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ABSTRACT: It is argued that perfect quantum correlations cannot be due to additive conservation. 

 

Dr. Bertlmann likes to wear two socks of different colours. Which colour he will have on a 
given foot on a given day is quite unpredictable. But when you see that the first sock is 
pink you can already be sure that the second sock will not be pink. Observation of the first, 
and experience of Bertlmann, gives immediate information about the second. 

         Bell (1981) 

Most interesting features of quantum mechanics have at least something to do with 
interference, which will not, however, be at issue here at all. Interference is brought out 
by an appeal to different bases, but here the same (product) basis is adhered to 
throughout. 
 It is often claimed, and even more often suspected, that conservation accounts for 
quantum correlations (by which perfect quantum correlations will be meant). The 
underlying intuition is well expressed by Bertlmann’s socks, or by the fact that the 
distribution of wine over two glasses can be worked out, provided one knows the total 
amount in both, by a measurement on one of them. Or consider a conservative classical 
Hamiltonian  where T  is kinetic energy and the potential energy V  
depends only on position. Conservation here means that exchanges of kinetic and 
potential energy along a trajectory have to satisfy  where  is the total 
energy of that motion. Kinetic energy will then be a function only of position, so that at 
any stage of the motion  can be deduced from the potential; they are 
perfectly correlated. Or take two free classical particles, each one subject only to the 
influence of the other, with initial momenta  and  Irrespective of whether they 
collide their total momentum will remain  the momentum  of the 
primed particle can always be derived from the momentum p  of the other. These cases 
are paradigmatic for additive conservation. 

( ),H T V q= +

0 ,H T V= + 0H

0( ) ( )T q H V− q=

p
0p 0.p′

0 0;p pπ ′= + p π′= −

 Quantum correlations are similar, especially at a given instant, and with only two 
subsystems; but they have nothing to do with conservation. When the contrary is claimed 
I think additive conservation is meant; but that can be broken up into two logically 
independent parts: 1. conservation; and 2. an ‘additivity’ condition, presently to be 



defined and denoted  Quantum correlations can have nothing to do with time, which 
has everything to do with conservation; so what is fundamentally at issue is additivity. 
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 I will argue that an additivity condition can be constructed to account for quantum 
correlations with two subsystems, but only with two; where there are more, quantum 
correlations are too strong to be explained by additivity. An explanation that only works 
in a narrow special case should be viewed as no explanation at all; so quantum 
correlations have nothing to do with additivity. 
 Take three socks (on an equal number of feet) rather than two: once the pink sock 
is found on one foot, we know the remaining socks are on the other feet, but we cannot 
infer where the blue one is. With three glasses a measurement on one glass only tells us 
how much wine is in the other two together, not how much is in the third. Triorthogonal 
decompositions appear to go beyond the knowledge available in the above cases, and 
indeed to tell us where the blue sock is, or how much wine is in the third glass. 
 Consider the triorthogonal decomposition 
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where the Hilbert spaces  (‘span’ denotes the closed span) have 
the same dimensionality, and 〈   The state  determines a 
trijective or one-to-one-to-one correspondence  between the bases 

  and  . To make the correspondence observable and 
give rise to correlations, we can construct the self-adjoint operator 
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and the three (maximal) operators  have the form rA
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 between eigenvalues and basis vectors, thus extending to the three spectra 

 the aforementioned trijective correspondence between the bases 
 The discovery of an eigenvalue therefore selects one in both of the other two 

factor spaces. This will be particularly surprising if we require that 

rA 1 1 ,r rλ α↔ | 〉

2 2 ,r rλ α↔ | 〉…

1 2, ,r r rλ λΛ ={ }…
( 1, 2,3r =

 2



                      1 2 3
m m mλ λ λ λ+ + = ( )λ

for all m (so that  for then the entire system possesses an amount λ of the 
physical quantity A represented by  whose exact distribution over all three subsystems 
would be determined by a measurement on any one of them. We expect this with two 
subsystems, maybe not with three. 
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 Consider the Cartesian product  of the 
spectra, and the subset 
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satisfying condition  The discovery of an eigenvalue  (the value  of 
the superscript is chosen by the experimenter, that of the subscript by nature) will 
determine a subset 
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which would be a singleton if there were only two subsystems. 
 The triorthogonal decomposition (1) determines another subset of  namely 

 Here the discovery of the same eigenvalue  would select 
the triple 
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 We would have  and  with two subsystems, and 
only then. This means that the correlations due to the triorthogonal decomposition, being 
stronger than those due to  cannot be attributed to such an additivity condition. 
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 The matter can also be seen as follows. A vector  belonging to eigenspaces 
corresponding to eigenvalues  that add up to λ  will be an eigenvalue of  
corresponding to  in other words conditions 
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is the eigenspace belonging to  .λ
 The commuting set  (again,  representing the amount of A 
respectively possessed by the whole system and by subsystem s, will not be complete, 
since  for the subspace 
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determined by  But with a triorthogonal expansion, the two measurements  and  
determine a single product  So the correlations contained in a 
triorthogonal expansion go beyond those due to the set  which would otherwise 
only have selected the larger subspace  
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 If there were only two subsystems,  would be a complete commuting set, 
since a single product would be determined by measurement of A  and   
would represent neither more nor less correlation than what is contained in a 
triorthogonal decomposition. 
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 The question has so far concerned a single instant; but one can also wonder about 
evolution. The triorthogonal decomposition is preserved if the vectors  are 
energy eigenvectors, for then the time evolution operator does not change their directions. 
We can then speak of conservation, and say that the correlations in question cannot be 
attributed to an additive conservation law. 
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