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ABSTRACT 

Many researchers have written or attempted to write programs that play the 

ancient Chinese board game called Go. Although some programs play the game quite 

well compared with beginners, few play extremely well, and none of the best 

programs rely on soft computing artificial intelligence techniques like genetic 

algorithms or neural networks. This paper explores the advantages and possibilities 

of using genetic algorithms to evolve a multiagent Go player. We show that although 

individual agents may play poorly, collectively the agents working together play the 

game significantly better. 
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1. INTRODUCTION 

Games have often been used to test new concepts in artificial intelligence 

because of their relative simplicity compared with other more complex possibilities 

like simulations and real-world testing. Go has the potential to excel as a testbed for 

artificial intelligence concepts because of the complexity of the tactics and strategies 

used to play the game well. These complexities resemble real-world problems better 

than most other games do. Brute-force search cannot be used exclusively to play this 
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game, as in other games, because of Go's huge branching factor, which starts out at 

361 at the beginning of a game and approximately decreases by one after each move. 

Some have suggested that Go may have to replace chess as the game for AI 

practitioners. 

With pure search ruled out as a viable method for playing Go, one must tum to 

more intelligent methods such as pattern recognition or rule-based deduction. 

Complexity often plagues Go programmers because of the intricacies of how a player 

must think about the game-often remote locations on the board influence a local 

situation. Current Go programs play at only the level of a skilled novice, and these 

limitations exist perhaps because of the programs' architectures and their insistence 

on using only methods such as pattern-matching, hard-coded rules in computer code, 

and minimax with alpha-beta pruning. 

This paper is based on the concept that programs should play Go using 

relatively simple agents that combine to play the game well. Traditional methods 

have their place in Go programs, but to play an abstract and multi-faceted game one 

must use an abstract and multi-faceted approach. Genetic algorithms (GA) have been 

employed to play complex games, but they often use evolved values that are too low­

level to allow the program to attain the skills required. These values allow for the 

evolution of useful information such as patterns or algorithmic code, but to play the 

game on a professional level one would need too many of these individual pieces of 

information. Analogously, it would be similar to creating a neural network with 

3x 192 inputs, representing the, 192 board locations and the three possible states for 

each location (white, black, or empty) and, 192 outputs. Training an artificial neural 

network of this size will remain inconceivable for quite some time. Likewise, trying 

to evolve a set of rules using a GA would fail in much the same way. Numerous rules 

exist, and evolving them Muld take too long. 

The approach presented in this paper differs from most current Go programs. 

Other programs are extremely complex, representing huge amounts of Go 

knowledge. Such programs eventually become unwieldy, difficult to maintain, hard 

to follow, and tricky to improve upon. The motivation for this work is thus to study 

whether a set of relatively simple agents can each look at the problem from their own 

perspective, after which GA-evolved weights will allow the agents' solutions to be 

summed together to produce a final solution. This approach exchanges the ability to 

fine-tune the program with the ability to incorporate more agents, and thus more 

knowledge, in a consistent and scalable way. This paper will illustrate a novel 
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First Layer 

Fig. 1: Summation network architecture 

multiagent approach to playing Go that uses a multilayer network to choose moves 

based on those suggested by each individual agent. 

The approach involves developing a set of agents that generate a value for each 

location on the board, with higher values representing a more highly recommended 

move. These values are entered into a matrix representing the board locations. These 

matrices are then normalized and combined non-linearly using GA-evolved weights. 

The summation network architecture, shown in Figure I, resembles a neural network 

in that the resulting matrix of values is generated from a weighted sum of a set of 

weighted sums. The resulting move to play will then be either the highest value in the 

matrix or chosen probabilistically with higher values receiving a greater probability 

of being chosen. 

Thus, the Goal is to investigate the novel multiagent approach to playing Go, 

where as more agents are added and evolved, the program plays better and simple 

agents can be used to achieve collective performance. The agents have specific and 

well-defined expertise, i.e., a clear focus. 

This paper is organized into five sections. Section 2 begins with information 

about the game of Go, including the rules of the game, a few direct implications of 

the rules, basic concepts, how to score a game, and how players are ranked. This is 

followed by a description of some techniques relevant to this paper. Following these, 

the applications of AI to games, and in particular, to the game of Go are discussed. 

Section 3 explores the design of the AI program written for this paper, providing a 

top-level view ofthe·program's architecture. In Section 4 the experiments performed 

along with their results are presented. Section 5 concludes this paper. 
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2. BACKGROUND AND RELATED WORK 

2.1 The Game of Go 

Multi-Agent Approach to the Game 
of Go using Genetic Algorithms 

The game of Go (also called Goe, iGo, baduk, wei-chi, weichi, weiqi, wei-qi, 

etc.) is a board game played by two opponents on a, 19x19 grid. Go is a game of 

perfect information, i.e., players can see the entire state of the game at all times. No 

guessing or probability is involved as in such games as backgammon or bridge, 

which have uncertainty and hidden state, respectively. The players take turns placing 

pieces called stones on intersections on the board. The game continues until both 

players pass their turns in succession. No stone can be moved unless it is captured 

(as explained later), and all stones are completely equal in power. 

2.1. I Surrounding Territory. The Goal of the game is to surround more territory 

than one's opponent with a secondary Goal of capturing the opponent's stones. Each 

surrounded intersection or captured stone is worth one point. An exception exists 

when a stalemate condition arises, as explained later. In general, surrounding 

territory is considered much more important by anyone versed in Go. Figure 2a 

shows three examples of surrounded territory: The black group on the left surrounds 

nine points, the white group surrounds four points, and the right-most black group 

surrounds two points. 

2.1.2 Capturing. The secondary way to gain points is by capturing the stones of the 

opponent. To capture a single stone, one must play on all adjacent intersection points 

that are at right angles to the stone(s) to be captured. Figure 2b shows three examples of 

a white stone about to be captured by a black stone if black were to play on the 

locations marked A. To capture groups one must play on all the liberties of the group, 

where a liberty is an empty location adjacent to a group. A group is defined as a set of 

stones that connect adjacently to each other through the straight lines on the board, and 

diagonals do not count. Figure 3a shows an example board where white could play at 

the location marked A to capture ten black stones. On the other hand, black could 

play at A to capture four white stones. If white were to play at location B in Figure 

3b, then white would only capture seven stones. 

2.1.3 Eyes. Any group is unconditionally safe if it can partition itself into at least 

two sections (also called eyes). The two rightmost groups in Figure 2a have two eyes 

each. If the opponent plays in an eye with a single intersection inside that eye, then it 

commits suicide, as all of its liberties are taken. If the eyes are too big, one's opponent 

could create a living group inside an eye and then the eye could become useless. 
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(a) (b) 

Fig. 2: (a) Surrounded territory; (b) White stones to be captured next move. 

(a) (b) 

Fig. 3: (a) Capturing; (b) Capturing II 

2.1.4 Live and dead stones. Surrounding territory is crucial while playing Go, 

but there is an important twist that can make what seems like one's territory actually 

become the opponent's. At the end of the game, after both sides pass in succession, if 

a group of stones could not survive an attack (it does not have two eyes or the ability 

to make them if pressed), then that group is removed from the board and given to the 

opponent. With experience, one learns how to identify dead groups of stones, and if 

a disagreement arises about whether a group is alive, then the game continues. Figure 

4a shows a group that is dead and the resulting board fragnent after it is removed. 

• 
fit 

So 

@t 
S1 

• fit 
S2 • (a) (b) (c) 

Fig. 4: (a) Dead group; (b) Without the Ko rule; (c) Seki. 
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2.1.5 Rule of ko. An important concept in Go is that of the rule ofko stating that 

no board state may be repeated, i.e., livelock is not allowed to occur. The sequence 

of plays in Figure 4b illustrates an example of what could happen without this rule. 

The first move by white (80---+ 81) captures a black stone, while the second move 

(S1---+S2) captures a white stone. This second move (S 1---+S2) is illegal, and black 

must play somewhere else. Without the ko rule, a livelock situation would arise and 

both sides would continually gain the srure number of stones. 

2.1.6 Seki (Stalemate). Seki can be viewed as a localized stalemate condition. In 

Go, there are situations when neither side can count a territory because both sides 

would have dead groups if they played first. Figure 4c illustrates this condition. If 

white's tum, it could not play at A (suicide), while playing at C would fill in its own 

eye. The only option is for white to play at B, but that would allow black to play ate 

on the next tum, capturing the white group. Likewise, if it were black's tum to play, 

C would be suicide and A would be filling in its own eye. Black's play at B would 

allow the small group to be killed with a white play atA. Thus, locations A, B, and C 

are not counted as territory. 

2.1.7 Scoring. Many variations exist for scoring finished Go games, but for 

simplicity a player's score is calculated by first removing dead groups (which 

become prisoners), then counting the number of captured prisoners, and finally 

counting the number of intersections completely surrounded by one's own color. In 

many games the person to play second may get additional points called a komi to 

compensate for going second, which can vary from 0.5 to 5.5 points. 

2.1.8 Other board sizes. Go can be played on boards of any size, but historically, 

games have been played on boards of size, 19, 17, 13, and 9 (361, 289, 169, and 81 

intersections, respectively). Size 9 is used to teach beginners and is often used in 

computer Go games, because of its smaller search space. 

2.1.9 Go player ranking. Go has a well standardized hierarchy of skill levels 

that allows players to compete on a fairly equal basis with standardized handicaps. A 

complete beginner that has played a game and knows the rules starts off at 30 kyu. 

The scale progresses to one kyu which is the best kyu ranking one can attain. After 

this, the scale continues at one dan up to nine dan, the highest amateur ranking 

possible. For the kyu ranks, lower values imply a better player, while for the dan 

ranks, higher values imply a better player. Professionals rank themselves on the dan 

scale as well from one to nine, but their rankings are usually considered stronger. 

Different countries and groups may not completely coincide with each other on 
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strength. For example, a Korean eight kyu might not be equal to a British eight kyu. 

Computer programs are often given honorary diplomas of a certain level, but this can 

be misleading as programs play well but make significant mistakes at times. 

2.2 Relevant Al and Computational Techniques 

Numerous AI and computational techniques have been applied to Go programs, 

including search techniques, neural networks, thread pools, multiagent systems, and 

GAs (Nichols et al. 1998; Stuart et al. 1995; Wooldridge, 1999). 

2.2.1 Search techniques. Many search techniques are variations on breadth-first 

or depth-first search, including uniform-cost, iterative deepening, bidirectional, and 

depth-limited searches. Canonical breadth-first search expands a new tree layer at 

each iteration, whereas depth-first search expands one element from the next layer at 

every iteration. Uniform-cost search expands the next cheapest node at each 

iteration; and iterative deepening search is breadth-first with the number of layers 

increased at each iteration. Bidirectional search attempts to search from both the 

Goal and the starting state simultaneously. Finally, depth-limited search includes a 

provision for the maximum depth that will be searched before backing up. 

These search methods can be improved upon by incorporating knowledge about 

the problem space to help make the search more efficient. The simplest informed 

method is a greedy search that always expands the node that appears closest to the 

solution. Another method is A* and its close relative IDA" (Iterative Deepening A*) 

(Stuart et al. 1995). In A• the next node to be expanded is the node that has the 

lowest value for a variable defined as the cost from the initial node to the current 

node plus the estimated cost of the best path to the goal. 

2.2.2 Neural networks. A neural network can be viewed as a random search 

method that yields a mapping function that may not be found by more traditional 

methods. Neural networks are often composed of multiple layers of neurons, and 

each neuron in each layer can be connected to the neurons in the immediately 

adjacent layer. Each connection has a weight (strength) associated with it, and each 

input neuron receives some part of an input signal which is passed through a non­

linear activation function that determines if the neuron fires. A neuron that fires has 

its output signal multiplied by the weights which is then directed into all the 

connected neurons in the next layer. Each neuron in this layer receives a signal from 

each input neuron, and these signals are then summed and once-again passed through 
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an activation function to determine its output. This process continues for all neurons 

in all layers until an output is received at the output layer. 

Many paradigms exist for training neural networks, and the most common is the 

backpropagation technique that compares the output of the network with a correct 

training example. The error between the expected and actual output is propagated 

backward through the network to modify the weights between the neurons. Other 

methods exist to modify the weights (Valluru Rao & Hayagriva, 1995). The 

applicability of neural networks is influenced by such factors as the number of 

neurons, the number of layers, connections within a layer, connections back to 

previous layers, the training data, the learning rate, and the training method. Much 

trial-and-error is involved in neural network design. 

2.2.3 Multiagent systems. Although there is much disagreement on the exact 

definition of an agent, most agree that agents are indeed autonomous. An agent has 

been defined as" . .. a computer system that is situated in some environment, and that 

is capable of autonomous action in the environment in order to meet its design 

objectives" (Wooldridge, 1999). Intelligent agents have the characteristics of agents 

but also have intelligent traits such as reactivity, pro-activeness, and social ability. A 

robot capable of interacting in its environment might be considered an intelligent 

agent, whereas a home thermostat would not. 

A number of issues must be addressed to build a multiagent system, such as 

what kind of information the agent will have about its environment. A computer 

program running a single thread for each agent is quite different from a robot 

traversing polar ice-sheets. Is the environment real or virtual? Will the agent receive 

all inputs through a socket, via shared memory, or by way of an external bump 

sensor? All of these questions are important to designing a multiagent system. 

Closely related to this concept of an agent's environment is the idea of an ontology 

which is, " ... a specification of the objects, concepts, and relationships in an area of 

interest' (Wooldridge, 1999). All agents must exist within some framework. 

Distributed agents may communicate over a wireless network or with physical means 

such as actual speech. Languages and protocols exist for agent communication 

(Huhns & Stephens, 1999). 

Agents interact to be effective. Agents can be cooperative or self-interested 

which would lead to different types of agent interactions. Cooperative agents may 

actually negotiate an agreed upon goal, whereas self-interested agents might achieve 

their own goals, leading to a net eenefit to at least themselves. 
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2.2.4 Genetic algorithms. Genetic algorithms are search methods based on 

simulated evolution in an attempt to find a solution or goal for a particular problem 

(Mitchell, 1999). Essentially, a GA begins with a set of random chromosomes of 

alleles. These "arrays of bits" are translated into parameters or data that can then be 

tested to see how well they approximate the solution that is being sought. The 

function that determines how well an individual chromosome performs is called a 

fitness function. The fitness of each chromosome is calculated and pairs of 

chromosomes are selected, with those with higher fitness values more likely to be 

picked. These pairs undergo crossover and/or mutation. The resulting chromosomes 

become new members of the population. This process is repeated until a 

chromosome with some minimum fitness is found, or reaching a maximum number 

of generations. 

The efficacy of using GAs relies heavily on the choice of fitness function, the 

size of each generation, the maximum number of generations, the crossover rate, the 

mutation rate, and sometimes a scaling factor (Goldberg, 1989). Many variations 

have been proposed that modify the basic GA paradigm, such as a co-evolution 

method that evolves two separate populations that compete with each other after 

each generation (Rosin & Belew, 1995). This is analogous to different species 

competing in the real world. 

2.2.5 Thread Pools. Although not an AI technique, the concept of thread pools 

is related to this work. Thread pools begin with a finite number of threads, each 

capable of doing some work. When it becomes available, work is given to a thread in 

the thread pool. If there is more work to do than threads available, then the work 

must wait to be done. This method saves some overhead because each time work 

must be done, the operating system does not need to create and destroy a new thread 

which can take much time. A problem with this method is that an optimal number of 

threads to start within the pool must be determined. The number of processors, the 

complexity of the problem, and the amount of work to be done all affect the 

usefulness and size of thread pools. 

2.3 AI and Games 

Artificial intelligence techniques have been applied to the development of game 

playing programs, particularly two-person games of perfect information. One such 

technique, namely Minimax search, involves enumerating all possible moves for one 

player, followed by enumerating every possible response to each of these moves. 
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This process is continued until all the leaves of the tree represent final game states. A 

tree such as this allows the program to play a game perfectly, but for all but the most 

trivial games this approach requires too much time and memory. As a compromise, 

programmers can allow the tree to expand to a certain level and then assign an 

estimate of the quality of the game state using an evaluation function. At any point, 

the minimax tree allows the picking of the best move assuming the evaluation 

function is accurate. The issue is that the evaluation function only approximates the 

quality of a position and could be difficult to evaluate. 

The alpha-beta pruning techniques address this inefficiency by keeping track of 

the highest and lowest evaluation values. Assuming that players always play the best 

move possible, one can prune tree branches that are worse than some other possible 

move that the algorithm has seen before. For example, while performing a depth-first 

search one finds that one player can achieve an evaluation of nine. Then, deeper in 

the search, a possible sequence of moves leads to a value of five. The subtree with 

the value five will be pruned and no further moves from that path will be considered. 

This method always returns the same value as pure minimax search with depth­

limitation, so it is often used. 

Games of perfect information such as Reversi, Pente, checkers, chess, and go~ 

moku can derive benefits from AI techniques. The main difference between these 

games and Go lays in their branching factors and the manner in which each piece 

affects other pieces. Reversi, checkers, and chess all have relatively small branching 

factors, making them much more conducive to alpha-beta search with move-ordering 

and other advanced pruning techniques. For example, minimax search with alpha­

beta pruning can be improved by ordering the moves at each node in the search tree 

in an attempt to allow pruning to remove more nodes (Norvig, 1992). This ordering 

can be accomplished if certain locations on the board are more advantageous than 

others, i.e., better moves are placed first. Pente and go-moku have branching factors 

similar to Go, but have much simpler interactions between the pieces. 

Another useful technique is generating abstract heuristic values that are relevant to 

the game, such as mobility in the game of Othello or pawn structure in the game of 

chess (Norvig, 1992). Go, for example, has potential candidates for approaches of this 

nature, such as thickness and good shape that describe abstract concepts that relate to 

good moves. In Go, one should build thickness and make good shape. Another method 

is forward pruning, which requires a function that removes obviously poor moves from 

the search but is difficult to do and very subjective. Although out of favor as a rigorous 
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method, this approach is a necessity for games with large branching factors. Programs 

that think while the opponent is playing can gain some advantage, and the use of board 

hashing and opening book databases can help the programs' strengths as well. Also, 

exhaustive searching near the end of a game can be an option for some games such as 

Othello, but may not be feasible in Go. 

2.4 AI and Go 

2.4.1 Search space. The number of possible states on a Go board of size, 19 is 

319
' ~l.74xl0172 as there are 192 intersections on the board, and each location has 

three possible states of black, white, or empty. Although many states are very 

unlikely to occur, and accounting for symmetries (color-inversion, rotational, 

reflection) and that the numbers of stones of each color are usually roughly the same, 

the size of the search space is extremely large. One of the greatest difficulties in 

programming Go is the immense branching factor in the game. The first move in a 

game of Go can be any one of 192 = 361 moves, whereas chess has only 20 initial 

moves and Reversi has only four initial moves. Although the number of possible 

moves fluctuates as play progresses, these games cannot be compared with the order 

of magnitude difference in the branching factor of Go. Chess has 20 x 20 = 400 game 
states after the first two moves, while Go has 192 x (192 -1)=129,960 game states. 

Including a third move brings chess up to approximately 10,000 states, whereas Go 

has 46,655,640 states. This illustrates why Go cannot be played well by brute force. 

2.4.2 Neural network techniques for Go. Many researchers have used neural 

networks to play Go, including neural networks with GA-evolved weights. One 

approach created an architecture for a program called Neurogo that evaluated the 

board using a neural network with backpropagation and temporal difference learning 

(Enzenberger, 1996). The network received its input from a feature expert while a 

relation expert controlled the connections between the network layers. An external 

expert was included that could override the network's output for a small class of 

problems. The novel idea was using experts to extract features from the gobans­

another term for go boards. 

Neural networks have also been used evolved using GAs (Donnelly et al. 1998). 

A 9x9 board was used along with a three layer non-recurrent network. It was 

postulated that recurrent networks with more than a single hidden layer might be 

better suited for the non-linearities of Go. The experiments consisted of generating a 

population of 32 networks that played against each other. The network winning the 
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most games overwrote the network that lost the most at the end of the cycle. The 

networks were used to evaluate the quality of a given position which was 

accomplished via a single output neuron and a set of input neurons that derived their 

inputs directly from the goban. Each location on the board corresponded to three 

individual input neurons (white, black, and empty). The resulting input layer had 

9 x 9 x 3 = 243 neurons. The networks were found to slowly get better but still played 

poorly compared with modem Go programs. 

2.4.3 Traditional techniques in Go programs. Certain Go programs do not use 

any soft computing technique, i.e., the programs do not rely on learning, GAs, neural 

networks, cellular automatons, or other similar approaches. In one approach to Go, 

moves were generated by first enumerating possible moves based on small, local 

views of the goban (Muller, 1999). These moves are filtered, ordered, checked, and 

refiltered, and the best move was executed. If a ko ensued, then a special ko module 

was called. If no move survived this process, then the program passed. At the core of 

this approach was a pattern-matching database that used Patricia trees-a method 

normally used to search large text databases like dictionaries. This program 

contained about 3000 patterns. This reflects a prominent trend across many Go 

programs: they often rely heavily on vast databases of patterns that have been built 

manually. These pattern databases make these programs better; however, the 

implementation oftlrese databases is not a trivial task. The possibility does remain of 

learning patterns as the program plays. 

Another prominent program, The Many Faces of Go, had an opening move 

database containing around 45,000 moves and a pattern database of about 1,000 

patterns (Fotland, 1993). This program contained a rule-based expert system with 

around 200 rules used to suggest moves to look into further. Additionally, dynamic 

knowledge was stored about the state of the board. 

These traditional techniques represent some prominent themes in most strong 

Go programs: they construct meta-data based on the state of the board and use this 

meta-data along with large databases of patterns to decide on mov.es. Rarely does 

learning or extensive minimax-style search play a role in the skill of these games. 

2.4.4 GA techniques for Go. Many attempts have been made to build a program 

that plays Go by using GAs. In one approach, GAs were used to evolve a Go evaluation 

function for 7x7 boards ( da Silva, 1996). The evaluation function worked by attempting 

to translate a given board into a new board that represented the final configuration of 

the game. The -evaluation function then looked at who won to calculate the fitness. 
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Essentially, the GA attempted to evolve an evaluation function that could be used in 

minimax searches with alpha-beta pruning. The evolved parameters were a set of low­

level functions that performed simple calculations based on the board state. These 

functions, organized as the chromosome dictates, produced what was called an S­

expression-a significant component of calculating a board evaluation and consequently 

the fitness. This approach yielded a player that on average never defeated an opponent 

called Wally, a freely available public domain Go program. 

In another approach, a program was written using GAs to play Go (Greenberg, 

2001). Knowledge in this program was represented by triples similar to Prolog 

predicates; and these statements could be nested. Each variable comprised a board 

location, the color (white, black, or empty), and the action to take (move, pass, or 

resign). Although this possibly layered traversal of the statements, moves were 

chosen. The program, " ... was very poor at breeding individuals that could match. 

And when it did, the individual would often resign after but a few moves". 

Researchers have used GA and the game of Go to create algorithms that 

incorporate qualities of true human experts (Kojima et al. 1997). One inclusion was 

to incorporate useful but infrequently used rules, and another was to model 

ecological systems. The ecologic models dictated that many species coexist. The 

idea was that species live together in an environment, yet they can be radically 

different. Rules, in their system, increased in number and ate virtual food. Rules 

whose activations decreased to zero, died, whereas rules whose activations became 

too high split into the original rule and a more specific rule. A training datum was 

considered food, which was eaten by a rule that matched it; the activation value of 

the rule then increased. The GA was used entirely to evolve rules based on patterns 

found on the board. The playing skill of the program was not reported, but the rules 

that the program generated were shown to Go experts. The experts determined that 

about 42% of the rules were good, 21 % were average, and 3 7% were bad. 

2.4.5 Other techniques and hybrids. One approach is based on a system that 

evolves neural networks to play Go by using GAs (Richards et al. 1998). The program, 

called SANE, started with no prior Go knowledge. The process evolved individual 

neurons using- crossover mutations and random point mutations. Each neuron was 

defined as a set of bits that described connections and the connection weights. Each 

neuron had a fixed number of connections, but each connection could be attached to 

either the output or the input layer. Network blueprints (sets of neurons that work well 

together) were also evolved along with the individual neurons. Entire networks were 
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evolved based on the final state of the game rather than assigning credit to individual 

moves. One could argue, however, that perhaps game records between two masters 

represent on average the best move at each point in the game. 

The evolution of neural networks on a variant of the SANE architecture that 

evolves individual neurons, but evaluates the fitness of entire networks is presented 

in (Daniel & Risto Miikkulainen.2000). In addition, blueprints evolved. These 

neurons are only for the single hidden layer of the network. SANE has been shown to 

work well in continuous domains and gamesthat have hidden state information. 

3. METHODOLOGY 

The approach proposed in this paper consists of a three layer summation 

network with each layer fully connected to its adjacent layers. Each connection is 

characterized by an integer weight, and each node's sums arrays. These arrays each 

contain an element that corresponds to a location on the board (a one-to-one 

mapping). The cornerstone of this design is to evolve these weights using GA, thus 

each chromosome specifies a set of integer weights for the summation network. The 

initial inputs to the network are the outµJts from the individual agents. 

3.1 Design Overview 

The system provides the end user with the ability to run regressions, evolve a GA 

player using stored game training sets, and play a human player with extensibility in 

mind to allow future integration with IGS (Internet Go Server) and gomodem (a 

protocol for serial communication between two computers, each playing Go). The 

software was designed according to the object-oriented paradigm and consists of a 

moderator that allows two move generation classes (called interfaces) to play against 

each other. Through this abstract interface class, an ASCII text player was developed 

that interfaces with a human user, a simple PerVfk interface that also interfaces with a 

human user, a GA player, and a GA trainer that is designed to play against the GA 

player in order to calculate the fitness of the GA player. 

3.2 Stone, Board, and Game Classes 

The stone class represents a single location on the goban, which was implemented 

with speed as the primary concern. It uses bit operations to test various traits of a 

location such as if the location has a black stone or a white stone. It also has functions 
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that test if the location is on an edge. The next layer of abstraction encapsulates the 

concept of a board, which is a one-dimensional array of stones. A one-dimensional 

array was chosen to speed up board manipulations by reducing the need for pointer 

arithmetic that is required in multi-array offset calculations. On top of the board 

abstraction there is a game class that stores a linked list of boards and keeps track of 

which side's tum it is. The game class enforces certain optional rules like whether to 

allow suicide and also provides such functions as play a move and legal. 

3.3 User Interfaces 

The software contains two distinct user interfaces, namely, a text interface and a 

graphical user interface (GUI). The text interface displays the goban using ASCII 

characters with a # representing black and an o representing white. Figure 5a shows 

an ASCII board for a 9x9 game. This interface is useful when visual appeal is not an 

issue, such as testing code. The other interface is a GUI interface that uses an 

external Perl/Tk program to display the goban. Figure 5b shows a screen shot. This 

interface is important for playing games against the program, as a graphical board is 

easier to interact with. This interface allowed for a quicker way to play with the 

program in an attempt to test and correct the defects. 

3.4 Genetic Algorithm 

The code for performing GAs was originally based on Goldberg (1989), converted 

to C++, and syntactically modified to better suit an object-oriented approach. The GA 

_A_B_C_D_E_F_G_H_J_ 
91 . # # # I 9 
81 # # # # # 0 0 0 0 I 8 
71 0 0 0 0 0 0 0 0 0 I 7 • • • • 61 0 # # 0 0 I 6 • • • 51 # # # I 5 •• • 
41 # I 4 
31 # I 3 
21 # I 2 

• • • • • • • •• • 11 I 1 •• • _A_B_C_O_E_F_G_H_J_ 

(a) (b) 

Fig. 5: (a) An ASCII board; (b) Graphical user interface screen shot. 

157 



Vol. 18, No. 1-2, 2009 Multi-Agent Approach to the Game 
of Go using Genetic Algorithms 

code allows for the choice of fitness functions. The program keeps statistics on the 

performance of the GA and tracts the minimum, maximum, sum, average, variance, 

and standard deviation of the fitness values from each generation. The F-test and T­

test values are computed for each generation and compared with the initial 

generation. The F-test calculates whether two distributions have significantly 

different variances. The (Student's) T-test measures whether two distributions have 

significantly different means. Two versions of the T-test were used for distributions 

with statistically different variances and statistically identical variances. The best 

chromosome is extracted following the calculation of the fitness values from the last 

generation and used to configure the GA player, which then plays against an 

opponent that serves as a trainer. The trainer plays its moves based entirely on 

recorded games. The GA player is further tested by a similar trainer opponent, but 

this time with a different set ofrecorded games. 

3.5 Moderator 

The moderator essentially loads two move generators, which can be from a user 

interface, a random move generator, or a GA player, and also a GA trainer. The 

moderator is multi-threaded (multiple concurrent processes), allowing a thread for 

each move generator. This design allows both sides to have processing time 

throughout the entire game-not j.ust during one side's turn. Message passing is used 

to allow communication between the moderator and the two movegenerators. 

The probability board stores an array of values which correspond with the 

locations on the goban. The semantics are such that the values at each element 

represent how highly that location is valued as a possible next move. Each agent 

constructs one of these, and a function was implemented to choose a move 

probabilistically, and another function was implemented to facilitate the addition of 

two or more of the boards togeth.er, each from a potentially difference source. 

3.6 Agent Network Architecture 

The GA player uses a thread pool to run multiple agents where each agent 

generates a numerical value for each board location. These arrays are multiplied by 

GA-evolved weights, added together, normalized, and fed through a second layer of 

summation nodes. The resulting array is then normalized. The highest value in the 

resulting array then becomes the move to be played. This process can be described 

as follows: 
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• 

• 

• 

• 

• 

Each of N agents computes a value for ~ach location on the goban. This 

probability board is a vector and is denoted as where is the agent number. 

Each of the K second level nodes yk sum all /Jn values multiplied by a scalar 
N 

value wk . Thus, r = ""'w f3 
,n k L..J k,11 n 

n=O 

These yk are vectors that are then normalized so that the values add up to 1 in 

each vector, unless all values in a vector are zero, in which case they are left that 

way. 

These normalized y vectors are then multiplied by a second set of weights and 
K 

added together: & = L wkrk 
k=O 

This final vector, e, is normalized and represents a distribution of which move 

to play. The first highest value is then chosen. 

This approach theoretically allows for a large number of agents, limited 

primarily by the size of the thread pool and the number of processors available to the 

program. A major goal of this project was to create a design that was scalable and 

could benefit from a highly parallel machine. Although scalability was not tested, the 

possibility of adding more agents could easily be realized. Figuring out what each 

agent would do could become a significant bottleneck, though. 

3. 7 Genetic Algorithm Trainer 

The move generator was designed to play against the GA player. The move 

generator reads a sequence of moves from a data file that is derived from recorded 

games of professionals in the public domain. The move generator sets up the board 

and then allows the GA player to play. After the GA player has played, the trainer 

resets the game state to exactly the way the professional actually played in the game 

record. The colors on the board are flipped, and the GA player is allowed to play 

again. The colors are flipped to allow the GA player, which plays a single color, to 

gain benefit from the both players rather than only one 

3.8 Genetic Algorithm Player 

The GA player loads the parameters for the weights in the summation network 

and computes the move to play by running the agents, filtering their values through 

the summation network, and then picking either the first highest value or normalizing 
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and then choosing the move probabilistically. The fitness is calculated by setting up 

a goban, as dictated by stored games from the Internet. The fitness of the GA player 

is the percentage of moves correctly played. Many other GA Go programs calculate 

fitness by using some variation of attempting to guess how the current board 

configuration relates to the final division of points at the end of the game. This 

approach sidesteps this difficulty which relates closely with the difficulty of scoring 

a finished game. 

3.9 Agents 

Six different agents are designed and implemented, where they choose moves in 

significantly different ways. These includethe following: 

a. a random agent that plays random legal moves, 

b. a follower agent that tries to play close to the opponent, 

c. an opener agent that plays in the locations usually played in at the beginning of a 

game, 

d. a capture agent that attempts to kill groups by reducing other groups' liberties, 

e. an agent that attempts to create a strong configuration known as a tiger's mouth, 

and 

f. an extension agent that favors moves close to the friendly stones. 

The random agent plays random legal moves and is developed to allow the 

testing of code that directly uses the agents and to allow the testing of the code that 

lets the agents interact. Additionally, the random agent is used as a baseline for 

comparison with other agents. The standard by which the success of the GA is 

judged is the set of five random agents. 

The follower agent prefers playing on locations adjacent to opponent stones. As 

is often found in games of Go, many good moves are often near opponent stones, 

i.e., attacking them. Playing close to opponent stones not only attacks them, but also 

attempts to push the opponent group in the opposite direction. 

The opener agent suggests moves around the perimeter of the board near the 

third or fourth row. The values decrease the further the game progresses. The 

reasoning behind this type of agent is that at the very beginning of most games, 

stones are played near the edges and sides because this is where it is easiest to make 

territory. In a comer, one only has to worry about attacks from two directions. On a 
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side, attacks are only possible from three directions, whereas in the middle, attacks 

can be made from all directions. These considerations justify having an opener agent. 

The capturer agent attempts to capture opponent stones by filling in their last 

liberties. This agent has no knowledge of living or dead groups, thus it plays by 

calculating which groups have one or two liberties left and then plays in those 

liberties. This agent does not take into account moves that would reduce a friendly 

group's liberty count down to one. This agent would play a move that reduces an 

opponent's group to a single liberty while that move may allow the opponent to 

capture a friendly group on the next turn. 

The tiger's mouth agent attempts to create a powerful configuration called a 

tiger's mouth. This formation retains the same name regardless of all symmetries. 

This configuration is considered strong because it allows three stones to not be 

connected while retaining the ability to become connected by playing in the center 

location. Another strength is that if an opponent stone tries to keep these stones from 

connecting, then that opponent stone can be captured on the next tum if it is not part 

of another group. The versatility of this formation provides justification for the 

inclusion of this agent. 

The extension agent plays many of the common extensions. Each type of 

extension has a different weight (or value) that is derived from the GA chromosome. 

The extension agent is also the only agent that uses alleles from the chromosomes to 

set these internal values. The alleles specify the relative value of each extension type. 

These extensions are shown in Figure 6. 

4. EXPERIMENTS AND RESULTS 

The experiments and their results show the successful evolution of summation 

network weights for a multiagent approach to playing Go. The key point is that 

I I I I 
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Fig. 6: Extensions 
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although each individual agent may play poorly, the agents playing together actually 

play better. Random search using a GA finds weights for the summation network that 

improve over multiple generations. The fitness function for the experiments uses 

recorded games from 9x9 games between professionals from the public domain that 

occurred between, 1995 and 2000 on an international Go server (Anonymous 2001). 

4.1 Individual Agent Experiments 

The GA was run for a number generations with the program configured to use 

only a single agent. These agents were the random, follower, opener, capturer, tiger's 

mouth, and the extension agents. In each case, the populations contained I 0 

individuals. Such a small population and small number of generations were used 

because no major changes were observed when these parameters were set to higher 

values, and because of the large amount of time it took to run the GAs with this 

configuration. These runs took around three days on a dual-processor, l .2GHz 

computer. The crossover value was 40% with a mutation probability of 0.0333. The 

F-multiplier was 2. The random agent was used as a baseline. After evolution, the 

best individual in the final population was used to play against a testing data-set 

which consisted of game records that were different from those used for training. 

4.1.1 Opener Agent. Figure 7 shows the results of the GA run using only the 

opener agent. Because the evolved weights are not used if a single agent is used, the 

fitness values did not change. The best chromosome of the last generation chose 

1.14% of the training moves correctly and 1.55% of the testing moves correctly. 

Considering that this agent was designed to play opening moves, that it fared poorly 

is not a surprise. 

4.1.2 Single Random Agent. The single randomly playing agent did not fare well. 

Since the random agent always picks legal moves, the number of possible moves near 

the end of any game becomes smaller, which increases the likelihood that a random 

guess would be correct. The random agent is not actually randomly choosing locations 

to play, but instead assigns the same value for every legal position. The final resulting 

probability board contains an array of values, which in this case would all be the same. 

The program can be configured to either pick the first highest or to pick one 

probabilistically. For these experiment-and all of the others-the former method was 

used. The result is that the first legal move is always chosen, which ends up being 

correct a static number of times. The testing data yielded 0.62% correct moves because 

choosing the same legal location is correct a certain nUll'ber of times. 
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4.1.3 Extension Agent. The extension agent has internal parameters that derive 

their values from the evolved chromosomes. Figure 8 shows the results of the GA 

run using only the extension agent. As the generations progressed, the mean fitness 

and the maximum fitness increased. Additionally, the minimum fitness had a net 

decrease of 0.0301. The F-test predicted that the first and the final generations had 

insignificantly different variances. The T-test was used to predict with a probability 

filne$S By Generation (Opener Agent) 
0.2 ·----r··-·-·--r----1······--··----,...-----r---·-·-··r--·-··-1-·-··----

0.15 • 

I 0.1 

0.05 

...... _____ _.._ __ ,. ........ .,.__ ...... --+---·--..................... ____ ... _____ ............. _ ........ 4-----
0 

0 2 3 4 

Generation 

Fig. 7: GA with the opener agent. 
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of 99.9642% that the improvement was real, i.e., not a result of chance. The best 

chromosome of the last generation chose 5.2% of the training moves correctly and 

3.8% of the testing moves correctly. 

4.1.4 Other Agents. The results for the capturer agent did not improve because 

this agent lacks internal parameters that could benefit from evolution. The best 

chromosome from the last generation correctly determined 7.8% of the training and 

4.0% of the testing moves. For the follower agent, the best chromosome of the last 

generation correctly determined 4.2% of the training and 3.3% of the testing moves. 

In case of the tiger's mouth agent, the best chromosome from correctly determined 

2.4% of the training and 2.2% of the testing moves. 

4.2 Multiagent Experiments 

The multiagent experiments were similar to the individual agent experiments 

with the exception that in these cases the program was run with all of the agents at 

once, excluding the random agent. A separate run that included five random agents 

was used as a baseline for comparisons. Not surprisingly, the GA configured with 

five identical random legal move generating agents performed rather poorly. The 

results, shown in Figure 9, were nearly identical to those resulting from the single 

random agent. 
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Fig. 10: GA with all agents. 

Figure 10 shows the results of the algorithm using five agents, loaded in the 

following order: opener, tiger's mouth, capturer, follower, and extension agents. 

Three hidden-layer nodes were used, and each generation had 10 individuals. 

Initially, the maximum fitness was 0.0881 and the mean fitness was 0.0537. By the 

final generation, the maximum fitness had risen to 0.14 and the mean fitness had 

risen to 0.0798. The question then becomes one of deciding if this difference should 

be attributed to chance or to actual improvement. Using the F-test, the difference in 

the variances-was not significant. The T-test value of the final generation was -4.23, 

which implied a probability of 0.000504 that these results were from chance and not 

from a different population as the initial population, i.e., the confidence interval was 

99.95% that the difference in the means was significant. The best chromosome from 

the final generation determined 10.2% of the moves correct while it got 5.6% of the 

testing set correct. Additional experiments were performed with multiagent 

configuration with a population size of 100. All parameters were the same as for the 

smaller multiagent configuration except for the population size. The results were 

similar to those obtained from the smaller multiagent experiments. 
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Fig. 11: Agent comparison. 

Figure 11 shows a comparison of the best fitness values achieved by all agent 

configurations. The randomly playing agent played the poorest, and the two 

configurations that could benefit from the GA (extension agent and the multiagent 

systems) actually did. The testing data showed some variability, and in some cases 

an agent that performed better on the training data did worse on the testing data. 

Overall, there was a benefit in using the GA to evolve Go player multiagent systems. 

CONCLUSION 

We found that a multiagent approach using a summation network does indeed 

yield a viable Go player. Furthermore, improvements were gained over the course of 

multiple generations. In addition to these results, a unique approach to playing Go 

was demonstrated. We showed that it is feasible to build a system that plays Go 

using probabilistic methods incorporating multiple agents whose interactions (the 

summation network) have been evolved or learned in some way. This approach 

shows that it may be possible to break down certain large intractable problems and 

use genetic algorithms to combine multiple sources of information without knowing 

exactly how the information interacts to form a solution. The presented architecture 
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exemplifies the possibility of trading the ability to fine-tune the behavior of a system 

with the ability to scale the system. 

This approach to playing Go has a number of potential limitations. Foremost, a 

multi-agent approach relies heavily on the ability of the designer to create agents that 

contribute to the skill of the system. Generating good agents is a challenge. Another 

limitation is that genetic algorithms take long periods of time to run. Larger training 

sets, larger testing sets, larger populations, more intricate summation networks, and 

more generations could all help improve the program, but unfortunately all of these 

would contribute to a significantly slower program. 

Although scalability was an important goal, the realization of a massively 

parallel multiagent Go program must be quelled by the prohibitive cost and the 

scarcity of machines with dozens of processors. The future may not hold a limitation 

such as this, but currently it is a real limitation to increasing the number of agents 

extensively. Yet another restrictive aspect of this work was the use of 9x9 boards, as 

experimenting with, 19x 19 boards would have taken too long. Future work includes 

testing larger networks utilizing a larger number of agents, and using larger boards. 

In conclusion, we have shown that a multiagent approach using a summation 

network does indeed yield a viable Go player. Furthermore, improvement was gained 

over the course of multiple generations. Perhaps in the decades to come someone 

will create a Go program that can play at the level of the masters. This is a goal that 

many await patiently. 
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