
Implementation of an Intelligent
Force Feedback Multimedia Game

Ernst & Young LLP, Kansas City, Missouri U.S.A.

ArvinAgaht

Department of Electrical Engineering and Computer Science

The University of Kansas, Lawrence, Kansas 66045 U.S.A.

ABSTRACT

This paper presents the design and programming of an intelligent

multimedia computer game, enhanced with force feedback. The augmentation

of game images and sounds with appropriate force feedback improves the

quality of the game, making it more interesting and more interactive. We used

the Immersion Corporation's force feedback joystick, the I-FORCE Studio

computation engine, and the Microsoft DirectX Software Development Kit

(SDK) to design the multimedia game, running in the Windows NT operating

system. In this game, the world contains circles of different sizes and masses.

When the circles hit each other, collisions take place, which are shown to, and

felt by, the user. When the circles hit together, the overall score increases; the

larger the size of the circle, the higher the score increase. The initial score is

set to zero, and when the game ends, a lower score represents a better

performance. This game was used to examine the behavior of the users under

different environments through their respective scores and comments. The

analysis of experimental results helps in the comparative study of different

kinds of multimedia combinations.

§Work perfonned while Fei He was at the University of Kansas
t Corresponding author
e-mail: agah@ukans.edu
tel: + 1 (785) 864-7752; fax: + 1 (785) 864-0387

75

Vol. 11, No. 2, 2001

KEYWORDS

Implementation of an Intelligent
Force Feedback Multimedia Game

intelligent multimedia games, video game programming, force feedback

1. INTRODUCTION

When most individuals think of multimedia, they consider multimedia to

be the combination of text, graphical animation, stereo sounds, and live video

images. In current multimedia applications, the focus is on providing a good

visual and audio feedback to the user, trying to improve tracking the user, and

providing better resolution media to the user (Buttolo et al., 1996). In multi­

media applications, the goal is to make the users believe that they are actually

immersed in a computer-generated environment. To achieve this goal, text,

visual feedback, and auditory feedback are often added. These elements are

not enough, however. Being able to visualize and to hear these environments

is only part of the equation. Individuals must be able to interact with the

virtual worlds. Yet, the lack of proprioception, i.e., the impossibility of really

'touching' the entities in the world (game), makes the interaction unreal and

more difficult. This shortcoming can hamper interactions for which a high

level of dexterity is required. Force feedback enables the operator to

manipulate the environment in a natural and effective way, enhances the

sensation of 'presence', and permits a faster rate of information by including

haptic information.

Thus, it can be argued that a combination of images, sounds, and forces

are all required. Beyond these reasons, the objective of this research is to see

how the forces, sounds, and images affect the user's perception and action

during the human-computer interaction. We used a force feedback joystick

and the Microsoft DirectX Software Development Kit (SDK) to design a multi­

media game. The game is enhanced by images, sounds, and force feedback. In

this game, the world contains circles of different sizes and masses. When the

circles hit each other, collision occurs. When the circles hit together, the

overall score increases; the larger the size of the circle, the higher the score

increase. The initial score is set to zero, and when the experiment ends, a

76

F. He and A. Agah Journal of Intelligent Systems

lower score represents a better performance. The time length of all

experiments is identical. The game was used to examine, under different

environments, the behavior of the users through their respective scores and

comments. Different types of multimedia interfaces were tested during the

experiments, varying combinations and parameters of sound and force

feedback with and without time delays (Fei, 1999; Fei & Agah, 2000). The

analysis of the experimental results helps with the comparative study of

different types of multimedia combinations.

This paper is organized into five sections. The related work on force

feedback and multimedia games is included in Sec. 2. Section 3 provides

information on Microsoft DirectX, which is the tool used for programming the

game. Section 4 discusses how the game is implemented using DirectX. This

section will include the game environment and main algorithms. Discussions of

the limitations and the future work are presented in Sec. 5.

2. RELATED WORK

This section covers the background and related work in the areas of force

feedback systems and multimedia computer games.

2.1 Force Feedback

In our research, we used the Immersion Corporation's force feedback

joystick as the haptic device. A picture of the joystick is shown in Fig. I

(Rosenberg, 1997). A typical joystick is input-only; it tracks a user's physical

manipulations but provides no physical feedback representing the results of

those manipulations. For example, in a video game or a virtual reality

simulation, a user might be using a joystick to command the motion of a

simulated racecar or spacecraft through simple physical simulations. The

results of the user's manipulations are displayed visually on the screen. When

the user's actions cause the spacecraft to collide with an asteroid, or cause the

racecar to slam into a wall, a standard joystick has no means of conveying

such information back to the user.

77

Vol. 1 J, No. 2, 2001 Implementation of an Intelligent
Force Feedback Multimedia Game

Fig. 1: An example of a force feedback joystick

The force feedback joystick is an input-output device. In other words, the

force feedback joystick can track the user's physical feedback sensations

representing the results of those manipulations. For example, when using a

force feedback joystick to control the flight of a spaceship, an impact is not

only shown visually on the screen but also actually displayed physically as

real forces imparted on the user's hand. When equipped with force feedback,

the haptic device can impart the simulated 'feel' of impacts, rigid surfaces,

liquids, springs, vibrations, textures, varying masses, winds, machine engines,

and other physical phenomena that have a mathematical representation.

The basic idea behind force feedback technology is quit simple-as the

user manipulates the interface hardware, the actuators (motors) apply computer­

modulated forces that either resist or assist the manipulations. Such forces are

generated based on mathematical models that are appropriate for the desired

sensations. For instance, when simulating the feel of a rigid wall with a force

feedback joystick, motors within the joystick apply forces to the handle to

replicate the feel of encountering a wall. In this case, the mathematical model

78

F. He and A. Agah Journal of Intelligent Systems

driving the force is as follows: as the user moves the joystick to penetrate the

wall, the motors apply a force that resists the penetration. The harder the user

pushes the harder the motors push back. The end result is a sensation that

feels quite compelling because it truly represents a physical encounter with an

obstacle-a simulated obstacle. Other sensations follow more complex

mathematical models, but the paradigm is basically the same. To simplify the

process of generating feel sensation, the manufacturers of force feedback

hardware have taken care of all the mathematics required in the generation of

different types of feel sensations. Most of the sophisticated computations are

handled by dedicated hardware onboard the peripheral device. Immersion

Corporation's I-FORCE Studio is a computation engine that has been

licensed to many major manufacturers of gaming peripheral devices for use in

their force feedback products. Such a computation engine enables a wide

variety of complex feel sensations to be produced efficiently in hardware with

minimal programming overhead (Rosenberg, 1997). With manufacturers handling

the mathematical complexities of force feedback in dedicated hardware, we

can be provided with an easy-to-use, high-level API (such as Microsoft

DirectX) that abstracts the problem of feel programming to a perceptual

rather than a mathematical level. API calls allow us to define and initiate feel

sensations easily, using intuitive function calls with descriptive physical

names such as 'Wall', 'Vibration', or 'Liquid'. These functions are highly

parameterized so that we can customize the feel of each basic sensation type

with great flexibility. We are free from the burden of actually controlling

force as a mathematical function of time or motion (Force-feedback, 1998).

As the force feedback joystick is an input-output device, it needs to

communicate with the host computer bi-directionally. Tracking information is

sent from the peripheral to the host for use in controlling play. As illustrated

in Fig. 2, force feedback information is sent from the host to peripheral to

coordinate the feel of the corresponding events. Because force feedback devices

require bi-directional communication to coordinate feel sensation with play,

the communication speed has a substantial effect upon force feedback

performance. The faster the communication links, the better the coordination

between visual and physical events. Ideally, force feedback devices use

efficient processing techniques to minimize the amount of information that

79

Vol. 1 I, No. 2, 2001

Host Computer
-
~

Implementation of an Intelligent
Force Feedback Multimedia Game

Force Commands
~ .. Force Feedback

Periphera1

Position Data

Fig. 2: Force feedback information flow

must be communicated to the host and the peripheral. For example, efficient

force feedback devices use sophisticated local microprocessors to produce

force feedback sensations locally in response to concise high level commands

sent from the host. In our research, we use a I-FORCE processor as the

computation engine (Rosenberg, 1997).

2.2 Multimedia Computer Games

In our research, we use the Microsoft DirectX Software Development Kit

(SOK) to design a multimedia game (Lamothe, 1997; Clark, 1998; DirectX,

1999; Barnett, 1999; Geocities, 1998; Wksoftware, 1999; Kavach, 1997;

Browsebooks, 1999). Video games have been around as long as computers

have. Most computer historians would agree that the first computer games,

usually text-based adventure or military-simulation games, were made for

UNIX mainframes in the 1960s and 1970s. The revolution in games for

personal computers came in the late 1970s, with the advent of the Atari 800

and Apple II personal computers, which were the first computers to have good

color, decent sound, and reasonable graphics power. Game programmers

wrote Atari and Apple games in BASIC or in pure machine language.

In 1984, IBM PC started selling very well in the personal computer

marketplace. Also, the 80286 processor arrived on the market, the EGR card

was available, and a VGA card was on its way. The IBM PC had some

hardware that could be used by programmers to produce good games.

Because IBM PC is so popular and in such common use, it is considered to be

a game machine, and many programmers started writing games for the PC. In

the latter part of the 1980s, the 80386 processor, the VGA card, and the

Sound Blaster sound card became available to PC gamers. At this point, the

80

F. He and A. Agah Journal of Intelligent Systems

IBM PC was starting to push heavily into the game market. By 1990, few

programmers wrote a game for any platform other than the PC. Nevertheless,

many programmers were not happy with the performance of the PC. The early

IBM PC was a difficult platform for writing games. In 1993, id Software, Inc.

released Doom. It was very fast, looked good, had great graphics and a

dependable game engine, had good sound effects, and was fun. Since then,

the game programming society has realized that the PC can do almost

anything gamewise. Both hardware and software manufacturers have built on

this supposition and today, the top-of -the-line gaming PC is a 266 MHz, 3D­

accelerated, wave-table synthesized, 32-bit game platform that is nothing

short of a dream machine (Lamothe, 1997). Currently, gaming is a multi­

billion-dollar industry that will continue to grow and move into new markets.

3. MICROSOFT DIRECTX

This section will include an introduction to Microsoft DirectX, which we

used to design our multimedia computer game.

3.1 Description ofDirectX

DirectX is a low-level programming API (Application Program Interface),

developed by Microsoft, that is designed to give the programmer a close-to­

hardware-programming environment for multimedia and game programming

(Barnett, 1999). It allows multimedia and games designed for Windows 95

and Windows NT to have access to the computer hardware through a standard

interface. Without a standard interface, stable compatibility between games

and the computer's hardware would be virtually impossible. With DirectX,

game developers can write for this interface and let the Windows DirectX

compatible drivers deal with how to 'talk' to the computer hardware. An

overview of DirectX is shown in Fig. 3.

As illustrated, any function that the game requires, the computer hardware

to perform it is passed via the DirectX API to the computer hardware drivers.

The drivers are responsible for making sure that the game's requests are

properly implemented in the hardware. DirectX is actually a suite of APis.

81

Vol. 11, No. 2, 2001 Implementation of an Intelligent
Force Feedback Multimedia Game

Game Software Dircc:tX
Windows
t>rivers PC Hardware

Direct3D

Direct Draw

~.--~~----,
J Direct Input t-z---t Joystick H Joystick

I Link 1~----,
Players / Direct Play l~-f Network

Fig. 3: An overview of DirectX

The primary individual components are DirectDraw, Direct3D, DirectSound,

DirectSound3D, DirectMusic, Directlnput, DirectPlay, DirectSetup, and Auto

Play. Figure 4 illustrates all the DirectX components and their relation to

Win32, GDI (Graphics Device Interface), and the hardware. GDI and DirectX

are on different sides of the structure, and each has access to the other and to

the hardware. The blocks of DirectX are called the HAL (Hardware Abstraction

Layer) and HEL (Hardware Emulation Layer).

3.:2 Components of DirectX

3.:2.1. The Hardware Abstraction Layer (HAL). The Hardware Abstraction

Layer (HAL) is the lowest level of software in DirectX, consisting of the

hardware drivers that are provided by the manufacturers to control the

hardware directly. This layer of software provides the utmost performance

because it talks directly to the hardware.

82

F. He and A. Agah Journal of Intelligent Systems

Windows Win32 Application

1
1-1--
1
Windows

C>C>I
(C>rivcrs)

1

l
Directlnput
DirectDraw
DirectSound

Direc:tSound3D
Dirc:ct3D

DirectSetup
DirectPlay

I HEL (Hardware Emulation Layer)

~
I HAL (Hardware Abstraction Layer)

l

C>irectX

..

H rd (Video, Audio, Input) a ware

Fig. 4: The components ofDirectX

3.2.2. The Hardware Emulation Layer (HEL). The Hardware Emulation

Layer (HEL) is built on top of HAL. In general, DirectX is designed to take

advantage of the hardware if the hardware is there, but DirectX still works if

hardware is not available. For example, suppose that we write some graphics

code, assuming that the hardware that we are running on supports bitmap

rotation and scaling. We can make calls to DirectX to scale and rotate

bitmaps. On hardware that supports scaling and rotation, our code runs at full

speed and uses the hardware, but if we run on hardware that doesn't support

scaling and rotation, we have to use HEL. HEL emulates the functionality of

HAL with software algorithms so that we don't know the difference.

Nevertheless, the code will run more slowly.

83

Vol. I I, No. 2, 200I Implementation of an Intelligent
Force Feedback Multimedia Game

3.2.3. Other Components. Other components of DirectX include the

following:

• DirectDraw: Enables access to the video card, along with hardware accel­

eration capabilities.

• Direct3D: Enables the programmer to use a standard API to communicate

with any 3D hardware.

• DirectSound: Responsible for playing all of the digital sound effects.

• DirectSound3D: An implementation of3D sound.

• DirectMusic: Plays MIDI files and supports dynamic music.

• Directlnput: Allows a program to acquire data from the keyboard, mouse,

and joystick in a uniform manner.

• DirectPlay: Provides networking support for multi-player games.

• DirectSetup: An API for installing and setting up DirectX and the game.

• AutoPlay: The Windows support for automatic loading of CDs.

3.3 Using DirectX

In our multimedia game, we use DirectDraw, DirectSound, and Direct

Input. We will give some general introduction to see how these three components

work.

3.3.1. DirectDraw. The first step is the creation of a DirectDraw object

with the DirectDrawCreate function. The DirectDraw object creates and owns

all other objects in the DirectDraw API and is also the means by which we

access all global functions, such as setting the display resolution or color

depth. Once we have a pointer to a DirectDraw object, we have to set the

cooperative level and display mode. As we will use full-screen mode, we will

set cooperative level to Exclusive, Full-Screen. The next step is to create a

primary DirectDrawSurface object, which represents either a display surface

or an off-screen buffer and resides in either system or video memory. Their

member functions allow the copying of data from one surface to another, page

flipping, and much more. The last step is to create a DirectDrawPalette object,

using the CreatePalette function. DirectDrawPalettes represent 16 or 256

index palettes that can be attached to a surface. When all these setting are

done, we can put DirectDraw to use.

84

F. He and A. Agah Journal of Intelligent Systems

3.3.2. DirectSound. The first step is similar to setting up the DirectDraw,

in creating the DirectSound object. In our system, we need only one Direct

Sound object for the default sound card on the system. The next step is to use

the IDirectSound interface. The IDirectSound interface has the ability to

create and duplicate DirectSoundBuffer objects and to deal with sound card

capabilities and global settings. Before we play the sound, we set the

cooperative level to DSSCL_NORMAL. The last step is to copy the sampled

sound data into the buffer. In our system, we will load the data from wave

(*.WA V) files.

3.3.3. Direct/nput. The starting point is to create a Directlnput object and

retrieve a pointer to its IDirectlnput interface. We will use the Directlnput

Create function to create the high-level object. When we have the object and

an interface to the object, we will use CoCreateinstance to make the first call

to initialize the object. Once we have our Directlnput object, we can use it to

create a DirectlnputDevice object. In Windows, we usually have a system

keyboard and a system mouse, but in our game, we use a joystick. Therefore,

we use the EnumDevices function to enumerate the joystick. Now that we

have used the CreateDevice member function to get an interface to a Direct

lnputDevice object, we will begin to deal with the actual physical device-the

joystick. We will set the data format for the device object and cooperative

level of the device. In our game, we set cooperative level to DISCL_

EXCLUSIVE and DISCL_FOREGROUND.

Before we begin retrieving input from the joystick, we have to set the

property for the device. This includes such details as the range of values that

we want and what portion of the joystick is the dead-zone. Next, we have to

begin making force feedback effects for the joystick. Although this process

begins with the DirectlnputDevice object, much of the work is done with an

object called DirectlnputEffect. For the most part, DirectlnputDevice retrieves

input from a device and creates instances of the DirectlnputEffect object.

First, we create an instance of the DirectinputEffect object for each effect and

fill out the DIEFFECT structure. In our game, we use a constant force and a

ramp force. Constant force is a force in a single direction that does not

change in strength. A ramp force is a constant force that changes in strength

linearly over time. After filling in the DIEFFECT structure and calling

85

Vol. 11, No. 2, 2001 Implementation of an Intelligent
Force Feedback Multimedia Game

CreateEffect, we receive a pointer to an IDirectlnputEffect interface. Now we

can use this interface to play the effect, to change the effect, and so on.

4. THE MULTIMEDIA GAME

4.1 Game Overview

In our game, we create circles of different sizes and masses. One of the circles

(MyCircle) is to be controlled by the user (player) through the force feedback

joystick, while other circles (FreeCircles) move randomly on the screen. Each

circle has its position indicated by the x-coordinate and the y-coordinate. When

the circle controlled by the joystick hits another circle, collision takes place and

each of them bounce accordingly. The final velocities of the two colliding

circles are determined by the theories of conservation of momentum and

conservation of energy. Also, as a collision occurs, the sensation of force

feedback can be created and thereafter felt by the player. The edges of the game

environment are designed as walls where circles can not penetrate. A circle will

bounce back when it hits a wall, and the player will feel the force from the

joystick. Our game is enhanced with images, sounds, and force feedback. Each

time when two circles collide, we can hear a sound similar to a 'bounce'. We

also incorporated a time delay in our game, to be used for experimentation with

the effects of time delay in force feedback. The rule of the game is that the

player uses the joysticks to control a circle and tries to avoid collisions with the

walls and the five circles. Each game is limited to the duration of two minutes.

Figure 5 includes a snapshot of the game and Fig. 6 shows a player playing the

multimedia game.

4.2 Software Architecture

The video game program starts by creating and setting up a window. This

requires the DirectDraw interface to the graphic device and DirectSound

interface to the sound buffer. Then the force feedback device is initialized and

a doubly linked-list leading by MyCircle is created. The system is then

thrown into an infinite 'while' loop. The body of the while loop first peeks the

86

F. He and A. Agah Journal of Intelligent Systems

Fig. S: A snapshot of the game.

Fig. 6: A player playing the multimedia game

87

Vol. 11, No. 2, 2001 implementation of an Intelligent
Force Feedback Multimedia Game

window message queue to detect any ESCAPE message. The program is

terminated if the Escape key is pressed. If not, then the system calls the

UpdateFrame() method. This function updates the positions of all circles

based on their velocities. Then, CheckForHits() function is called to detect

any collision that has taken place and to handle each collision. The force

feedback effect is played, and the sound of a 'scream' will be heard. The

magnitude and direction of the force effect that the player experiences depend

on the masses and velocities of the colliding circles. The screen is then

refreshed, and the graphic subsystem draws circles onto the screen. The next

time the system enters the while loop is the next frame of the animation.

Therefore, we can control the frame rate by introducing a delay inside the

while loop. Figure 7 shows a simplified version of the game architecture,

including the modules in the game software.

4.3 Software Implementation

Our multimedia game is implemented in C and C++. It consists of three

sets of files, with each set composed of a header and an implementation file.

The sets include the following:

• FORCE.h: Header file for FORCE.c, containing the definition of circle

types, the data structure of circles and methods.

• FORCE.c: Main program file of the game

• INPUT.h: Header file for INPUT.c

• INPUT.c: Provide methods to handle force feedback mechanism (e.g.

initialization, enumeration, acquiring device, etc.)

• DDUTIL.h: Header file for DDUTIL.cpp

• DDUTIL.cpp: Provide DirectDraw and DirectSound utility functions to

simplify the animation implementation and synthesize sound in FORCE.c

4.3.1. Data structures. The major data structure in this game is the 'Circle'

data structure. There are two types of circles in the game: MyCircle and

FreeCircle. MyCircle is the only circle in the game that is associated with and

controlled by the force feedback device. FreeCircles are an arbitrary number

of circles that move around in the game environment and serve as moving

obstacles to MyCircle. All the circle objects that exist in the game

environment are linked together using a doubly linked list.

88

F. He and A. Agah Journal of Intelligent Systems

WinMain()
{

Create Window

I Init_ Directlnput () I
I Init_DirectSound () I

Called once

Initialize the graphic
InitializeGame () I -

I
. device and call

Setup_ Game ()

Main event loop

PeekMessage ()

IfESC key down
QUIT game;

else
UpdateFrame () Called each cycle

UpdateDisplayList ()
CheckForHit ()
DrawDisplayList ()

I UpdateFrame ()
I

-

Fig. 7: Game architecture

MyCircle is always at the head of this linked-list. The reason for using a

doubly linked list is that we can dynamically add or delete any circle object.

The data structure for Circle contains the major attributes of a moving circle

object including the following:

I . the circle type

2. x_coordinate

3. y _coordinate

4. x_velocity

5. y_velocity

6. mass

7. and other parameters related to animation such the frame position of

the circle's bitmap

89

Vol. JI, No. 2, 2001 Implementation of an Intelligent
Force Feedback Multimedia Game

Fig. 8: Elastic collision

4.3.2. Main Algorithms. The two major algorithms in the game are the

collision detection algorithm and the collision handling algorithm. The.

collision detection algorithm detects a collision when the distance of the

centers of two colliding circles is less than the sum of the radii of the two

circles. The collision handling algorithm computes new velocities after the

occurrence of a collision. The velocities for the two colliding circles are

computed using the laws of conservation of momentum and conservation of

energy. The angle of collision is taken into account in the computations. We

can see how to compute the final velocities of circles and the angle of

collision, using Fig. 8. The collision is similar to a collision of balls observed

in a billiard game. The pseudo-code of elastic collision is included in Fig. 9.

90

F. He and A. A,gah Journal of Intelligent Systems

void Compute_Vel(LPDBLNODE targetl, LPDBLNODE target2)
{

//coefficients
double a, b, c, d

//final velocities
double velx lf, velx_2f, vely_lf, vely_2f;

//distance and angle
double x, y, dist_x, dist_y, dist, sina, cosa;

//inte:anediate velocities
double vlx, vla, v2x, v2a;
double vlx_f, vla_f, v2x_f, v2a_f;

//according to Conservation of Momentum and Conservation of energy to
//calculate coefficients

a= (targetl->mass - target2->mass)/(targetl->mass + target2-
>mass);

b = (2 * target2->mass) I (targetl->mass + target2->mass);
c = (2 * targetl->mass) I (targetl->mass + target2->mass);
d = (target2->mass - targetl->mass)/(targetl->mass + target2-

>mass);

//compute the distance between two colliding balls
x = (targetl->dst.left + targetl->dst.right) I 2;
y = (targetl->dst.top + targetl->dst.bottom) I 2;
dist x = x - (target2->dst.left + target2->dst.rightl/2;
dist::Y = y - (target2->dst.top + target2->dst.bottom)/2;
dist= sqrt(dist_x*dist_x + dist_y*dist_y);

//compute the angle of collision
cosa (targetl->posx - target2->posx)/dist;
sina = (targetl->posy - target2->pos~)/dist;

//resolve the x and y components of the balls velocities into the
//direction of collision and the direction perpendicular to it

vlx targetl->velx * cosa + targetl->vely * sina;
vla = targetl->velx * sina - targetl->vely * cosa;
v2x = target2->velx * cosa + target2->vely * sina;
v2a = target2->velx * sina - target2->vely * cosa;
vlx f = a * vlx + b * v2x;
v2x-f c * vlx + d * v2x;
vla f = vla;
v2a f v2a;

//resolve the resulting velocities (in the direction of collision) of
//the wo balls back into x and y components

velx lf = vla f * sina + vlx f * cosa;
vely=lf = - vla_f * cosa + vlx_f * sina;
velx 2f = v2a f * sina + v2x f * cosa;
vely=2f = - v2a_f * cosa + v2x_f * sina;
targetl->velx = velx lf;
targetl->vely = vely=lf;
target2->velx = velx_2f;
target2->vely = vely_2f;

Fig. 9: Pseudo-code of elastic collision.

91

Vol. 1 J, No. 2, 2001

5. CONCLUSION

Implementation of an Intelligent
Force Feedback Multimedia Game

This paper has described the design and development of a multimedia

game incorporating force feedback. This game was used as a test-bed to

perform human subject experiments, in which different types of multimedia

interfaces were tested, varying combinations, and parameters of sound and

force feedback with and without time delays (Fei & Agah, 2000). The analysis

of experimental results helps with the comparative study of different types of

multimedia combinations.

This multimedia game had a limited precision that was due to the

collision detection algorithm and thus caused certain side effects. When two

circles collided too quickly, and the collision speed was not high enough, the

successive two or more distances were always less than the collision distance.

At this circumstance, two circles could not be split up, and collisions

continuously happened. We developed wotk-arounds to reduce this effect into

minimum. However, this is not the situation in reality. In addition, it is hard to

derive the two-dimension collision algorithm, which will fit into the system. The

algorithm became very complicated when the number of circles increased, and the

angles of collisions were considered as huge numbers of cases had to be

considered. Asswnptions were made to reduce the complexity of the algorithm.

One such assumption was that the chances of all the circles in the game

environment colliding into each other at the same time were almost zero.

We found that another limitation in our approach was the

asynchronization limitation. When the speed of a circle was too high, more

collisions would happen. The bad situation was when the successive collisions

happened too quickly, and the player would feel the 'shake' of the joystick

but would not see the collision happen. The reason was that the computation

of force and force applying through the joystick was lower than the frame

update speed. In general, data conversion and computer speed limit the

attainable sampling rate in force display (Minsky et al., 1990; Miyasato &

Akatsu, 1997). For our system, 30 frames per second performance proved

sufficient for acceptable visual illusions of fluid movements in the game. Low

sampling rate can make the system unstable, however. We can lower the

velocity in x and y directions according to joystick's x speed and y speed to

let the player easily control the circle and reduce the collision speed.

92

F. He and A. Agah Journal of Intelligent Systems

In our future work we hope to support force feedback joystick devices

with I-Force 2.0 (24 force effects), which would allow us to add more

features to the circles and thus more varying force effects. Moreover, we can

integrate network gaming capabilities to the game for players connected

through a LAN or the Internet. They even can control the circles in a common

environment, bumping into each other.

Although there are some computer multimedia games that can be played

through the network, incorporating the force feedback into the network is a

new idea for the game industry. Through this game, players can dynamically

feel the presence of their opponents. In this interactive game, the players will

share the same environment, interacting through modems directly connected

to each other or indirectly connected via a networlc. They share the information

used for the interaction. With using similar joysticks, the data produced by

them should be transferred mutually. Usually, the data are used to determine

the player's position and the player's actions in an ordinary game. After the

data are transferred to the opponent's computer, the position representing the

local player's joystick is produced, and the computer can determine the

process of the game. When using a force feedback joystick, the concept of the

interactive game implementation is the same, except that the computer has to

process much more data for representing the forces. By carefully designing

the game, the data needed to represent the forces can be decreased, but the

other data that should be transferred remain the same as those for using the

common joystick.

REFERENCES

Barnett. 1999. http://www.barnett.sk/software/bbook/ directx.

Bergamasco, M. 1997. Haptic interfaces: the study of force and tactile feed­

back systems, Proceedings of IEEE International Workshop on Robot

and Human Communication.

Browsebooks. 1999. http://www. browse books.com/Kovach.

Buttolo, P., Oboe, R., Hannaford, B. and McNeely, B. 1996. Force feedback

in shared virtual simulations, Proceedings MICAD, Paris, France.

93

Vol. 11, No. 2, 2001 Implementation of an Intelligent
Force Feedback Multimedia Game

Clark, J. 1998. May the force feedback be with you: grappling with DirectX

and Directlnput, Microsoft Systems Journal.

DirectX., 1999. http://www.directxfaq.com/general.htm.

He, Fei. 1999. Enhanced multimedia human-computer interaction using

force feed-back, M.S. Thesis, Department of Electrical Engineering and

Computer Science, The University of Kansas.

He, Fei and Agah, Arvin. 2000. Effectiveness of incorporating force feedback

into multimedia interfaces, Proceedings of The Second International Forum

on Multimedia & Image Processing (IFMIP'OO), World Automation

Congress (WAC'OO), Maui, Hawaii.

Force-feedback. 1998. http://www.force-feedback.com.

Geocities. 1998. http:!/www.geocities.com/Silicon Valley/Way/3390.

Kavach, P.J. 1997. The awesome power of Direct3D/DirectX, Manning

Publications Co.

Lamothe, A. 1997. Windows Gaine Programming For Dummies", IDG Books.

Minsky, M., Ouh-Young, M., Steels, 0., Brooks, F.P. and Behensky, M. ,

1990. Feeling and seeing: issues in force display, ACM I990, 235-243.

Miyasato, T. and Nakatsu, R. 1997. Allowable delay between images and tactile

information in a haptic interface, Proceedings of IEEE International

Workshop on Robot and Human Communication.

Rosenberg, L.B. 1997. A force feedback programming primer, Immersion

Corporation.

Wksoftware. 1999. http://www.wksoftware.com.

94

