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A Novel Efficient Algorithm for Locating and 
Tracking Object Parts in Low Resolution Videos 

David 0. Johnson and Arvin Agah 

Abstract. In this paper, a novel efficient algorithm is presented for locating and tracking 
object parts in low resolution videos using Lowe's SIFT keypoints with a nearest neighbor 
object detection approach. Our interest lies in using this information as one step in the 
process of automatically programming service, household, or personal robots to perform 
the skills that are being taught in easily obtainable instructional videos. In the reported 
experiments, the system looked for 14 parts of inanimate and animate objects in 40 natu­
ral outdoor scenes. The scenes were frames from a low-resolution instructional video on 
cleaning golf clubs containing 2,405 frames of 180 by 240 pixels. The system was trained 
using 39 frames that were half-way between the test frames. Despite the low resolution 
quality of the instructional video and occluded training samples, the system achieved a re­
call of 49 % with a precision of 71 % and an Fl of 0.58, which is better than that achieved 
by less demanding applications. In order to verify that the reported results were not de­
pendent on the specific video, the proposed technique was applied to another video and 
the results are reported. 

Keywords. Object detection, object recognition, object tracking, scale-invariant feature 
transform (SIFT), nearest neighbor algorithm. 
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1 Introduction 

Locating and tracking human body parts (e.g., hand, head, and torso) and inani­
mate objects across the frames of a video has applications in areas such as video 
surveillance and multimedia content analysis and retrieval. Our interest lies in 
using this information as one step in the process of automatically programming 
service/household/personal robots to perform the skills that are being taught in 
easily obtainable instructional videos. 

Much work has been done in recognizing stationary objects against stationary 
backgrounds. In this work, still photographs of objects are used to train the system, 
and then the system is used to recognize the objects in still photographs of scenes. 
The scenes usually contain multiple objects, some of which the system is trained 
to recognize. Usually, some of the objects are occluded. Research work has been 
done with surveillance videos in recognizing moving objects (e.g., cars, people) 
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against stationary backgrounds. The challenging subject of this paper is recogniz­
ing moving objects against moving backgrounds. This type of situation usually 
occurs in videos taken with a moving camera. Examples of these types of videos 
are entertainment videos, instructional videos, and surveillance videos where the 
camera is moving. Analysis of these types of videos requires addressing issues 
with blurring caused by camera movement and video compression techniques. In 
addition, camera zooming and panning cause the size and view angle of images 
to change rapidly. Except for the entertainment videos, these types of videos are 
generally of low resolution, which makes object detection even more difficult. We 
are interested in tracking not only the whole objects, but parts of inanimate objects 
(e.g., brush handle and brush bristles) and parts of the human body. This is impor­
tant because, for example, in order to learn how to clean a table top with a brush, 
the robot must be able to recognize that the human in the instructional video has 
grabbed the brush by the handle with his or her hand and then used the brush to 
clean the table top. Schiigerl et al. referred to this as object re-detection, which 
aims at finding occurrences of specific objects in a single video [ 15]. In contrast to 
general object identification, the samples for learning an object are taken directly 
from the video on which the object re-detection is performed. Because of this, 
many of the training samples are occluded, which complicates the training of the 
system. 

Our algorithm locates and tracks object parts in low resolution videos in a num­
ber of steps. First the object parts we want to locate are learned by extracting local 
feature descriptors from images of these objects and storing them in an object 
database. We used SIFT keypoints as defined by Lowe [9] for the descriptors. To 
recognize object parts in a video frame, SIFT keypoints are identified in the video 
frame and matched against the SIFT keypoints in the object database. The best 
matching descriptor pairs are identified using a nearest neighbor approach which 
is explained in detail later. In order to minimize the false-positives, we also use a 
threshold to trim the list of potential matches between the keypoints in the image 
and those in the object database. 

In experiments reported in this paper using this algorithm, the system looked for 
14 parts of inanimate and animate objects in 40 natural outdoor scenes. The scenes 
were frames from a low-resolution instructional video containing 2,405 frames of 
180 by 240 pixels. The system was trained using 39 frames that were half-way 
between the test frames (e.g., frames 30 and 90 were test frames and frame 60 was 
a training frame). Despite the poor quality of the instructional video and occluded 
training samples, the system achieved a recall of 49 % with a precision of 71 % 
and an Fl of 0.58. Fl is the harmonic mean of precision and recall: 

Fl = 2 ·precision· recall/ (precision + recall). (1) 
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In order to verify that the reported results were not dependent on the specific video, 
the proposed technique was applied to another video and the results are reported. 

The current state of art in object recognition uses more sophisticated techniques 
than SIFT features alone, and achieves much higher rates of object detection. 
However, since in our research this is only one step in the process of automatically 
programming robots to perform the skills that are being taught in instructional 
videos, we were looking for a simple, but effective technique. Our results show 
that using only SIFT features we can achieve object detection rates that are better 
than those achieved in less demanding applications where the video resolution is 
higher, fewer objects are detected in each frame, and whole objects instead of parts 
of objects are detected. 

This paper is organized into six sections. Section 2 discusses the related work. 
Section 3 presents our research approach, describing the object recognition algo­
rithms that we employed, the experimental setup, building the required database, 
and the implementation of our object recognition algorithms. Section 4 discusses 
the results of the experiments. Section 5 presents a collection of other methods and 
procedures that were tried, but were not successful. Section 6 concludes the paper, 
with a comparison of the results that were obtained with those of other researchers, 
and includes a brief discussion of the future work. 

2 Related Works 

It was stated in the Interactive Robot Leaming Workshop, The Robotics: Science 
and Systems 2008, held in Zurich, Switzerland in June, 2008 that "Many future ap­
plications for autonomous robots bring them into human environments as helpful 
assistants to untrained users in homes, offices, hospitals, and more. These appli­
cations will often require robots to flexibly adapt to the dynamic needs of human 
users. Rather than being pre-programmed at the factory with a fixed repertoire of 
skills, these personal robots will need to be able to quickly learn how to perform 
new tasks and skills from natural human instruction. Moreover, it is our belief that 
people should not have to learn a new form of interaction in order to teach these 
machines, that the robots should be able to take advantage of communication chan­
nels that are natural and intuitive for the human partner." We are in full agreement 
with that statement. One method by which robots learn from natural human in­
struction is called Robot Programming by Demonstration (RbD), also referred to 
as Learning by Imitation and Programming by Demonstration (PbD). RbD is a 
non-verbal technique, generally used to teach new motor skills to a robot. Billard 
et al. produced an extensive review of RbD [l], including a history ofRbD, the cur­
rent approaches to RbD, and the open issues. Inamura et al. provide an example of 
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RbD with an autonomous robot, using Hidden Markov Models to encode human 
joint trajectories into proto-symbols [6]. Each proto-symbol represented one type 
of motion (e.g., squatting, walking, picking something up, Cossack dancing). In 
their experiments, they were able to show that a HRP-2W humanoid robot could 
learn and demonstrate the proto-symbols by watching a human perform it [6]. In 
their work, the joints of the human teacher were tracked using a wearable motion 
capturing system, which usually does not happen in instructional videos. The goal 
of the research reported in this paper is to use Lowe's SIFT keypoints to identify 
and track the trajectories of objects (e.g., scrub brush, pail of water) and major 
body parts (e.g., hand, head, body) in instructional videos [9]. Then we can use a 
Machine Leaming technique (e.g., Hidden Markov Models) to recognize the tra­
jectories as proto-symbols. 

There are two main approaches to recognizing objects, namely, model-based 
and appearance-based [15]. Model-based approaches use three-dimensional mod­
els to represent an object with geometric features such as lines, vertices and el­
lipses. Appearance-based approaches use local feature descriptors-either texture 
or color-to represent the object. Appearance-based approaches are used because 
they are insensitive to small changes in rotation, scale, and lighting; and they 
work well when the objects are partially occluded. Lowe's Scale-Invariant Feature 
Transform (SIFT) is one of the more widely used texture descriptors [9]. Jensfelt's 
et al. work is a typical example of using a color descriptor [7]. A typical object 
recognition system that works with local feature descriptors performs the recogni­
tion task in a number of steps [15]. First some objects of interest are learned by 
extracting local feature descriptors from images of these objects and storing them 
in an object database. To recognize objects in a test image, local feature descrip­
tors are extracted from the test image and matched against the descriptors in the 
object database. After the best matching descriptor pairs are identified, an optional 
verification step can be performed to decide whether or not an object appears in 
the test image. The algorithm discussed in this paper uses Lowe's SIFT texture 
descriptors. 

As an example of using SIFT to classify images, van de Weijer and Schmid con­
ducted experiments on two data sets [19]: a bird data set containing six classes of 
bird species, with 100 images per species, divided into 300 training and 300 test­
ing images; and a soccer team data set containing images from seven soccer teams, 
with 40 images per team, divided into 25 training and 15 testing images. Both data 
sets consisted of low-quality images obtained from the Internet. They reported 
recalls of 43 % and 55 % on the soccer teams and the birds, respectively. The sig­
nificant differences between their work and ours are: (1) we identified multiple 
objects in a scene, whereas they only identified one (birds or soccer teams); (2) we 
identified parts of whole objects (both people and inanimate objects), whereas they 
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identified whole objects; and (3) they classified an image as belonging to 1 of n 
classes, whereas we located m of n objects in an image. 

Much research has been done on recognizing moving objects against station­
ary backgrounds, especially in the area of video surveillance. Hu et al. surveyed 
185 articles and concluded that the processing framework of visual surveillance 
in dynamic scenes includes the following stages [4]: modeling of environments, 
detection of motion, classification of moving objects, tracking, understanding and 
description of behaviors, human identification, and fusion of data from multiple 
cameras. They reviewed recent developments and general strategies of all these 
stages. The major differences between this type of work and our approach are that 
(1) the background does not usually move in surveillance videos; and (2) surveil­
lance applications are trying to identify larger moving objects (e.g., cars or peo­
ple), whereas, we are trying to identify parts of objects (e.g., brush handle, brush 
bristles, body parts). 

Closer to our approach, Schtigerl et al. proposed an object re-detection approach 
using SIFT and MPEG-7 color descriptors that were extracted around the same 
interest points [15). They evaluated the approach on two different data sets and 
showed that the MPEG-7 Color Layout descriptor performs best of the tested color 
descriptors and that the joint approach yields better results than the use of SIFT 
or color descriptors only. Although Schtigerl et al. reported better results using 
a combination of SIFT and color descriptors, they noted that most local feature 
approaches are only based on textural information, because color descriptors are 
not invariant to different lighting conditions such as shadows or illumination. Due 
to the fact that the lighting conditions varied significantly in our application, we 
chose to use only SIFT descriptors. In their experiments with high resolution 
images, they reported a precision of 75 % and a recall of 46 % on a data set with 
one training sample of a car model and 50 test images using SIFT descriptors 
only. They reported a precision of 70 % and a recall of 32 % on a data set of 
people using only SIFT descriptors. The test data set contained 742 video scenes 
of people walking inside a building and random shots taken from the TRECVID 
test data set, which includes different people in various scenes [17). The significant 
differences between their work and ours are: (1) we identified multiple objects in 
a scene, but they only identified one (cars or people); (2) we used low resolution 
video, while they used high resolution; and (3) we identified parts of whole objects 
(both people and inanimate objects), whereas they identified whole objects. 

Savarese and Fei-Fei proposed a method for identifying parts of objects [13], 
linking together parts of objects using their mutual homographic transformation. 
Each part was defined by a collection of SIFT descriptors that was discovered dur­
ing the training process. The training process included analyzing the object from 
various angles and using homographic transforms to discover the salient parts. 
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They used 48 training images per object (eight viewing angles, three heights and 
three scales). In an eight category classification task where they randomly se­
lected seven object instances ( ~ 280 images) to build the model, and four object 
instances ( ,..__, 70 images) for testing, they reported precision values ranging be­
tween 62 % and 81 %, with an average of 75.65 %. The significant differences 
between their work and ours are: (I) we identified parts of whole objects, but 
they used parts to identify whole objects; (2) we identified moving parts against 
a moving background, while they identified stationary parts against a stationary 
background; (3) we identified parts of human bodies and inanimate objects, but 
they only recognized parts of inanimate objects; ( 4) we identified multiple parts 
of multiple objects in each test scene, whereas they recognized parts of a single 
object. Savarese and Fei-Fei showed that their method outperformed the "bag of 
words model" used by Thomas et al. [18]. Thomas et al. combined the Implicit 
Shape Model for object class detection proposed by Leibe and Schiele [8] with the 
multi-view specific object recognition system of Ferrari et al. [3]. 

Zickler and Efros used SIFT in conjunction with principal component analy­
sis (PCA) and a clustered voting scheme to detect a deformable object (robot) 
in medium resolution videos (320-by-240 pixels captured at 30 frames per sec­
ond) [21]. They reported recall values ranging between 5 % and 100 %. The sig­
nificant differences between their work and ours are: (1) we identified multiple 
objects in a scene, but they only identified one; (2) we identified parts of whole 
objects (both people and inanimate objects), whereas they identified whole ob­
jects; (3) we used low resolution video, while they used a higher resolution. They 
also noted that they achieved high recall values because there was only a small 
inter-class variation in terms of texture. This was because in each case they were 
only trying to detect instances of one model of a robot which, except for the joint 
configurations, were identical in each frame of the video. This is not true with hu­
man body parts, where a high degree of inter-class variation of shape, texture, and 
color exists. Although they did not analyze the performance of their algorithm for 
these types of classes, they hypothesized that their approach would lose some of 
its effectiveness when trained on only a small subset of instances of human body 
parts, as we did in our experiments. 

3 Research Approach 

3.1 Object Recognition Algorithms 

We used SIFT keypoints as defined by Lowe [9] for the descriptors. SIFT key­
points consist of the location (x and y coordinate) of the keypoint in the training 
image, the scale of the keypoint, its orientation in radians, and a 128 dimension de-
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Part/View Distance x Yi 
torsol 504 253 150 i 
right upper arm41 945 118 90 I 

pail of water66 1002 135 132 
torsol 1326 69 47 
pail of water66 1357 126 153 
torsol 1975 164 99 ' 

right upper arm4 l 1992 81 72 
head41 2127 162 93 
torsol 2216 235 31 
pail of water66 2318 227 150 
head3 2946 51 121 
torsol 3457 152 52 
torsol 3586 24 124 
pail of water66 3897 271 126 
torsol 3924 167 97 
torso40 3979 256 152 
torso3 4210 99 143 

Table I. Example of nearest neighbor object recognition algorithm. 

scriptor. The 128 dimension descriptor describes the gradient orientation of the 16 
regions ( 4 by 4) centered on the location of the keypoint. Two or more keypoints 
can have the same location, but must be different in terms of scale, orientation, or 
descriptor. Each object part (e.g., brush bristle, brush handle, head, torso) in the 
Parts Database - list of known parts - is represented as a set of SIFT keypoints 
from a single training image. Multiple views of the same part are gathered from 
additional training images. Thus, the Parts Database consists of many sets of SIFT 
keypoints, with each set representing a single view of an object part. 

We used a nearest neighbor approach to detect parts in an image [16]. First, 
the Euclidean distance, or L2 norm, between each SIFT keypoint in the test image 
and each SIFT keypoint in the Parts Database is calculated. The part view with the 
shortest distance is assumed to be the view of the part detected in the test image. 
The centroid of the part in the image is then calculated by taking the mean of the 
other keypoints in the image that are matched to other keypoints of the assumed 
part view. All other part views are ignored. Therefore, this algorithm finds at most 
one instance of an object part in an image. For example, the distances have been 
calculated as shown in Table 1, where view number 1 for the body part torso is 
represented as torso 1. 
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Since the keypoint at the x-y coordinates of (253, 150) has the shortest distance 
to its matching keypoint in the Parts Database, torso 1 is the view of the torso 
recognized. The centroid is then calculated, using the x-y coordinates of the other 
torsol keypoints detected, to be (152, 85.7). The keypoints for torso40 and torso3 
are ignored. 

In order to minimize the false-positives, we also use a threshold called Match­
Thresh, ranging from 0 to 100 %, to trim the list of potential matches between 
the keypoints in the image and those in the Parts Database. Only the shortest 
MatchThresh percent are considered in the algorithm. For example, if Match­
Thresh is 75 %, then only the shortest 13 in Table 1 would be considered, i.e., pail 
of water66, torso 1, torso40, and torso3 at the bottom of the list would be ignored. 
In this example, Match Thresh would only affect the calculation of the centroid for 
torso and pail of water. However, in other cases the first view of a part might fall 
above the threshold, and therefore the part would not be detected at all. Using a 
percentage of the shortest distances as a threshold produced better results instead 
of the maximum distance. There are a number of techniques for minimizing false 
matches for SIFT. Some of these rely on information from multiple frames. Our 
method uses only information from the frame under consideration. An area for 
further study in our research is to examine techniques that use information from 
multiple frames and use more sophisticated statistical methods. 

As discussed earlier, this work is part of a larger project to demonstrate a hu­
manoid robot learning and demonstrating types of motion by watching a human 
perform them in an instructional video. Inamura et al. accomplished this with the 
joints of the human teacher being tracked using a wearable motion capturing sys­
tem, which usually does not happen in instructional videos [5]. Thus, we must 
track the motion of the human body parts and inanimate objects using the points 
extracted from the video itself. The exact definition of the point on the wearable 
motion capturing system (i.e., is it the geometric center of the elbow or is it the 
center of mass of the elbow) is not important as long as it is in the general vicinity 
of the joint being tracked and consistent over time. Likewise, where the point we 
are tracking is located on the human body part or inanimate object is not important 
as long as it is in the general vicinity and is consistent over time. The definition 
of the centroid, or point, we track is closer to the definition used in physics, rather 
than that used in geometry. In physics, the centroid is the center of mass, which 
is the average of all points weighted by the local density. In our case, the density 
is represented by the number of keypoints detected at a specific location in the 
image. 

If all of the keypoints detected in the training image of the part are present in 
the test image, then the centroid of the test image of the part will be consistent 
with the centroid of the training image of the part. However, due to occlusion, 
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rotation, or noise in the test image, not all keypoints of a part may be detected, 
and the test image centroid will not be consistent with the training image centroid. 
Intuitively, to account for undetected keypoints, it would seem better to calculate 
the centroid using spatial transforms rather than using the mean. Initially, we used 
spatial transforms to calculate the centroid when not all the training keypoints were 
detected, i.e., linear conformal transform when two non-collocated keypoints were 
detected, affine transform when three non-collocated keypoints were detected, and 
projective transform when four or more non-collocated keypoints were detected. 
However, the detection results were slightly worse and considerably more com­
putationally intensive rather than using the simpler calculation of the mean of the 
detected keypoints. 

3.2 Experimental Setup 

For the experiments, we used frames from an instructional video on how to clean 
a golf club. The instructional video was downloaded from eHow. com [2] using 
savevid. com (14]. eHow . com is a Website which provides the ability to research, 
share, and discuss instructional solutions that help complete day-to-day tasks and 
projects. savevid. com is a tool which enables downloading videos from stream­
ing video sites. We converted the video from .ftv format to .avi format using the 
AVS Video Converter from Online Media Technologies, Ltd. Online Media Tech­
nologies Ltd. is a developer of software for digital video and multimedia process­
ing (11]. The resulting video contained 2,405 frames, recorded at 29.97 frames 
per second. Each frame was 240 pixels wide and 180 pixels high. 

The 14 object parts used in the experiments were selected from frame 1000, 
which was arbitrarily selected from the middle of the video. Figure 1 shows the 
object parts identified on frame 1000. 

Figure 1. Frame 1000 showing object parts used in the experiments. 
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In order to be more realistic, the object parts were selected to include objects 
with parts (brush handle and brush bristles) and objects without parts (pail of wa­
ter), body parts without the matching symmetrical part (right upper arm without 
the matching left upper arm), body parts with the matching symmetrical part (right 
thigh and left thigh), body parts relevant to the task (right-hand and left-hand), 
body parts not relevant to the task (head and left foot), and inanimate objects rele­
vant to the task (brush and pail of water). 

Every sixtieth frame, starting with frame 30, was used to form the 40 test 
frames. Table 2 shows the ground truth of the parts that are visible in each frame. 

The test frames included a variety of perspectives for each part, as illustrated in 
Figure 2. 

Frame brush brush head left left- left left pail of right right- right right right torso Total 

bristles handle foot hand lower thigh water calf hand lower thigh upper 

arm arm arm 

30 I I I I 4 

90 I 1 1 I I 5 

150 1 I 1 I 1 5 

210 1 1 I 1 1 5 

270 I 1 I 1 I 5 
330 1 I 1 I I 5 

390 1 I I 1 I 1 6 

450 I I 1 1 1 1 1 7 

510 I 1 1 1 1 1 I 1 1 9 

570 1 1 I 1 1 I 1 I 8 

630 I I 1 I 1 1 1 I 8 

690 I 1 1 1 I 1 1 I I 9 

750 1 1 1 1 I I I 1 1 1 I 1 12 

810 1 I I I I 1 1 I I 9 

870 1 I 1 1 1 1 1 I I 1 1 11 

930 1 1 1 1 I I I I 1 1 1 I I 13 

990 I I I I 1 1 1 1 1 1 I I 1 1 14 

1050 1 1 1 1 1 1 1 1 1 I 1 1 1 1 14 

1110 1 1 1 I I I I I 1 1 1 II 

1170 I I I I 1 1 1 1 l I 10 

1230 I 1 1 1 1 I 1 I I 9 

1290 I 1 I I 1 I I I 1 1 10 

1350 1 1 I I I I I 1 1 I 1 11 

1410 I 1 I I I I 1 1 1 1 10 

1470 I I I I I 1 1 1 I I I I l 13 

1530 I l 1 1 l 1 I I I I I 11 

1590 1 1 1 1 I I 6 

1650 I I I I I 1 I I I 1 IO 

l710 I I I I 1 I 1 I I I 10 

1770 I I I I 1 1 1 1 1 1 I I I I 14 

1830 1 1 1 1 1 1 I I 1 I 1 11 

1890 1 1 1 1 1 I I I 1 1 1 11 

1950 I I I I I I 1 1 1 1 1 11 

2010 I 1 I I I 1 1 1 1 1 l I l 13 

2070 1 1 1 1 1 1 1 1 I 1 1 1 I I 14 

2130 I I I I I l I I 1 1 1 1 I I 14 

2190 I I I I I I I 1 1 1 1 I I 1 14 

2250 I 1 1 1 1 1 1 1 \ l I I I I 14 

2310 1 1 1 1 I 1 1 I I I I I I I 14 

2370 1 I I I I I I 1 1 1 I I I I 14 

Total 25 26 21 25 34 35 31 26 29 32 37 31 25 27 404 

Table 2. Ground truth of the parts that are visible in each frame. 
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Figure 2. Examples of test images showing different perspectives. 

3.3 Building the SIFT Keypoint Database (Parts Database) 

Every sixtieth frame, starting with frame 60, was used for the 39 training frames. 
Thus, each training image is exactly between two test frames, making object 
detection as difficult as possible. The Parts Database was built by first calcu­
lating the SIFT keypoints for each training image, using the vl_sift tool from 
VLFeat.org [20]. For vl_sift, we set the edge threshold to 20 and left the peak 
threshold at its default value of 0. The edge threshold eliminates peaks of the 
DoG (Difference of Gaussians) scale space whose curvature is too small, since 
such peaks yield badly localized frames. Increasing edge threshold increases the 
number of keypoints detected. The peak threshold filters peaks of the DoG scale 
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Figure 3. (left) Training image 1005, (right) Region of interest for each part. 

Figure 4. (left) Good training sample, (right) Bad training sample. 

space that are too small in absolute value. Decreasing peak threshold increases the 
number of keypoints detected. 

The SIFT keypoints from each training image were grouped into parts using 
polygons to identify regions of the image that belonged to each part. We used 
the MATLAB roipoly function [10], but any method including manual assignment 
could be used to group them. The MATLAB roipoly function allows the user 
to manually identify an arbitrary number of points on the boundary of an object 
with a cursor and then MATLAB constructs a polygon by drawing straight lines 
between adjacent points. Figure 3 shows an example of the polygons used to group 
the keypoints in training frame 1005 into parts. Multiple polygons were used for a 
part that was occluded as illustrated by the left foot in Figure 3. 

The parts from each training image represented one view of the part. By ar­
bitrarily using the training frames exactly between two test frames, we ended up 
with some good training images and some bad ones, as illustrated in Figure 4. 

As shown in Table 3, the resulting Parts Database contained from 12 to 32 views 
per part; and each view of a part contained from 1 to 30 keypoints. 
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KeypointsNiew 
Part Name Views Keypoints Minimum Maximum Mean 
brush bristles 19 50 1 6 2.6 
brush handle 12 25 1 4 2.1 
head 20 78 1 8 3.9 
left foot 17 33 1 3 1.9 
left-hand 30 85 1 7 2.8 
left lower arm 26 48 1 5 1.8 
left thigh 29 112 1 12 3.9 
pail of water 26 225 1 20 8.7 
right calf 25 74 1 9 3.0 
right-hand 29 90 1 9 3.1 
right lower arm 32 46 1 4 1.4 
right thigh 30 85 1 6 2.8 
right upper arm 23 49 1 5 2.1 
torso 27 340 I 30 12.6 
Minimum 12 25 1 3 1.4 
Maximum 32 340 1 30 12.6 
Mean 25 96 I 9 3.8 

Table 3. SIFT keypoint database (Parts Database) statistics. 

3.4 Locating Object Parts 

The object recognition algorithm was implemented using the VLFeat vl_sift tool 
to calculate SIFT keypoints, and the VLFeat vl_ubcmatch tool to match keypoints 
in the test image with keypoints in the Parts Database [20]. For vl_sift, we set the 
edge threshold to 20 and left the peak threshold at its default of 0. We used the 
default values for vl_ubcmatch. The remainder of the algorithm was implemented 
using standard MATLAB functions [IO]. The results were 40 lists of detected parts 
in each test frame, along with the corresponding x-y coordinates of the centroid. 

3.5 Validating the Approach with Another Video 

In order to illustrate that the obtained results were not dependent on the video, 
we applied the technique to a different video of another person demonstrating an 
additional method of cleaning a golf club. The second instructional video was 
downloaded from eHow. com [2]. We converted the video from .flv format to .avi 
format using the AVS Video Converter from Online Media Technologies, Ltd [11]. 
The resulting video contained 1,964 frames, recorded at 29.97 frames per second. 
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Each frame was 240 pixels wide and 180 pixels high. We used the same 11 body 
parts as in the first video, but with three different inanimate objects due to the 
different methods used to clean a golf club. Specifically in the second video the 
inanimate objects were: a small brush, golf club, and towel, whereas in the first 
video we used: brush bristles, brush handle, and pail of water. In the second video, 
we did not break the brush into two parts (bristles and handle) because the brush 
was too small to discern them in the video. Table 4 shows the ground truth of the 
parts that are visible in each frame of the second video. 

Frame bru~h golf head left left- left left right right- right right right torso towel Total 
club foot hand lower thigh calf hand lower thigh upper 

arm arm arm 

24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14 

73 1 1 1 1 1 1 l 1 1 1 l 1 1 1 14 

122 1 1 1 1 1 l 1 1 1 1 1 1 1 1 14 

171 1 1 l 1 I 1 I 1 1 I 1 1 1 13 

220 I 1 1 1 I 1 1 1 1 I 1 1 1 I 14 

269 1 I 1 1 I 1 I I 8 

318 1 1 1 I 1 I 1 7 

367 1 1 1 l I 1 1 I 1 1 1 1 1 1 14 

416 1 1 1 1 1 1 1 I 1 1 I 1 1 1 14 

465 I 1 1 1 1 1 I 1 1 1 1 1 1 I 14 

514 1 1 I l l I 1 1 1 1 1 1 l I 14 

563 1 1 1 1 1 1 1 1 1 I 1 1 I I 14 

612 1 1 1 1 1 1 1 1 I 1 1 1 I 1 14 

661 I 1 1 1 1 1 I I 1 1 1 1 I 1 14 

710 I I I l I I 1 1 1 1 I I 1 1 14 

759 1 1 1 1 1 1 1 I I 1 1 1 1 13 

808 1 1 1 l I l I 1 1 1 1 1 I 13 

857 I I I 1 1 1 1 1 1 I 10 

906 1 1 1 1 1 1 I I I I 10 

955 1 1 I I 1 1 1 1 1 1 10 

1004 I I I 1 1 1 1 1 1 1 10 

1053 I I 1 1 1 1 1 1 1 1 1 I 1 I 14 

1102 1 1 1 1 1 1 1 1 l I I 1 I I 14 

1151 1 1 1 1 I 1 I I 1 I 1 1 I 1 14 

1200 1 1 I I I I 1 1 1 1 1 1 1 1 14 

1249 I I I 1 1 1 1 1 1 1 10 

1298 I I 1 1 1 ! 1 1 1 9 

1347 1 1 1 1 1 1 1 1 1 9 

1396 1 1 1 I 1 1 I I I 9 

1445 1 1 1 I I 1 I 1 1 1 10 

1494 I I I I I I 1 1 8 

1543 I 1 1 I 1 1 1 1 8 

1592 I 1 1 1 1 1 1 1 8 

1641 1 1 1 1 1 1 1 1 1 1 I 1 1 13 

1690 1 1 1 1 1 I 1 I I 1 I I I 13 

1739 I I I I 1 1 I I 1 1 1 1 I 13 

1788 I 1 1 1 I I 1 1 1 1 1 1 I 13 

1837 I 1 1 1 1 I 1 1 1 1 1 1 1 13 

1886 1 1 1 1 1 1 1 1 1 1 1 1 1 13 

1935 1 1 I 1 1 1 I I I l 1 1 1 13 

Total 22 40 27 26 40 40 37 26 39 40 35 37 40 31 480 

Table 4. Ground truth of the parts that are visible in each frame of the second video. 
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4 Experimental Results 

Typically in object recognition experiments, bounding boxes are used to detem1ine 
whether a detected object is a true-positive or a false-positive. Because of the 
odd shapes of the parts and our goal of increased accuracy, we used bounding 
polygons to determine true-positives from false-positives. For each test frame, we 
used the MATLAB roipoly tool [10] to define the bounding polygons for each part, 
as illustrated in Figure 5. 

If the centroid fell within the boundaries of the bounding polygon, then it was 
considered a true-positive, otherwise it was considered a false-positive. 

We used the standard metrics of precision (P), recall (R), and Fl formulas for 
our measurements: 

TP = number of true-positives 

FP = number of false-positives 

FN = number of false-negatives = Ground Truth (from Table 2) - TP 

= 404-TP 

P = TP/ (TP + FP) 

R = TP/ (TP + FN) 

Fl = 2PR/ (P + R) 

Table 5 shows the experimental results for various values of MatchThresh. 

Figure 6 illustrates the same results as a graph. 

Figure 5. Bounding polygon (marked) for pail of water in te t image I 050. 
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(3) 
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Match Thresh 10% 20% 30% 40% 50% 60% 70% 80% 90% 

Recall 16% 21 % 26% 28% 33% 39% 44% 46% 49% 

Precision 90% 87% 82% 80% 75% 75% 75% 74% 71 % 

Fl 0.27 0.34 0.4 0.42 0.46 0.51 0.56 0.57 0.58 

Table 5. Experimental Results for various values of MatchThresh. 
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Figure 6. Experimental Results for various values of MatchThresh. 

100% 

49% 

69% 

0.57 

For the second video, we tested it with the optimum MatchThresh for the first 
video of 90 %. The results were a recall of 42 %, a precision of 72 %, and an Fl 
of 0.53. 

Table 6 shows that these results are better than those achieved in less demanding 
applications. 

The application used by Schiigerl et al. is less demanding in that [15]: (1) we 
identified multiple objects in a scene, but they only identified one (cars or people); 
(2) we used low resolution video, while they used high resolution; and (3) we 
identified parts of whole objects (both people and inanimate objects), whereas 
they identified whole objects. The application used by Weijer and Schmid is less 
demanding in that [19]: (1) we identified multiple objects in a scene, whereas they 
only identified one (birds or soccer teams); (2) we identified parts of whole objects 
(both people and inanimate objects), whereas they identified whole objects; and 
(3) they classified an image as belonging to 1 of n classes, whereas we located m 
of n objects in an image. 
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Experiments Recall Precision Fl Data Set Objects Resolution Parts/ 
per Scene Whole 

Ours 49% 71 % 0.58 body parts, Multiple Low Parts 
(video 1) brush parts, 

pail of water 

Schtigerl 46% 75% 0.57 cars Single High Whole 
et al. [15] 

Ours 42% 72% 0.53 body parts, Multiple Low Parts 
(video 2) brush, golf 

club, towel 

Schtigerl 32% 70% 0.44 persons Single High Whole 
et al. [15] 

van de 55% n/a n/a birds Single Low Whole 
Weijer and 
Schmid [19] 

van de 43% n/a n/a soccer teams Single Low Whole 
Weijer and 
Schmid [19] 

Table 6. Comparison of results with similar applications. 

5 Other Approaches 

Besides trying spatial transforms to calculate the centroid instead of the mean (as 
discussed earlier), we experimented with a few other approaches that produced 
inferior results. These approaches are listed in this section, as they can help with 
better understanding of the challenges. 

5.1 Deblurring 

Camera movement causes blurring. We deblurred the test images in an unsuccess­
ful attempt to improve the detection rate. A blurred image can be approximated 
by [10]: 

where, 

g =Hf +n 

g = blurred image 

H = distortion operator 

f = original image 

n = noise introduced by camera 

(8) 

(9) 

(10) 

(11) 
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We experimented with deblurring the test image using the MATLAB deblurring 
functions [10]: deconvwnr (Wiener filter), deconvreg (regularized filter), decon­
vlucy (Lucy-Richardson algorithm [12]), and imfilter (coorelation filter). Deblur­
ring is an iterative process requiring knowledge of the distortion operator (H), 
which is unknown. However, there are a few standard MATLAB distortion oper­
ators that are used for deblurring, which we also used: motion (approximates the 
linear motion of a camera), Gaussian (Gaussian low pass filter), average (averaging 
filter), and disk (circular averaging, or pillbox, filter). 

5.2 Number of Views 

We looked at the number of views included in the Parts Database. As shown in 
Table 7 and Figure 7, the results improved as we added views until there were 39 
views in the database and then the results began to deteriorate. 

Views 2 5 11 23 39 78 

Recall 9% 25% 36% 46% 49% 45% 

Precision 18% 39% 53% 72% 71 % 67% 

Fl 0.12 0.3 0.43 0.56 0.58 0.54 

Table 7. Experimental results for various numbers of views in the Parts Database 
(Match Thresh = 90 % ). 
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Figure 7. Experimental results for various numbers of views in the Parts Database 
(MatchThresh = 90%). 
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5.3 Centroid Calculation 

Instead of using the mean of the detected keypoints of a part as the centroid, we 
also investigated using the single detected keypoint with the shortest Euclidean 
distance between the SIFT keypoint in the test image and the SIFT keypoint in the 
Parts Database. However, the results were worse. We think this may be due to the 
fact that using a mean eliminates the false-positives that occur when a keypoint 
detected near the edge of a part falls outside the bounding polygon. 

5.4 Edge Threshold 

We studied using different values of the vl_sift edge threshold parameter. The edge 
threshold eliminates peaks of the DoG scale space whose curvature is too small, 
since such peaks yield badly localized frames. Increasing edge threshold increases 
the number keypoints detected. As Table 8 and Figure 8 show, the optimum results, 
as measured by Fl, are achieved when the edge threshold is 20. 

Edge Threshold 10 15 20 25 30 40 50 75 100 
R 44% 48% 49% 48% 48% 48% 48% 48% 47% 
p 68% 70% 71 % 71 % 70% 71 % 72% 73% 73% 
Fl 0.54 0.57 0.58 0.57 0.57 0.57 0.57 0.57 0.57 
Keypoints 1202 1298 1340 1361 1380 1396 1397 1397 1397 

Table 8. Experimental results for various values of vl_sift edge threshold. 
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Figure 8. Experimental results for various values of vl_sift edge threshold. 
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Table 8 illustrates that the number of keypoints detected does increase as edge 
threshold increases, but levels off around an edge threshold value of 40. 

5.5 Conclusion 

In this paper, we have presented a novel efficient algorithm for locating and track­
ing object parts in low resolution videos using Lowe's SIFT keypoints [9] with 
a nearest neighbor object detection approach. We illustrated using experimental 
data that this algorithm can achieve a recall of 49 % with a precision of 71 % and 
an Fl of 0.58. Table 6 shows that these results are better than those achieved in 
less demanding applications. 

The next step in our research is to use this algorithm to identify and track the 
trajectories of objects (e.g., scrub brush, and pail of water) and major body parts 
(e.g., hand, head, and body) in instructional videos. Then, we can use a Machine 
Learning technique, such as Hidden Markov Models, to recognize the trajectories 
as proto-symbols, where each proto-symbol represents one type of motion (e.g., 
picking up a scrub brush, dipping the scrub brush in a pail of water) [6]. And 
finally, we can use the proto-symbols to teach a humanoid robot, through RbD, to 
perform the task that is demonstrated in the instructional video. 

Although the object detection performance of our algorithm compares favorably 
with current technology, it is still much lower than that of a human. We plan to 
overcome that limitation by taking advantage of the fact that we are using a video 
and not still frames. Thus, we can predict the x-y coordinates of points in frame 
n + 1 from the trajectory of the points in frame n. Using this method, we can find 
the best-fit trajectory from the noisy trajectories that will be obtained from our 
algorithm. 
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