(T (A)); for every A⊆A1.
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The last corollary give us a necessary and su0cient condition for a mapping between
logics to be a conservative translation, but only in the case of the function being
bijective.

We also observe that, according to Proposition 1:13, every L-homeomorphism is a
conservative translation, but it is not the case that every conservative translation is a
L-homeomorphism.

The following result introduces a necessary and su0cient condition for a transla-
tion being conservative, in the case of the consequence relations of the logics being
>nitary.

3.6. Theorem. Let A1 and A2 be logics with :nitary consequence operators and
T :A1 →A2. The function T is a conservative translation if; and only if; for every
:nite A∪{x}⊆A1; x∈C1(A) is equivalent to T (x)∈C2(T (A)).

In the case when A1 and A2 are strongly complete logical systems, the result above
corresponds to the compactness of the systems.

The next theorem supplies a general necessary and su0cient condition for a transla-
tion to be conservative, which is very useful in the study of conservative translations.

3.7. Theorem. A translation T :A1 →A2 is conservative if; and only if; for every
A⊆A1; T−1(C2(T (A)))⊆C1(A).

Proof. Let T be conservative. For every x∈T−1(C2(T (A))) we have that T (x)∈
T ◦T−1(C2(T (A)))⊆C2(T (A)) and so T (x)∈C2(T (A)). As T is conservative, x∈C1(A).

On the other hand, if T (x)∈C2(T (A)), as T−1(C2(T (A)))⊆C1(A), then T−1(T (x))⊆
C1(A). Since x∈T−1(T (x)), we have that x∈C1(A).

4. Conservative translations between logical systems

In this section we study some general properties of logical systems, which are char-
acterized by the existence of translations between the systems.

4.1. Theorem. If there is a recursive and conservative translation from a logical
system L1 into a decidable logical system L2; then L1 is decidable.

Proof. Let T :L1 →L2 be a recursive conservative translation. Given �∈Form(L1),
as T is recursive, we can determine T (�). As L2 is decidable, it is possible to verify if
T (�) is or is not a theorem of L2. Hence, �C2 T (�) implies �C1 � and �C2 T (�) implies
�C1 �.

4.2. Corollary. There is no recursive conservative translation from the :rst-order
logic L!! into the classical propositional calculus CP.
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Though there is no such translation, it is easy to verify that the forgetfulness function
F :L!! →CP, that maps every formula � of L!! into a formula of CP, simply erasing
all the quanti>ers and the respective parentheses and variables of �, is a recursive
translation.

In fact, in the previous theorem it is not necessary that T should be a translation, it
is su0cient that T be a conservative mapping.

4.3. Theorem. If L1 is a decidable logical system and if there is a surjective and
conservative translation T :L1 →L2; then L2 is decidable.

4.4. Proposition. Let L1 be a logical system with an axiomatics 2. If there is a
surjective and conservative translation T :L1 →L2; then T (2) is an axiomatics for
L2.

4.5. Theorem. Let T :L1 →L2 be a conservative application. If L1 is non-trivial;
then L2 is non-trivial.

Whenever non-triviality is equivalent to consistency, the function T preserves con-
sistency.

4.6. Theorem. Let T :L1 →L2 be a surjective and conservative map. If L2 is
non-trivial; then L1 is non-trivial.

4.7. Theorem. Let L1 and L2 be logical systems; with languages in which the condi-
tional symbol → occurs as a primitive connective or may be de:ned. If T :L1 →L2

is a conservative translation; is literal relatively to → and L2 admits a deduction
theorem; then L1 also admits such a theorem.

4.8. Theorem. In the conditions of the previous theorem; if T :L1 →L2 is a surjective
conservative translation; is literal relatively to → and L1 admits a deduction theorem;
then L2 also admits such a theorem.

5. The category TrCon

The class constituted by logics and conservative translations between them determines
a category, denoted by TrCon, which is in fact a subcategory of Tr, the bi-complete
category constituted by logics and translations.

In this section we show that TrCon is a co-complete subcategory relatively to the
co-product of Tr.

The following result, which asserts that the class TrCon of logics and conservative
translations is a subcategory of Tr, is trivial.
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5.1. Proposition. The composition of conservative translations is a conservative trans-
lation. The identity map is a conservative translation. The composition of conservative
translations is associative. The identity is a unity for composition.

The product and co-product in Tr are de>ned in the following way.

5.2. De�nition. Given a family {Ai = (Ai; Ci)}i∈ I of logics, the product logic of the
Ai is the logic P= (P; Cp), also denoted by P= 3i∈ IAi, such that

(i) P = 3i∈ IAi;
(ii) Cp is the strongest consequence operator in P that makes every projection into

every Ai a translation.

5.3. De�nition. We say that S= (S; CS) is the sum logic or co-product logic of a
family {Ai = (Ai; Ci)}i∈I of logics, when the sets Ai are pairwise disjoint, S = �i∈I Ai

is the direct sum of the Ai and CS is the weakest consequence operator that makes all
the inclusions qi :Ai → S translations.

5.4. Example. Let P be the product logic of a family {Ai}i∈I of logics. It is trivial
that the projections pi :P→Ai are not necessarily conservative translations, for every
i∈ I . In fact, let

P = A1 ×A2 with

A1 = {x1}; C1(∅) = {x1} and C1({x1}) = {x1};

A2 = {x2}; C2(∅) = ∅ and C2({x2}) = {x2};

A1 × A2 = {(x1; x2)}; Cp(∅) = ∅ and Cp({x1; x2}) = {(x1; x2)}:

In this case we have that, for (x1; x2)∈P; p1(x1; x2) = x1 ∈C1(∅), but (x1; x2) =∈CP(∅).
By Example 5.4, we conclude that the product in Tr is not a product in TrCon.

5.5. Proposition. Let S be the sum of a family {Ai}i∈I of logics. Every inclusion
qi :Ai → S is a conservative translation.

Proof. Let A ∪ {x}⊆Ai. If qi(x)∈CS(qi(A)), as qj(y) =y, for every y∈Aj, then
x∈CS(A). Since the Ai are pairwise disjoint, then CS(A) ∩ Ai =Ci(A). Therefore x∈
Ci(A).

5.6. Proposition. The category TrCon has co-products.

Proof. Let {Ai = (Ai; Ci)}i∈I be a family of logics such that, for i = j; Ai ∩ Aj = ∅;
and let S = �i∈I Ai, that is, S is the direct sum of the Ai.
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As every inclusion qi :Ai → S is a conservative translation, we have to show that if
(M; {fi}i∈I ) is such that M is a logic and fi is a conservative translation, for every
i∈ I , then, according to the following diagram:

there is a unique conservative translation k that makes the diagram commutative.
By Theorem 1.14, there is a unique translation k in the conditions above. So, we

only have to prove that such a k is conservative.
Let B ∪ {x}⊆ S and k(x)∈CM (k(B)). As k(x) =fj(x)∈CM (k(B)), there is one

j∈ I such that x∈Aj. Since every fj is conservative, then x∈Cj(Aj)⊆Cj(B)⊆CS(B).
Hence, k is conservative.

5.7. Proposition. The category TrCon has equalizers.

Proof. We have to prove that, for every pair of logics A1;A2, there is an equalizer
of every pair of morphisms between A1 and A2.

Given two conservative translations T1; T2 :A1 →A2 of TrCon, let M = {x∈A1 |
T1(x) =T2(x)} and let i :M →A1 be the inclusion function, with M= (M;CM ) the
logic induced by A1 and i.

We will prove that the pair (M; i) is the equalizer of T1 and T2, that is, we
will prove that, if H :A→A1 is a conservative translation such that T1 ◦H =T2 ◦H
then there is only one morphism k of TrCon that makes the following diagram com-
mutative.

As T1; T2 and H are translations then, by Theorem 1.14, there is only one translation
k that makes the diagram commutative. This function k :A→M is well de>ned by
k(x) =H (x) and is such that H = i ◦ k.
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Now, as T1; T2 and H are conservative, let’s see that i and k are also conservative
translations.

For every B⊆M , if i(x)∈C1(i(B)) then x∈C1(B)∩M , that is, x∈CM (B). Therefore
i is conservative.

For D⊆A; let k(x)∈CM (k(D)). Since k(x) =H (x)∈C1(H (D)), as H is conserva-
tive, we have that x∈CA(D). Then k is conservative.

The uniqueness of k is already guaranteed by Theorem 1.14.

5.8. De�nition. Let A be a logic and ≡ an equivalence relation on A. The function
Q :A→A=≡, given by Q(x) = [x], is said to be the quotient mapping of to the re-
lation ≡. If C≡ is the consequence operator co-induced by A and Q, then the pair
A≡ = (A=≡; C≡) is the logic co-induced by A and Q.

5.9. Proposition. The category TrCon has co-equalizers.

Proof. We have to show that every pair T1; T2 of morphisms between every two logics
A1 and A2 has co-equalizer.

Given two conservative translations T1; T2 :A1 →A2 of TrCon, let N = {(T1(x);
T2(x) | x∈A1} and let ∼ be the smallest equivalence relation in A2 that contains N .
Considering Q :A2 →A2=∼, let A2∼ = (A2=∼; C∼) be the logic co-induced by A2 and Q.

We will prove that the pair (A2∼; Q) is the co-equalizer of T1 and T2, that is, we will
prove that, if H :A2 →M is a conservative translation such that H ◦T1 =H ◦T2 then
there is only one morphism k of TrCon that makes the following diagram commutative.

As T1; T2 and H are translations then, by Theorem 1.14, there is only one translation
k that makes the diagram commutative. This function k :A2∼ →M is well de>ned by
k([x]) =H (x) and is such that H = k ◦Q.

Now, as T1; T2 and H are conservative, let us see that Q and k are conservative.
Q is a translation. For every B⊆A2, if Q(B) = {[x] | x∈B} and Q(x)∈C∼(Q(B))

then, for some y∈ [x] , we have that y∈C2(B). As C2(y) =C2(x); x∈C2(y) and
therefore x∈C2(B), that is, Q is conservative.
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Now, let [y]∪[D]⊆A2∼. If k([y])∈CM (k([D])), as H (y) = k([y]), then H (y)∈CM

(k([D])) =CM (H (D)). As H is conservative, then y∈C2(D). Therefore, by Q; [y]∈
C∼([B]) and hence k is conservative.

The uniqueness of k follows from the proof of Theorem 1.14.

5.10. Theorem. The category TrCon is a co-complete subcategory of Tr; with the
co-product of Tr.

The results of this section characterize the subcategory TrCon of Tr as a category
of special interest. Tr is bi-complete, but TrCon is not, for, despite having equalizers,
it does not have product.

6. A fundamental result

In this section we prove a very important result.
The last theorem will give us a necessary and su0cient condition for the existence

of a conservative translation between two logics. This condition, that corresponds to the
existence of a conservative translation between speci>c quotient structures associated to
the logics, was fundamental to obtain several conservative translations we have studied.

6.1. De�nition. If, A and B are sets, we say that F : A→B is compatible with an
equivalence relation ≡ on A, when x1 ≡ x2 implies F(x1) =F(x2).

6.2. Proposition. Let A1 and A2 be logics and T :A1 →A2 a translation. If T is
compatible with an equivalence relation ≡ on A1; then there is a unique function
T ∗ :A1≡ →A2 such that T ∗ ◦Q =T; where Q is the quotient mapping on A1. The
function T ∗ is a translation.

Proof. We de>ne T ∗ :A1≡ →A2 by T ∗([x]) =T (x).
The function T ∗ is well de>ned, given the compatibility of T . Besides, T ∗ ◦Q(x) =

T ∗([x]), that is, T ∗ ◦Q =T .
Now, let F :A1≡ →A2 be another map such that T =T ∗ ◦Q =F ◦Q. As Q is surjec-

tive, then it admits an inverse to the right and so T ∗ =T ∗ ◦ (Q ◦Q−1) =F ◦ (Q ◦Q−1) =
F .

In order to verify that T ∗ is a translation, let B be a closed set of A2. As T is
a translation, then T−1(B) = (T ∗ ◦Q)−1(B) =Q−1 ◦ (T ∗)−1(B) is a closed set of A1.
Hence, as Q is the quotient mapping, it follows that (T ∗)−1(B) is a closed set of
A1≡.

6.3. Proposition. Let A1; A2 and A3 be logics and T1 :A1 →A2 and T2 :A2 →A3

functions:
(i) If A2 is the logic co-induced by A1 and T1; then T2 is a translation if; and only
if; T2 ◦T1 is a translation;
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(ii) If A2 is the logic induced by A3 and T2; then T1 is a translation if; and only if;
T2 ◦T1 is a translation.

Given a logic A= (A; C), let us consider the following relation de>ned on A:

x ∼ y⇔C(x) = C(y):

It is trivial that ∼ is an equivalence relation on A.
By Proposition 1.7, we have that the quotient mapping Q :A→A∼, given by Q(x) =

[x] = {y | x ∼ y}, with A∼ the logic co-induced by A and Q, is a translation.

6.4. Proposition. The map Q :A→A∼ is a conservative translation.

Proof. If Q(B) = {[x] | x∈B} and Q(x)∈C∼(Q(B)) then, for some y∈ [x], we have
that y∈C(B). As C(y) =C(x), if follows that x∈C(y) and so x∈C(B).

6.5. Theorem. Let A1 and A2 be logics, with the domain A2 of A2 denumerable;
and let A1∼1 and A2∼2 be the logics co-induced by A1; Q1 and A2; Q2 respectively;
with ∼1 and ∼2 being equivalence relations de:ned according to the previous de:ni-
tion on A1 and A2; respectively. In this conditions there is a conservative translation
T :A1 →A2 if; and only if; there is a conservative translation T ∗ :A1∼1 →A2∼2 .

Proof. Let T :A1 →A2 be a conservative translation. As Q2 is a conservative transla-
tion, then Q2 ◦T is a conservative translation. If x ∼1 y, for x; y∈A1, then C1(x) =
C1(y). As T is a translation, it follows that C2(T (x))=C2(T (y)), so Q2(T (x))=
Q2(T (y)), and then Q2 ◦T is compatible with the equivalence relation ∼1. By Propo-
sition 6.2 there is a unique translation T ∗ :A1∼1 →A2∼2 such that T ∗ ◦Q1 =Q2 ◦T .

So, consider the following diagram:

Now, suppose that T ∗ is not conservative. As Q1 is surjective, then there is
T ∗(Q1(y))∈C2∼2 (T

∗(Q1(B)), for B⊆A1, such that Q1(y) =∈C1∼1 (Q1(B)), which im-
plies that y =∈C1(B) since Q1 is conservative. As T ∗ ◦Q1 =Q2 ◦T , then Q2(T (y))∈
C2∼2 (Q2(T (A)) and, since Q2 ◦T is conservative, it follows that y∈C1(B), a contra-
diction. Hence, T ∗ is conservative.

On the other hand, let T ∗ be a conservative translation, and let A2 = {y1; y2; : : :} be an
enumeration of A2. We de>ne T :A1 →A2 by T (x) =y, such that y∈Q−1

2 ◦T ∗ ◦Q1(x)
and y has the smallest index in A2.
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We verify that T is a translation. Let B be a closed set in A2. As Q2 is conservative
and surjective, by Corollaries 3.4 and 1.17, Q2(B) is a closed set in A2∼2 . So, since
T ∗ ◦Q1 is a translation, [Q−1

2 ◦T ∗ ◦Q1]−1(B) = [T ∗ ◦Q1]−1(Q2(B)) is a closed set in
A1, and then T is a translation. Besides, Q2 ◦T =T ∗ ◦Q1, for Q2 ◦Q−1

2 = IA2∼2
.

Now, suppose that T is not conservative. Then we have B ∪ {x}⊆A1, such that
T (x)∈C2(T (B)) and x =∈C1(B). But, if T (x)∈C2(T (B)) then Q2(T (x))∈C2(Q2(T (A)))
and, as Q2 ◦T =T ∗ ◦Q1, it follows that T ∗(Q1(x))∈C2(T ∗(Q1(B))). As T ∗ ◦Q1 is
conservative, we have that x∈C1(B), a contradiction.

6.6. Corollary. If the function T ∗ of the previous theorem exists; then it is injective.

Proof. If T ∗(Q1(x)) =T ∗(Q1(y)), then Q2(T (x)) =Q2(T (y)) and so T (x) ∼2 T (y),
that is, C2(T (x)) =C2(T (y)). As T is a conservative translation, then C1(x) =C1(y),
that is, x ∼1 y. Hence, Q1(x) =Q1(y), that is, [x] = [y].

We observe that the denumerability of A2 in the hypothesis of Theorem 6.5 is not
necessary, if we explicitly use the Axiom of Choice in the proof of the theorem.

Based on Theorem 6.5 and Corollary 6.6, the use of the Lindenbaum algebras asso-
ciated to logical systems, whenever de>ned, was shown to be a fundamental method to
establish translations or to determine the existence of conservative translations between
the systems we have studied.

In [3] we present some conservative translations involving classical logic and the
many-valued logics of Lukasiewicz and Post.

In [4] we introduce some conservative translations involving classical logic,
Lukasiewicz’s three-valued system L3, the intuitionistic system I 1 introduced by Sette
and Carnielli [19] and several paraconsistent logics, as for instance Sette’s system P1,
the D’Ottaviano and da Costa system J3 and da Costa’s systems Cn; 16n6w (see [2]).

Feitosa [6] studies the problem, several times mentioned in the literature, of the
existence of conservative translations from intuitionistic logic into classical logic, that
will appear in a forthcoming paper.

In most of these results, conservative translations are obtained through the algebraic
semantics that correspond to the logical systems under consideration.
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