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ABSTRACT 

This paper describes the design and simulation of a mobile robot for missions in 

polar regions. The robot was designed to provide mobility, power, precise positioning 

and environmental protection for a bistatic synthetic aperture radar for polar regions 

to measure ice thickness and other ice sheet characteristics. The robot is required to 

carry and protect the radar system and to tow a large antenna, while providing 

precise positioning of the antenna to the accuracy of within a few centimeters. In 

parallel to the design and fabrication of an actual robot, a simulation model of the 

robot was designed and a virtual prototype was built to perform numerous 

experiments without the need for actual deployment in polar regions. These 

experiments tested robot characteristics such as slopes in the terrain, rolling effects, 

turning radii, antenna attachments, and payload distribution. 
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l. INTRODUCTION 

PRISM, or Polar Radar for Ice Sheet Measurements (www.ku-prism.org), was 

started with the goal of measuring characteristics like ice thickness and for 

determining the conditions of the rock underneath the ice sheets in the polar regions of 
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Greenland and Antarctica. The data generated from this project can help scientists 

more accurately determine the effect that the melting of the polar ice sheets has on 

the rise of the sea level. Because approximately sixty percent of the Earth's 

population lives in coastal regions, a significant rise in sea level can have a 

devastating impact, which makes this type of data essential for identifying trends and 

forecasting future changes. This is a project that requires many different technologies 

working together to achieve its goal-including radar, GPS, wireless communication 

over long distances, and an autonomous vehicle intelligent and robust enough to 

survive for long periods in a harsh environment. A number of faculty, technical staff, 

and many graduate and undergraduate students are working together to successfully 

design, build, and integrate these technologies and to help the project meet its goals. 

The radar for this project is a new design in which the radar consists of two parts 

that must work together to measure accurately the thickness of the ice. Each part of the 

radar also requires an antenna. The two parts of the radar, at times, will have to be a 

great distance apart to work properly. To have the radar in the proper position, a rover 

vehicle will be used to ~ it, and to make this as efficient as possible, the rover 

vehicle control will be automated. Automating the rover allows it to work for long 

periods non-stop and also minimizes the 'footprint' that many people performing the 

same job would have on the environment. This automation also lessens any concerns 

for the safety of the individuals that would have to control the rover manually. The 

rover has several tasks to complete when deployed, the most important being to move 

the radar and antenna to precise locations. But, to be successful, the rover must also 

negotiate dangerous terrain and employ several other self-preserving skills to last in the 

harsh polar environments for long periods without human intervention. 

The mission of the robotics group of PRISM is to design and build a rover to carry 

the radar and tow the antenna. The group has to make many design decisions about the 

rover vehicle, such as electric or gas powered engine, the type of vehicle, track or 

wheel, and many others. Each decision also brings with it other concerns, which may or 

may not yet be known. These design decisions have to be made with only a general 

specification of the radar and antenna that has to be towed, as they have not been fully 

implemented nor designed. This paper describes how the model of the rover was 

created and the tests that were performed on the model. The testing is intended to 

determine how well the model performs such basic tasks as pulling the antenna while 

turning and what slopes the rover can climb. This information is necessary for the 

builders of the rover, as the rover must be created to traverse potentially harsh terrain. 
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2. RELATED WORK 

2.1 Modeling ofa Snow Track Vehicle Research 

Design and Simulation of a Polar 
Mobile Robot 

Research at the University of Perugia in Italy (Braccesi et al., 2002) focuses on the 

analysis and the design of snowmobiles and ways to improve the design. The 

researchers use the ADAMS software to build the model of the snow track vehicle 

and test it (www.adams.com). This paper presents an overview of the model and the 

analysis of all the different parts of the snow track vehicle. The components that 

were modeled and tested include the track, suspension, frame, upper structural 

components (cabin and motor), auxiliary rope traction system (winch), front snow 

shovel, and the rear snow-crushing device. The paper describes how some specific 

components were modeled and discusses the dynamic analysis of the model. The model 

and its components were tested on plane ground, rough ground, a 15-degree slope, and 

a 30-degree slope. The results include the histories of data such as the track force, gear 

angular velocity, the velocity of the vehicle, and much more. This paper provides a 

good idea of how different components can be modeled and tested and of the data that 

are available from doing this kid of testing. 

2.2 Simulation of a Three-Wheeled All Terrain Vehicle 

• 

Researchers at the University of Arkansas (Lim & Renfroe, 2002) describe the 

danger of three-wheeled A TVs and their handling ability. These A TVs have always 

been known to be dangerous and consequently have a significant amount of 

accidents. This paper attempts to demonstrate the handling and suspension 

characteristics of the three-wheeled A TV. This paper presents their model and 

analyzes the lateral stability of the A TV. It is argued that the three-wheeled ATVs 

were meant for average users, and why the results of their testing show that the three. 

wheeled A TV does not handle well enough for average users. 

2.3 Modeling Tracked Vehicles Using Vibration Modes 

This paper by researchers at the University of Michigan develops a full-tracked vehicle 

model and suspension in an attempt to predict the durability of the track, as well as the 

vibration inside the vehicle caused by the tracks (Scholar et al., 2002). The researchers 
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developed a model of a tank with which several different track models could be used. 

Some of the models include static (spring-damper), dynamic model with longitudinal 

vibration, dynamic model with transverse vibration, and dynamic model with coupled 

transverse/longitudinal vibration. The vehicle simulations were run over a 0.25-mile 

track with many bumps ranging from 30.5 cm high and 762 cm long to 7.6 cm high and 

91 cm long. The model moved over the course at a speed of 25 miles per hour. The 

vibrations caused by the track stem from how the track handles while moving over 

bumps, so the researchers could determine which track models tend to cause fewer 

vibrations. Results from the simulations are given for the static track model as well as 

the dynamic model with coupled transverse / longitudinal vibration. 

2.4 Simulation of the Hybtor Robot 

The research project at Helsinki University of Technology describes the simulations 

used to study the load balancing and stability of the robot (Aarnio et al., 2002). Two 

models were used, a kinematics model and a dynamic model. The dynamic model 

was the same as the kinematics model, except that dynamic properties such as mass, 

inertia, and ground contact forces were added to the model. The kinematics model 

was used only for locomotion visualization and monitoring purposes. The dynamic 

model was used for torque and stability analysis. 

II 

2.5 Virtual Prototyping of the Suspension System of an All-Terrain Vehicle 

The research paper from the State University of New York describes the details of 

how they used MSC.visualNastran 4D to perform tests intending to help them create 

an all-terrain vehicle suspension (Khoo et al., 2002). The authors discuss the many 

tests and give many images from the simulations they run that led them to the design, 

beginning with a single tire, and ending with a full suspension. 

2.6 Digital Simulation of an Aerospace Vehicle 

The research for this work was conducted at Marshall Space Flight Center in 

Huntsville, Alabama Mitchell et al., 1967). The purpose of this paper was to 

describe the Aerospace Vehicle Simulation Program (AVS) and how the program 

could help in the development of aerospace vehicles, as far as the design and 
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checkout of the vehicles is concerned. The paper also describes that many people are 

continuously working on the vehicle making changes. Such changes can cause a 

detailed analysis to be performed, which is very time consuming, and how the A VS 

software can help them rapidly speed up the design and checkout process of the 

aerospace vehicles. 

2.7 Khepera Simulator 

The Kheperra Simulator is a package developed in Switzerland that allows 

developing of controllers for the Khepera robot (Michel, 2002). The simulator gives 

a two-dimensional display of obstacles, and the sensor values are shown while 

running. The software allows for easily transferring the controls from the simulated 

robot to the actual robot. The controllers are developed using C and C++ and the 

package is intended for teaching and researching autonomous agents. 

2.8 Webots 

The Webots simulator is a newer, commercial version of the Khepera Simulator, 
developed by Cyberbotics (www.cyberbotics.com). This simulator is similar to the 

Khepera Simulator but now has a three dimensional view of the robot. The software 

also includes a rapid prototyping environment that allows for modeling the robots 

and simulating any robot, not just the Khepera robot (Michel, 2002). Examples of 

other simulations and studies include Webots Dynamics (2002), Thornton (2002), 

MissionLab (2006), and Bares and Wettergreen (1999). 

3. MODEL DESIGN 

This section describes the design and the model used for testing. Each aspect of the 

model, including the rover, antenna, towing mechanism, and terrain is described. 

3.1 Environment and Terrain 

Most of the terrain that the vehicle is used in is flat. Yet, the landscape in the polar 

regions can change very quickly. The terrain can be very dangerous, and the vehicle 
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will eventually have to explore a large area of Greenland and Antarctica. The 

landscape modeled in the software has been limited to flat ground without large 

bumps or obstacles. The slopes the model climbs during the tests applies to them as 

well. The environment modeling has been limited to using a coefficient of friction of 

0.3, a commonly chosen value for tires on snow, which is very limited in that the 

polar terrain is not just snow. In some areas such as those with ice, the coefficient of 

friction could be much less, and in some areas could be much more. We chose 0.3 as 

an estimate of the average coefficient of friction that will be encountered. The 

modeling of the ground with only a coefficient of friction does not model how the 

vehicle performs when traveling over large bumps or other obstacles. This has been 

left for testing at a later time. 

3.2 Rover Base 

The vehicle used as the rover base is Buffalo Max All-Terrain Vehicle from 

Recreative Industries (www.maxatvs.com). It is a six-wheeled amphibious ATV, as 

shown in Figure I. The specifications of the Buffalo Max A TV are listed in Table I. 

The frame, as seen in Figure 2, was built to hold all the equipment needed in the 

vehicle and protect it from the weather. The frame was built using T-Slotted 

aluminum bars. The solid panels are made from alucobond, and the clear panels are 

made from hyzod. All were purchased from the company 80/20 (www.8020.net} 

Fig. 1 Original Buffalo Max A TV. 
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TABLE 1 

Design and Simulation of a Polar 
Mobile Robot 

Specifications of Buffalo Max A TV as listed in (Recreative Industries Inc., 2002) 

Dimensions Centimeters 

Length 251 

Height 132 

Width 145 

Wheelbase 147 

Bed Length 140 

Bed Width 127 

Bed, High 46 

Weight Pounds 

Dry Weight, no accessories 900 

Gross Trailer Weight 1000 

Tracks 222 

Winch Plate 9 

Winch 22 

Fig. 2: The rover in Greenland. 
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Fig. 3: Image of the final track vehicle model &at was used for each experiment 

The frame was modeled as closely as possible to the actual frame, with the 

exception of the shape of the aluminum bars, which were modeled simply as cubes. 

Modeling the actual shape was not necessary, as this would add extra complications to 

the modeling, and the material itself was not being tested, only the frame's size and 

weight were needed to test the model. The weights of the materials were taken from 

(80/20, 2002) to ensure that the weight of the frame was as accurate as possible. 

The model of the vehicle (Figure 3) was created using the specifications from 

Table l. The model was created as close to the actual vehicle as possible. Where 

sizes were not given in the specifications, actual measurements were made. The 

shape of the vehicle was modeled using mostly cube objects. The cubes were given 

the appropriate weights for the location. The engine, for example, was placed behind 

the cab and given the weight as specified. 

The model does not perfectly match the actual vehicle, however, as there are 

many shapes and contours that are difficult and unnecessary to model. Additionally, 

the weight distribution of the vehicle was not completely known. Nevertheless, the 

overall weight, and the weight of the options that came with the vehicle were known 

along with the engine. Where objects like the engine had known weights, that weight 

was placed in the approximate location in the model. Objects such as the winch and 

track also had known weights and locations. Otherwise, the weight of the vehicle was 

evenly distributed around the base of the vehicle. 

The tracks were modeled and simulated using the conveyer object belt type in 

the software. The conveyer belt object fits the track shape almost perfectly. Each 

conveyer belt contains its own motor, so speed is controlled using two motors. This 

386 



17, No. 4, 2008 Design and Simulation of a Polar 
Mobile Robot 

is the main difference between the model and the actual vehicle. The actual vehicle 

has six-wheeled drive and a patented skid-steer transmission for movement. For 

simplification purposes, a transmission was not created for the model. Instead, the 

two motors have to be set to different speeds when causing the vehicle to tum, and 

the same speed when going forward. The motor speed for each could be set in many 

different ways such as specifying a speed at a given time and inputting a function 

with respect to time. Many different types of functions could be used, for example, 

step functions, ramping functions, and allowing the software to interpolate between 

given speeds at given times with linear or polynomial functions. These different 

options allow us to test different methods of turning the rover. 

The control is similar to how Marvin is actually controlled, at least from the 

navigation system's point of view. Steering the vehicle is done with two handles, one 

for each track on the vehicle. Either side can be engaged or disengaged at any time. The 

motors for each side of the vehicle represent the handles to control the actual vehicle. 

When the motor on the left side is running, the left side is engaged. The same is true for 

the right track and motor. The objects that made up the model were usually attached 

with a rigid constraint. The solid constraint caused the software to treat both objects as 

a single object. Another version of the model, a six-wheeled version, was much more 

complex than the track version. The six-wheeled version required the wheels to be 

attached with a revolute constraint that allowed rotation around one axis. The wheels on 

each side were then constrained with a belt so that each side would tum at the same 

rate. The front wheel on each side was given a motor that replaced the revolute 

constraint and that could be given the same parameters as the conveyer belt. The 

tracked model was much simpler than the six-wheeled version. Each constraint could 

then be monitored during simulations for the amount of force that was being applied to 

it. This helps us to determine if, and when, the frame or other objects that we have built 

or are designing need to be changed. For example, the frame is attached to the base of 

the rover in only a few locations. Some of the objects being placed on the frame are 

very large and heavy, and we can determine how much force they are applying to the 

frame on those points when the rover is driving uphill. 

3.3 Antenna 

The antenna specifications have been the least specific of any element designed so 

far. The model for the antenna was therefore created simply as a flat rectangular box 
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Fig. 4: The rover with 2 meter by 4 meter antenna. The towing mechanism used was not 
rendered by the software because it is a constraint in the software program, and the 
constraints are not rendered. 

as shown in Figure 4. The box can be resized easily, and so can the weight through 

parameter setups. The current maximwn specifications for the antenna are dimensions 

of 4 by 2 meters and weighing 400 pounds. Because of uncertainty in the antenna size 

and weight, three antennas were decided upon that would be tested. Figure 4 includes a 

picture of one of the antennas. Table 2 lists the specifications of each antenna. 

TABLE2 

Specifications for the three antennas 

Antenna Option Width (meters) Height (meters) Weight (pounds) 

1 4 2 400 

2 2 4 400 

3 2 2 200 

3.4 Towing Mechanisms 

Four different towing mechanisms were used for each antenna type, namely, a single 

rope, two ropes, a single rod, and two rods. The rod and rope are defined as a 

constraint in the simulation software. In other words, they act to constrain two object 

in a specific way, but they are not physical objects. Therefore, they are also not 

rendered within the images. Each mechanism is described in this section. 

Single Rope: The rope constraint acts to keep the constrained object a maximwn 

distance apart in any direction, from the point where it is attached. The objects 
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constrained are allowed to rotate on the point where they are attached. This allows 

the antenna to slide into the vehicle when moving on a steep downhill. 

Two Ropes: Each rope in this mechanism acts as the single rope, but the ropes 

are attached to the antenna on the far edges of the antenna, and the same location on 

the vehicle. This constraint was used to keep the antenna parallel to the vehicle, as a 

single rope would allow the antenna to turn more easily. 

Single Rod: The rod constraint is similar to the rope constraint, except that the 
• 

two objects constrained are kept at a specific distance, not just a maximum distance 

apart, where the constraint is located. The idea with this constraint is to keep the 

antenna from colliding with the vehicle, which the rope would not do. 

Two Rods: This mechanism is used for the same reason as two ropes, except that 

the antenna is kept a specific distance from the vehicle, not just a maxirrum distance. 

3.5 Load Distribution 

At this time, several equipment and parts have been identified, and their placement 

inside the vehicle must be determined. There are three locations in the vehicle to load 

up to 900 pounds. Currently, there is a generator, PCI chassis boxes for the radar 

system, and some equipment to control the sensors and guide the vehicle. Where these 

items on placed can have a large effect on how well the vehicle handles and can change 

some of the safety parameters for the vehicle. Therefore, the model also has to be tested 

with some different possible load distributions, as the weight being put into the vehicle 

is a significant amount. To place the load distribution into the vehicle, three boxes were 

placed into the perspective locations shown in Figure 5. 

Fig. S: Load distribution image with top cut away. The 
image shows where the load was placed into the 

vehicle. The top panels have been removed so that 
each box can be seen easily. The blue box is actually 
sitting on the front seat, and is smaller than the other 
two. Each box's weight is set to a different value 
depending on which load distribution is being 

tested. 
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TABLE3 

Load distribution weights. Load distribution weights for each of the three load 

distributions used in the experiments. 

Distribution Front (pounds) Middle (pounds) Back (pounds) 

1 100 400 400 

2 100 500 300 

3 200 400 300 

Three different load distributions were decided on that would be tested (Table 3). 

These distributions seem the most plausible with how the vehicle is currently set up. 

3.6 Simulation Package 

MSC.visua!Nastran 4D was used for both the modeling and the simulations (MSC 

Software, 2002). For modeling the vehicle, several object types are given in the 

software: sphere, cube, cylinder, conveyer belt, and extrusion. The extrusion is used to 

create more-complicated object types. These were used minimally. Objects can be 

constrained together in many different ways. To constrain these objects, the software 

uses an item called a constraint. The constraint allows, or disallows movements in one 

or more directions. Some different types of motion are rotation in one or more 

directions, linear motion, sliding, and many more. Rigid constraints are used to place 

together two objects that do not move. This approach allows the software to consider 

the two objects as the same. There are also motor constraints that can be used to cause 

movement in different directions at set or variable speeds. There are other types of 

constraints allowed in MSC.visualNastran 4D. To generate the model, objects were 

created as closely as possible to the actual vehicle, then given constraints and attached 

to other objects. This allows for the movement of the tracks on the vehicle. 

3. 7 Evolution of the Model 

The first models of the rover were generated based of vehicles that the PRISM group 

was considering as possible solutions. The first two models were of a four-wheel 
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Fig. 6: Models of possible rover vehicles. 

Fig. 7: Model of the six-wheel vehicle before modifications. 

A TV and a tracked A TV 6. These were created as simply as possible, while still 

trying to keep the dimensions as accurately as possible. Little experimentation was 

performed using these models. 

The models were created with the idea that they would be used to communicate 

with the radar researchers which vehicles were being looked at as possible solutions. 

They would also be used illustrate the type of testing that could be done using the 

simulation software. Neither of these two models however, was chosen as the vehicle 
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Fig. 8: Model of the track vehicle before modifications. 

to become the rover. The decision was finally made on the Max ATV All-Terrain 

Vehicle (Figure 1 ). The original vehicle was available with options such as a roll-cage, 

a front window, and the track-kit. The roll-cage and window were originally thought to 

be a part of the final vehicle, and these were modeled originally. Also, it was uncertain 

whether the wheels or the track-kit were to be used, so there actually existed two 

different models, one with wheels (Figure 7), and one with tracks (Figure 8). 

It was decided to change the frame design, from building onto the roll-cage to 

removing everything and building the frame from scratch. The frame itself changed 

several times before the final version was determined. It was at this time that the 

track-kit was used on the vehicle, and it was decided to choose the track option over 

the wheels. For a while, the design of the vehicle was in a constant state of change. 

The final version is what has been tested in all the simulations. There is no guarantee 

that the current vehicle will be used as a final solution for the PRISM project. 

Therefore, the current model may not be the last one either. 

4. EXPERIMENTS 

The experiments performed were designed to answer some specific questions about 

the performance of the rover. First, what should the starting point be for the safety 
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parameters? The term starting point is used because the model is only an 

approximation of the real world, therefore, the answers from the experiments should 

only give an approximation. The safety parameters include the maximum slope the 

rover can climb (the pitch angle) and the point at which the rover might roll over (the 

roll angle). Second, how does the rover handle while performing basic movements 

and with different load configurations? 

The experiments are grouped into three series of experiments. The first series of 

experiments gives a baseline of how the model performs. These experiments are 

performed with no antenna and without any load on the vehicle. The second series of 

experiments is performed with the antennas and towing mechanisms. The antenna 

experiments are performed with different antennas, different towing mechanisms, 

and at different speeds. The third series of experiments focuses on the rover with a 

single antenna and fully loaded. Three different load configurations were chosen that 

have been tested. Following is a description of the experiments. The experiments are 

performed once for each series of experiments. 

4.1 Flat Ground Experiments 

This one is a basic experiment that acts as a control group for some of the other tests. 

The rover will move in a straight line for a set distance at a set speed. 

Parameters. Speed: 10 km/hr; Distance: 15 m; Measurable: Time (seconds). 

Test Procedure. The model is placed on flat ground long enough to complete the 

test. Each motor of the model is given the same speed as defined. The test is timed to 

determine how long the vehicle took to reach he required distance. 

Evaluation. The results will show how the vehicle performs in normal operating 

conditions, and how much slippage, if any, occurs. If no slipping occurs, the vehicle 

should be able to complete the operation in about 2.8 seconds. 

4.2 Maximum Slope Experiments 

This test determines the maximum slope (i.e. pitch) the vehicle can successfully 

climb. 

Parameters. Speed: 10 km/hr; Slope Distance: 15 m; Measurable: Slope (pitch 

angle (degrees)). 

Test Procedure. The model is placed on a flat ground approximately 5 m before 
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the slope begins. The slope of the ground is increased for each test until the angle is 

found that the model cannot successfully traverse, or traverse within a reasonable 

amount of time. The angle that the model can traverse is found to the nearest degree. 

Evaluation. Each test is considered successful if the model can move up the 

slope the required distance, and within a reasonable (less than a minute) amount of 

time. The test is considered unsuccessful if the model cannot move up the slope at 

all, or cannot traverse the required distance. 

4.3 Roll Experiments 

This test will determine the maximum roll angle that does not cause the model to roll 

over. This test provides a good approximation of safe parameters to run without 

tipping over. 

Parameters. Speed: 0 km/hr; Distance: 0 m; Measurable: Roll Angle (degrees). 

Test Procedure. The model is placed on ground facing the y-axis direction and 

is rotated around the y-axis. 

Evaluation. A test is considered successful if the vehicle falls in such a way as to 

land on the tracks. The test is considered unsuccessful if the vehicle rolls onto its 

side. After each successful test, the roll angle is incremented until an unsuccessful 

test occurs. The previous angle is considered the maximum roll angle. 

4.4 Radius Experiments 

This test provides an approximation of the turning radius of the model in one 

direction. The turning radius is assumed the same in both directions. 

Parameters. Measurable: distance from origin (meters); Right Track Speed: l · 

Left Track Speed: 10, 8, 6, 4, 2. 

Test Procedure. The model is placed on flat ground with a large enough area to 

accomplish the test. One test is performed for each specified track speed. The start 

location is at the origin with the model facing in the y-axis direction. The end 

location is determined by the location the model is at when its angle is facing in the 

negative y-axis direction. 

Evaluation. There is no successful or unsuccessful test, i.e. each test continues 

until the model faces in the opposite direction. 

The turning radius is calculated by determining the distance from the start 
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location to the end location. This test is mainly a visual test, therefore graphs and 

pictures are used to show the results of these tests. 

S. EXPERIMENT AL RESULTS 

5.1 Turn Radius Experiment Results 

The data from this experiment are numerous, so only a few examples will be 

shown. Figure 9 shows a sample of the model pulling the antenna with a single rod, 

and the model pulling the antenna using two rods respectively. The figures show the 

final result of the simulation when the rover md completely turned around. 

Figure 10 shows a sample of the model pulling an antenna at 10 km/hr and 2 

km/hr. The graphs show the position of the antenna and rover, as well as the 

orientation of the antenna. This gives a good indication of the required distance the 

turn requires, and how well the antenna turned around. The results show that the 

antenna towed at 10 km/hr did not turn very well. The antenna did not tum very 

much compared to the antenna towed at 2 km/hr. This is a result of how the rover 

turns. With the rover turning so quickly, it has a tendency to turn in place. The rover 

moving at 2 km/hr required approximately twice the distance to tum around as the 

rover turning at 10 km/hr. tum requires, and how well the antenna turned around. 

Fig. 9: Turning radius test with 4x2 antenna and (top) single rod (bottom) two rods. 

395 



Eric l. Akers and Arvin Agah 

-· 

-· 
-· 

Journal of Intelligent Systems 

Allt•Ma 1'08t'UOl'I • tl•"•"'"• Or-l•,rli:•·Ut,1n -
Y•t-lol• •ost·U•rt -

~'--~~~~-'-~~...._~__...__~_._~~-'-~~ 

-· • 

-· 
-· 
-· 
-· 
... -· 

• 

IVIWN\.a roe l 1.t Gn • 

~'"""• Clrl••"s•l.n -
Y'•hlo1• to'Jl4.I-" -

•• •• 

Fig. 10: Turning radius test with 4x2 antenna at 10 km/hr (top) and 2 km/hr (bottom). 

The results show that the antenna towed at I 0 km/hr did not turn very well. The 

antenna did not turn very much compared to the antenna towed at 2 km/hr. This is a 

result of how the rover turns. With the rover turning so quickly, it has a tendency to 

tum in place. The rover moving at 2 km/hr required approximately twice the distance 

to tum around as the rover turning at I 0 km/hr. 
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Fig. 11: Series One load distribution sample 

results at: (a) 10 km/hr, (b) 8 km/hr, 

(c} 6 km/hr, (d) 4 km/hr, and (e) 2 

km/hr speed. 

Figure 11 shows the results of a tum radius experiment at each speed. This 

experiment is a sample from the Series One experiments with a fully loaded rover. 

Testing with a single rope or a single rod sometimes produced erratic results. The 

antenna did not always tum at the same rate as the vehicle did, causing the antenna to 

face in different directions. The two ropes and two rods towing mechanism forced 
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TABLE4 

Series One testing summary 

Test Result 

Flat Ground Testing 5.88 seconds 

Maximum Slope Testing 18 Degrees 

Maximum Roll Testing 58 degrees 

the antenna to tum more with the rover most of the time. However, they sometimes 

had the same problem as the single versions because the rods and ropes are free to 

move at any angle with respect to the point at which it is attached. If the rods or 

ropes constrained in such a way that they did not have this freedom, then the antenna 

would tum much better and this problem, as shown in Figure 10, would not happen. 

A better towing mechanism can be constructed and tested, but for this series of tests, 

only rods and ropes were used. 

5.2 Other Testing Results 

This section gives a summary of the results for the other tests described, flat 

ground testing, maximum slope angle, and maximum roll angle. 

Track Vehicle Experiments. Table 4 lists a summary of the results for the 

Series One track vehicle experiments. 

Antenna Experiments. Tables 5, 6, 7, and 8 list the summary of the results for 

the antenna experiments with a single rope, two ropes, a single rod, and two rods, 

respectively. The tables show that the results varied very little when comparing the 

2x4 and 4x2 antennas. The 2x2 antenna experiment results were much improved 

over the other antennas as expected. 

Payload Distribution Experiments. Table 9 lists a summary of the results for 

the Series Three payload experiments. The table shows that the maximum roll angle 

decreased as expected, the results improved for the other two experiments. 

The results from ail three series of tests are mostly as expected. Series One tests 

performed better than the other series' tests. The rover was neither weighted down 

nor dragging an antenna. Therefore, it was able to climb a steeper slope and perform 

the flat ground test in a faster amount of time. 
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TABLES 

Series Two testing summary with single 10pe 

Test with single rope 2x4Antenna 4x2 Antenna 2x2 Antenna 

Flat Ground Testing 6.26 seconds 6.24 seconds 6.02 seconds 

Maximum Slope Testing 10 degrees 11 degrees 14 degrees 

Maximum Roll Testing 58 degrees 58 degrees 58 degrees 

TABLE6 

Series Two testing summary with two ropes. 

Test with two ropes 2x4Antenna 4x2Antenna 2x2Antenna 

Flat Ground Testing 6.24 seconds 6.24 seconds 6.02 seconds 

Maximum Slope Testing 11 degrees 11 degrees 14 degrees 

Maximum Roll Testing 58 degrees 58 degrees 58 degrees 

TABLE7 

Series Two testing Summary with single rod. 

Test with single rod 2x4 Antenna 4x2 Antenna 2x2 Antenna 

Flat Ground Testing 6.24 seconds 6.24 seconds 6.02 seconds 

Maximum Slope Testing 11 degrees 11 degrees 14 degrees 

Maximum Roll Testing 58 degrees 58 degrees 58 degrees 

TABLES 

Series Two testing Summary with two rods. 

Test with two rods 2x4 Antenna 4x2 Antenna 2x2 Antenna 

Flat Ground Testing 6.24 seconds 6.26 seconds 6.02 seconds 

Maximum Slope Testing 11 degrees 11 degrees 14 degrees 

Maximum Roll Testing 58 degrees 58 degrees 58 degrees 
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TABLE9 

Series Three testing summary 

Test Load 1 Load2 Load3 

Flat Ground Testing 6.06 seconds 6.06 seconds 6.06 seconds 

Maximum Slope Testing 13 degrees 13 degrees 13 degrees 

Maximum Roll Testing 46 degrees 46 degrees 46 degrees 

5.3 Discussion 

The maximum slope testing, however, improved from Series Two to Series 

Three because the added weight in the rover in Series Three was helpful when 

pulling the antenna up the slope. We can conclude from these experiments that the 

rover must have some weight in the back if it is towing an antenna and if it is going 

to perform to its maximum abilities. The results do not show if an improvement 

could be made with the 2 x 2 antenna as the Series Three experiments did not use 

such an antenna. The maximum roll testing from Series One and Series are the same 

in all tests. This is a result of the towing mechanism not being rigid at its point of 

contact. If the towing mechanism were rigid, then the results would most likely be 

different, but the weight of the antennas did not force the rover in one direction over 

the other and therefore did not change the results. 

The results did change very much in the Series Three experiments because a 

significant amount of weight was added to the back of the vehicle. The results 

changed from 58 degrees in Series One and Series Two to 46 degrees in Series 

Three. The added weight also dramatically changed the center of gravity of the rover 

because the weight was placed so high in the vehicle. Because the boxes of weights 

were added with a rigid constraint, they acted as a part of the rover and caused it to 

tip over at a much smaller angle. 

The tum-radius experiments showed that a towing mechanism better than the 

ones tested could be needed. Turning for all mechanisms performed much better at 2 

km/h than at the top speed of I 0 km/h, as was expected. However, if the towing 

mechanism were constrained at the point on the rover so that it were not allowed to 

move, then the problems associated with the antenna turning in a direction different 

from that of the rover (see Figure 10) would be solved. This also leads to the 
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conclusion that if it were to contact a large bump or hole on one side or the other, the 

antenna's orientation could be severely changed. Going extremely slowly over the 

bumps might not solve this problem. 

The rover was successfully tested in Greenland during the Summer of 2003. 

6. CONCLUSION 

6.1 Contributions 

The experiments described here show that the rover is a suitable vehicle for towing 

the large antennas, based on the requirements from the radar team. The simulations 

show that the vehicle can perform adequately in the desired areas of use. The results 

from this project will help researchers of the PRISM project to make decisions on 

how much equipment the vehicle can carry and the placement of the equipment 

within the vehicle. The results give a good approximation of the different slopes that 

the vehicle can handle in different situations, such as the antenna weight and size and 

the different loads that the vehicle is carrying. 

The enclosure of the vehicle is somewhat heavy, at around 150 pounds. This 

added weight does not seem to impede operation of the vehicle but may actually 

improve its operation when towing an antenna behind the vehicle. Testing was not 

done to determine how much the structure affects the maximum roll angle of the 

vehicle. If it is desired that the vehicle must be more stable with respect to the 

maximum roll angle, then the enclosure may have to be redesigned, or built with 

lighter material. However, given the equipment load that will be placed in the 

enclosure, the weight of the enclosure is likely to be insignificant compared to this 

equipment. 

The testing results also give a good indication of how the vehicle will tum and 

of the best ways to tum the vehicle without damaging the antenna. All these 

approximations were found without the need of physically testing the vehicle. 

6.2 Limitations 

The main limitation with this work is the terrain. The terrain could not be modeled 

perfectly. The flat terrain works for testing many concepts, but does not show how 
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the vehicle handles in rough terrain with large bumps or holes. 

The tests also do not account for such environmental conditions as wind. The 

gusts of wind in Antarctica can have a large effect on how the vehicle handles, 

especially the Maximum Roll Angle tests. 

The model itself can be a problem, which creates inaccurate results. The weight 

distribution of the actual rover is not completely known, and large differences 

between the model and the rover can cause the testing to be inaccurate. 

The model was also limited in its accuracy because of the tracks. Each track has its 

own motor, where the rover only has one. This means that testing concepts like torque 

would not be accurate; however, testing the dynamics was not apart of this project. 

6.3 Future Work 

More work must be done to see how the vehicle handles large bumps, holes in the 

ground, and rough terrain in general. Rough terrain in simulation packages such as 

MSC.visualnastran4D is difficult to model. Instead, the terrain could be better 

modeled in another program that is designed specifically for modeling. Then it could 

be imported into the simulation package. 

To improve the safety parameters from this testing further, the tests could be 

perfonned with wind pushing on the vehicle from different directions. The gusts of 

wind can change the ability of the rover to climb slopes or to keep from rolling over. 

A different towing mechanism for the antenna could be designed, and the forces 

acting on the towing mechanism where it connects to the antenna and the vehicle 

could be performed. This approach would allow a towing mechanism to be built that 

would be durable enough to tow the heavy antenna over rough terrain, and also one 

that would react better during the times that the rover is turning. 

The simulation could be extended to test the performance of the vehicle. For 

example, snow buildup can cause the antenna to become partially buried and to 

increase the weight of the antenna significantly. More testing could be done to 

determine how much force is needed initiallyto get a weighted antenna to move. This 

could also affect how long the vehicle is allowed to pull the antenna in conditions 

with blowing snow before the vehicle must return to a location where the antenna 

can be cleaned off. If there is a lot of blowing snow, then there is a possibility that 

the vehicle may not be able start moving if it stops, or the added weight could cause 

the vehicle to stop and become stuck. 
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Another area that can be extended in the simulation is the antenna.Currently, the 

antenna is modeled as a large square object completely dragging on the ground. 

Improving how the antenna rides on the ground could result in the greatest 

improvement in terms of mobility for the vehicle. This is limited by the radar team, 

however, as it is most desirable that the antenna lay completely flat on the ground to 

receive the best quality signal. This and other possible additional work can enhance 

the quality of the model and eventually result in the design and building of better 

robots for polar regions. The enclosure may have to be changed, however, depending 

on the weight and size of the new vehicle. If the scientific payload increases much in 

size, then the enclosure may have to be reduced. The enclosure could be removed 

completely if the size of the equipment becomes too large. In this case, separate 

structures could be built specifically to carry the equipment. The model could then 

be used to determine the best location to for the structures. 

If it is decided to use a new vehicle for the robot base, then new models can be 

created and tested again, comparing the results with the first version. If building a 

new base, then the old model can be used as a starting point, attempting to keep all 

the advantages of the old base while improving on other parts of the vehicle. For 
instance, more space could be allocated to the enclosure while also reducing the 

center of gravity and increasing the ground clearance. 
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