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We studied the capability of a Hybrid functional neuroimaging technique to quantify

human mental workload (MWL). We have used electroencephalography (EEG) and

functional near-infrared spectroscopy (fNIRS) as imaging modalities with 17 healthy

subjects performing the letter n-back task, a standard experimental paradigm related

to working memory (WM). The level of MWL was parametrically changed by variation

of n from 0 to 3. Nineteen EEG channels were covering the whole-head and 19

fNIRS channels were located on the forehead to cover the most dominant brain region

involved in WM. Grand block averaging of recorded signals revealed specific behaviors

of oxygenated-hemoglobin level during changes in the level of MWL. A machine learning

approach has been utilized for detection of the level of MWL. We extracted different

features from EEG, fNIRS, and EEG+fNIRS signals as the biomarkers of MWL and fed

them to a linear support vector machine (SVM) as train and test sets. These features

were selected based on their sensitivity to the changes in the level of MWL according to

the literature. We introduced a new category of features within fNIRS and EEG+fNIRS

systems. In addition, the performance level of each feature category was systematically

assessed. We also assessed the effect of number of features and window size in

classification performance. SVM classifier used in order to discriminate between different

combinations of cognitive states from binary- and multi-class states. In addition to

the cross-validated performance level of the classifier other metrics such as sensitivity,

specificity, and predictive values were calculated for a comprehensive assessment of

the classification system. The Hybrid (EEG+fNIRS) system had an accuracy that was

significantly higher than that of either EEG or fNIRS. Our results suggest that EEG+fNIRS

features combined with a classifier are capable of robustly discriminating among various

levels of MWL. Results suggest that EEG+fNIRS should be preferred to only EEG

or fNIRS, in developing passive BCIs and other applications which need to monitor

users’ MWL.

Keywords: functional near-infrared spectroscopy (fNIRS), electroencephalography (EEG), human mental

workload, cognitive state monitoring, n-back, multi-modal brain recording, machine learning

INTRODUCTION

Mental workload (MWL) affects people who are interacting with computers and other devices.
The use of technology in everyday life may impose high cognitive demands as users navigate
complex interfaces. Mental overload may compromise users’ performance and sometimes safety,
by increasing error rates and engendering fatigue, decline in motivation, higher reaction times

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
https://doi.org/10.3389/fnhum.2017.00359
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2017.00359&domain=pdf&date_stamp=2017-07-14
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:haghajani@uh.edu
https://doi.org/10.3389/fnhum.2017.00359
http://journal.frontiersin.org/article/10.3389/fnhum.2017.00359/abstract
http://loop.frontiersin.org/people/391650/overview
http://loop.frontiersin.org/people/403948/overview
http://loop.frontiersin.org/people/403368/overview


Aghajani et al. Measuring Mental Workload with EEG+fNIRS

(Xie and Salvendy, 2000; Young and Stanton, 2002), and neglect
of critical information, known as cognitive tunneling (Thomas
andWickens, 2001; Dixon et al., 2013; Dehais et al., 2014). Taking
into account the users’ cognitive characteristics and limitations
are thus critical in improving the design of human-machine
interfaces (BMI) and for operating them efficiently by installing
adaptive features that can respond to changes in theMWL (Kaber
et al., 2000; Parasuraman andWilson, 2008; Gagnon et al., 2012).

MWL has been defined as the proportion of the human
operator’s mental capabilities that is occupied during the
performance of a given task (Boff et al., 1994). According to the
prevalent Multiple Resources theory (Navon and Gopher, 1979;
Wickens, 2002), performing different tasks requires a subject
to tap into a set of separate resources, which are limited in
capacity and distributable among tasks (Horrey and Wickens,
2003). In general, these resources can be categorized among
four dimensions: processing stage (perception or cognition
vs. response), perceptual modality (visual vs. auditory), visual
channel (focal vs. ambient), and processing code (verbal vs.
spatial; Wickens, 2002; Horrey and Wickens, 2003). Based on
the Multiple Resources theory, equal resource demands between
two tasks that both recruit one level of a given dimension
will interfere with each other more than two tasks that recruit
separate levels on the dimension (Wickens, 2002), andmay create
bottlenecks and consequent decrements in performance. Similar
conclusions have been reached in the areas of aviation (Stanney
and Hale, 2012; Causse and Matton, 2014; Durantin et al., 2014),
education (Palmer and Kobus, 2007; Spüler et al., 2016), and
a variety of clinical situations (Carswell et al., 2005; Stefanidis
et al., 2007; Prabhu et al., 2010; Yurko et al., 2010; Byrne, 2013;
Guru et al., 2015). In the case of driving while having a phone
conversation, in addition to the interference of resources the
“engagement phenomenon” also controls the outcome of multi-
tasking scenario. This happens when one of the tasks attracts so
much attention that the advantage of separate resource demand
would be eliminated (Strayer and Johnston, 2001; Strayer and
Drews, 2007).

MWL is a construct that arises from the interaction of the
properties of a task, the environment in which it is performed,
and the characteristics of the human operator performing
it (Longo, 2016). Task properties include the difficulty and
monotony of the task and the types of resources that it engages.
The environment may contain various degrees of distraction and
noise. The subject characteristics involve training and expertise
as well as changing levels of fatigue, motivation, and vigilance.
Thus, the MWL can be systematically adjusted by tuning a subset
of these variables while controlling for the rest.

Methods of determining MWL fall into three broad
categories: (1) Self-reporting and subjective ratings using
standard questionnaires such as the NASA-TLX (Hart and
Staveland, 1988); (2) Behavioral measures, such as primary-
and secondary-task performance; and (3) Measures based on
the physiology of the user, including heart rate variability,
oculomotor activity, pupillometry, electromyography, galvanic
skin response, and brain activity (Xiao et al., 2005; Wickens,
2008; Sahayadhas et al., 2012). Self-reporting and behavioral
based information tends to be delayed, sporadic, and intrusive

to obtain. Performance based information, in addition, can be
misleading since multiple degrees of MWL may accompany the
same level of performance (Yurko et al., 2010). Physiological
measures, on the other hand, do not require overt behavior,
can be arranged to have little or no interference with task
execution, and can supply information continuously without
significant delay. Progresses in miniaturization and wireless
technology have amplified these advantages of physiological
measures (Sahayadhas et al., 2012).

Most studies of MWL based on brain function have utilized
electroencephalography (EEG), following a large number of
studies using EEG for developing BMI (Wolpaw and Wolpaw,
2012). Functional near-infrared spectroscopy (fNIRS) as a newer
modality have shown promising capabilities in BMI applications
for discrimination of different motor tasks (Naseer and Hong,
2013) or decoding subjects’ binary decisions (Naseer et al.,
2014). The relationship between MWL and central nervous
system activity is well-established (McBride and Schmorrow,
2005). BMIs that do not attempt to directly control a device
but modulate its user interface based on real-time user status
are referred as passive BMIs (Gateau et al., 2015). In such
applications, of paramount importance. Recently multi-modal
techniques utilizing concurrent EEG and fNIRS have gained
popularity due to their relatively richer information content
(Hirshfield et al., 2009; Liu Y. et al., 2013; Liu T. et al., 2013; Keles
et al., 2014b; Aghajani and Omurtag, 2016; Buccino et al., 2016;
Omurtag et al., 2017). Available evidence indicates that brain
activity measures of MWL are more informative than ocular or
peripheral physiology measures (Hogervorst et al., 2014).

Concurrent EEG and fNIRS, whichwe refer to as EEG+fNIRS,
is promising as a practical technique that is more accurate than
the individual modalities alone. fNIRS provides information that
is complementary to EEG, by measuring the changes in cerebral
blood flow (CBF) and related hemoglobin concentrations
through near-infrared light source/detectors on the scalp. It
is comparable to EEG in portability. fNIRS does not have
electromyographic (EMG) and blink artifacts and its signal
closely correlates with the blood oxygen level dependent (BOLD)
signal from functional magnetic resonance imaging (fMRI;
Strangman et al., 2002; Huppert et al., 2006), which is a gold-
standard for measuring cerebral hemodynamics. In addition to
the advantages of pooling different types of signals, EEG+fNIRS
offers new types of features, ultimately based on neurovascular
coupling (NVC), the cascade of processes by which neural
activity modulates local blood flow and oxygenation, and NVC
related features are not resolvable by a uni-modal signal sensitive
to only neural activity (e.g., EEG) or only hemodynamics
(e.g., BOLD).

Working memory (WM) is a brain system that provides
transient holding and processing of the information necessary for
complex cognitive tasks (Baddeley, 2003). It has been investigated
in previous functional neuroimaging studies, which identified the
prefrontal cortex (PFC) as the most relevant area of activation
(Cohen et al., 1997; Smith and Jonides, 1997; Hoshi et al.,
2003; Owen et al., 2005). MWL detection using WM load as
an experimental paradigm has been studied using EEG (Berka
et al., 2007; Dornhege et al., 2007; Grimes et al., 2008; Brouwer
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et al., 2012), fNIRS (Hoshi et al., 2003; Izzetoglu et al., 2003;
Ayaz et al., 2012; Durantin et al., 2014; Herff et al., 2014),
and concurrent EEG and fNIRS (Hirshfield et al., 2009; Coffey
et al., 2012). We have previously shown that aspects of NVC
are characterizable by EEG+fNIRS, by taking advantage of the
synergistic interaction between the modalities (Keles et al., 2016).
The potential of EEG+fNIRS for active BCIs has recently been
investigated (Fazli et al., 2012; Liu Y. et al., 2013; Tomita et al.,
2014; Buccino et al., 2016). In this study, we built on this
work to explore the unique properties of EEG+fNIRS for MWL
detection.

The n-back task was introduced by Kirchner (1958). n-
back is a continues-performance task for measurement of WM
capacity, which has been used frequently in the field of cognitive
neuroscience. Gevins (Gevins et al., 1997, 1998; Smith and
Gevins, 2005a) and Smith (Smith and Gevins, 2005b) showed
during high task-load conditions EEG theta activity increases
in the frontal midline and alpha activity attenuates during the
performance of an n-back task. In addition, fNIRS revealed
WM load while performing n-back task activates PFC (Ayaz
et al., 2012; Sato et al., 2013; Fishburn et al., 2014; Herff et al.,
2014; Mandrick et al., 2016b). The n-back task engages WM and
becomes more demanding as the value of n increases. We have
therefore used the n-back task as our experimental paradigmwith
n ranging from 0 to 3, allowing us to tune the task difficulty.
Our studymaintained all other conditions constant by employing
only healthy adult volunteers with no previous experience with
this task, all performing under the same laboratory conditions
with no distractions or additional activities. Our experimental
design is consistent with numerous BMI studies that take WM
load as a proxy for MWL (Berka et al., 2007; Grimes et al., 2008;
Coffey et al., 2012; Herff et al., 2014).

The aim of this study was, first, to introduce and validate
a state of the art EEG+fNIRS set up in a single headpiece.
Since PFC is the main region of interest in WM load detection
(Owen et al., 2005), our design had the advantage of frontal
lobe coverage by fNIRS. We had whole-head coverage by EEG.
We used the term whole-head to refer to the fact that we
placed EEG electrodes at all (except frontopolar) standard 10–20
sites bilaterally covering the frontal, central, temporal, parietal,
and occipital areas. Having fNIRS optodes on the forehead not
only improved the quality of acquired signal but also reduced
the preparation time. The second aim of this study was to
develop EEG+fNIRS measures that discriminate among levels
of MWL and show that they are promising for the practical
and accurate quantification of MWL in real-world settings. We
developed such measures by extracting EEG, fNIRS, and Hybrid
(EEG+fNIRS) based features from the full set of signals. Most
discriminating features were selected and fed into support vector
machines (SVM) to perform binary or multi-class classification.
The handful of EEG+fNIRS studies currently available (Coffey
et al., 2012; Putze et al., 2014; Buccino et al., 2016) have
not systematically quantified the performance of subsets of a
Hybrid system and its features contribute to the accuracy of
classification. Therefore, the third aim of this study was to
rigorously compare the performance of uni-modal and Hybrid
systems.

METHODS

Subjects
Seventeen healthy volunteers (16 males, 1 female) with a
mean age of 26.2 and standard deviation of 7.7 years from
University of Houston students or employees participated
in the experiment. The experimental procedures involving
human subjects described in this paper were approved by
the Institutional Review Board of the University of Houston.
The participants gave written informed consent prior to the
experiments and were compensated for their effort by being given
a gift card from a major retailer. During the performance of
the verbal n-back task, target letters should be detected by the
operator by means of pressing Space button on the keyboard.
All subjects were right-handed and used their dominant hand
for performing the experiment. This will reduce the variability
of brain signals based on the motor function through all subjects.
None of the subjects had ever taken part in an n-back study, thus
no training effects were expected.

Experimental Design
One of the most common WM paradigm for MWL assessment
is the n-back task, which was first introduced by Kirchner (1958).
In the letter n-back task, participants observe a sequence of single
letters separated by a certain amount of time each; for each letter
they decide whether it is a target, i.e., identical to the item that
appeared n items back in the sequence. The value of n is kept
constant during a segment of the experiment referred to as a
session. As n increases the difficulty of the task becomes higher.
In the literature usually 0-back task has been used as a control
state. Figure 1 illustrates how letter n-back task works when n is
0, 1, 2, or 3. Depending on n, subject should find the target letter
and interact with the user-interface.

In each experiment, we had a total number of 40 sessions.
These sessions were presented in pseudorandom order, 10
sessions per n. Each session started with an instruction block that
is displayed for 5 s on the screen and informed the subject about
which type of the n-back tasks was about to start (instruction
block). Then 22 randomly selected letters (out of 10 candidate
pool of letters) appeared in sequence on the screen (task block).
Each letter stayed on the screen for 500ms and the subject had
1,500ms to press the space button in case that the letter was
a target according to the type of session. At the end of each
session there was a 25 s resting block. During this block the
subject remained relaxed and fixated at a cross on the screen to
let the brain activation return to its baseline and get ready for
the next n-back session (Herff et al., 2014). Figure 2 shows one
sample session. Total recording time was 50 min. The program
for implementation of this task was written using Presentation
software (Neurobehavioral Systems, Inc.). All the information
about the appearance time of each letter, session type, subject’s
response time, and also whether the presented letter was a target
or not was recorded by this software and stored as a text file for
later processing. The objective performance of the subjects within
each session was computed from this information. Subjects who
had too low accuracy (<90% in the 0- or <80% in the 1-back)
were deemed insufficiently focused on the task. Performance
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FIGURE 1 | Schematic illustration of the letter n-back task for n ǫ {0, 1, 2, 3}.

FIGURE 2 | Experimental design for the letter n-back task. Each session includes the Instruction, task, and rest blocks.

level was measured by computing the accuracy defined as the
fraction of correct responses. We considered a missed target as
an incorrect response.

Data Acquisition and Preprocessing
A quantitative meta-analysis has found the cortical regions that
were activated robustly during letter n-back task (Broadman
Areas 6, 7, 8, 9, 10, 32, 40, 45, 46, 47, and supplementary motor
area; Owen et al., 2005). We used this information together
with the results of previous EEG studies to choose the optimum
locations for our 19 EEG electrodes (F7, F8, F3, F4, Fz, Fc1, Fc2,
T3, T4, C3, C4, Cp1, Cp2, P3, P4, Pz, Poz, O1, O2). We used Fpz
as the ground and Cz as the reference electrode. In the literature,
several different reference electrode positioning is indicated,
which have their own set of strengths and weaknesses. Among
them, linked ears and vertex (Cz) are the most common. Cz
reference is advantageous when it is located in the middle among
active electrodes, however, for close points, it may result in poor
resolution (Teplan, 2002). Based on the previous studies, central
brain region in not majorly involved during the performance of a
WM task compared to the frontal and parietal lobes and choosing
Cz as the reference may be more appropriate rather than any
other electrode in the 10–20 system. microEEG (a portable device
made by Bio-Signal Group Inc., Brooklyn, New York) was used
to sample EEG at 250 Hz (Figure 3a). Electrode impedances were
kept below 10 k�. A 128-channel electrode cap with Ag/AgCl
electrodes (EasyCap, Germany) was used to physically stabilize
the sensors and provide uniform scalp coverage. We located the
fNIRS optodes on the subject’s forehead to fully cover the PFC,

which plays a significant role in WM (Fitzgibbon et al., 2013).
Seven sources and seven detectors were located on the forehead
resulting in 19 optical channels, each consisting of a source–
detector (S–D) pair separated by a distance of 3 cm. The 19
optical channels used in this study are shown in Figure 3c. The
S–D placement starts from the left hemisphere and ends on the
right hemisphere. S4 and D4 are located at the center of forehead,
where D4 is located at the AFz location and channel 10 is located
at the Fpz location according to the standard international 10–
20 system (Figures 3b,c). We used our triplet-holders (Keles
et al., 2014a) on the forehead to keep each EEG electrode in
the middle of an S–D pair and fix the distances between the
sensors. fNIRS signals were acquired at 8.93 Hz via NIRScout
extended (NIRx Medical Technologies, New York) device, which
was synchronized with the EEG data by means of common event
triggers (Figure 3a). NIRScout is a dual wavelength continuous
wave system. The EEG signal was band-pass filtered (0.5–80 Hz),
and a 60 Hz notch filter was used to reduce the power line noise.

The spatial Laplacian transform is generally effective inmuscle
artifact removal from EEG signal (Fitzgibbon et al., 2013). We
subtracted the mean EEG voltage of the neighbor electrodes from
each EEG signal. Figure 4 shows the configuration of neighbor
electrodes for 19 EEG channels. Each detector inNIRScout device
records the signal from each separate source in two different
wavelengths (760 and 850 nm). Oxy- and deoxyhemoglobin
concentration changes (HbO and HbR) were computed using the
modified Beer-Lambert law (Sassaroli and Fantini, 2004) using
standard values for the chromophore extinction coefficients and
differential path-length factor (Keles et al., 2016). fNIRS might be

Frontiers in Human Neuroscience | www.frontiersin.org 4 July 2017 | Volume 11 | Article 359

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Aghajani et al. Measuring Mental Workload with EEG+fNIRS

FIGURE 3 | (a) EEG+fNIRS recording setup. Subject interaction with the computer, synchronization of EEG and fNIRS signal, recording of EEG and fNIRS signals,

and data transmission to the acquisition platform. (b) Coronal view of the subject showing the close view of the placement fNIRS optodes and EEG electrodes. (c)

Topographical view of fNIRS sources (Si, black) and detectors (Di, red) and EEG electrodes (green). Each pair of source and detector separated by 3 cm creates a

channel (CHi). We used the signals from F7, Fpz, and F8.

contaminated with the movement, heart rate, and Mayer wave
artifacts. In order to reduce these artifacts while retaining the
maximum possible amount of information, a band pass filter of
0.01–0.5 Hz was applied to fNIRS signals. After the preprocessing
step, two subjects were excluded from the rest of analysis due to
the poor quality of the signal and excessive noise. The processed
signals were inspected visually for the presence of muscle and
motion, eye movements, and other artifacts. The recordings that
were contaminated in excess of 10% by artifact were excluded as
a whole (Keles et al., 2016). In addition, one subject was excluded
since he was not sufficiently focused in the experiment according
to 0-back low accuracy cut-off. Figure 5 shows a segment of
preprocessed data for one of the subjects. The figure indicates the
temporal variations in the fNIRS signals and the EEG frequency
bands, which are utilized in feature extraction. First and second
rows are HbO and HbR of fNIRS channel 17, respectively. Third
row is the EEG time-frequency map for channel O2.

After preprocessing, each task block ({0, 1, 2, 3}-back) and
rest block was divided into 5, 10, 20, or 25 s epochs in order to
assess the effect of window size on classification results. Figure 6
shows four different epoch type with window size from 5 to 25 s.

In most of the cases there is an overlap between adjacent epochs
(half size of epoch’s length). This overlap was considered in order
to capture the unique temporal response for each individual, as
there could be inter-subject variability in the time required for the
hemodynamic response to peak, and/or in the number of peaks
(Power et al., 2012). In addition, during the classification phase,
an imbalance in the number of features within each class biases
the training procedure in favor of the class with a higher number
of training features (He and Garcia, 2009). In our experiment
design we have 40 rest blocks and 10 blocks from each n-back
task type. From each task block, 16, 8, 4, and 2 features were
extracted when we changed the size of the window from 5 to
25 s, respectively. From each rest block 5, 4, 2, and 1 features were
extracted when we changed the size of the window from 5 to 25 s,
respectively.

Feature Extraction
We extracted from each window three main categories of features
for all 19 EEG electrodes and 19 fNIRS channels: EEG (uni-
modal), fNIRS (uni-modal), and EEG+fNIRS (multi-modal or
Hybrid).
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FIGURE 4 | Topographic view of EEG electrodes showing neighborhood

pattern for Laplacian spatial filtering. Inward arrows to each node indicate the

corresponding neighbors used for spatial filtering.

EEG-based features were computed from the frequency
band power (PSD), phase locking value (PLV), phase-amplitude
coupling (PAC), and the asymmetry of frequency band power
between right and left hemispheres (Asym_PSD). Initially, the
spectrogram was calculated using short-time Fourier transform
method with windows of 1 s and half window size overlapping
and frequency resolution of 1Hz. The power was calculated in
eight frequency bands each with a width of 4Hz in the range
0 to 32Hz. The ranges are referred to by their conventional
labels: delta (0–4Hz), theta (4–8), alpha (8–12), followed by
five intervals ranging from low beta (12–16) to high beta (28–
32). We also used the labels f1, f2,..., f8 for these frequency
bands. EEG frequency band power for each epoch was extracted
by integration of the corresponding power over each frequency
band. We imposed the 32Hz cutoff since higher frequencies
in scalp EEG are generally not considered informative about
cortical activity (Goncharova et al., 2003; Muthukumaraswamy,
2013). PLV is a measure of phase synchrony between two
distinct neuronal populations, which is computed between two
selected EEG electrodes as an estimate the inter-area synchrony
(Vinck et al., 2011). PLV was estimated between electrode pairs
that were selected to assess three different types of synchrony:
intra-hemispheric (F3-P3, F4-P4, Fc1-Cp1, Fc2-Cp2, Fz-Poz),
symmetric inter-hemispheric (F7-F8, F3-F4, Fc1-Fc2, C3-C4, T3-
T4, Cp1-Cp2, P3-P4, O1-O2), and asymmetric inter-hemispheric
(F3-P4, F4-P3, Fc1-Cp2, Fc2-Cp1). PLV was computed for
four band of interest ([3–5], [9–11], [19–21], [39–41]Hz). PAC
measures coupling between the phase of a low frequency (here
[4–7], [9–13] Hz) oscillations and the amplitude of a high
frequency ([15–35], [30–60]Hz) oscillation (Radwan et al., 2016).
It provides an estimate of local, multi-frequency organization
of neuronal activity (Dvorak and Fenton, 2014). We chose 8
EEG channel pairs between right and left hemispheres (F8-F7,
F4-F3, Fc2-Fc1, T4-T3, C4-C3, Cp2-Cp1, P4-P3, and O2-O1) for
Asym_PSD feature.

fNIRS features were based on HbO and HbR amplitude
(HbO/R Amp.), slope of HbO and HbR (HbO/R slope), standard
deviation of HbO and HbR (HbO/R Std.), skewness of HbO and
HbR (HbO/R Skew.), and kurtosis of HbO and HbR (HbO/R
Kurt.). The statistics of HbO and HbR are commonly used as
features in fNIRS studies of MWL and BMIs (Naseer and Hong,
2015; Naseer et al., 2016a,b). Our inspection of the fNIRS data
revealed patterns of correlation between HbO and HbR that were
time and area dependent. Hence, we also included the zero-
lagged correlation between HbO and HbR (HbO-HbR Corr.) as
an additional feature. Hybrid features were based on EEG and
fNIRS features in addition to specifically Hybrid quantities that
depend simultaneously on both systems.

We chose to focus on a straightforward quantity, which can
be easily calculated within the time windows of interest: the zero-
lagged correlation between the Hb (HbO or HbR) amplitude and
the EEG frequency band power (in eight separate bands described
above). These neurovascular features based on HbO and HbR
were denoted NVO (oxygenated neurovascular coupling) and
NVR (deoxygenated neurovascular coupling), respectively. To
calculate NVO/R for the left hemisphere, the correlation between
each fNIRS channel (CH1 to CH9) and each frequency band
of F7 EEG channel was calculated (band-passed filter within
the specific frequency range). For the right hemisphere, the
correlation between each fNIRS channel (CH11–CH19) and each
frequency band of F8 EEG channel was calculated. For the fNIRS
channel 10, which is located at the center we used the average of
F7 and F8 channels to find NVO and NVR. This resulted in 152
(19 × 8) NVO and 152 NVR features from each window. Each
set of features extracted from one subject’s data were dc-shifted
and scaled in order to have a mean value of zero and standard
deviation of one.

Classification and Validation
Following feature extraction, we implemented SVM classification
and k-fold cross-validation with k = 10. SVM is a non-
parametric supervised classification method, which already
showed promising results in the medical diagnostics, optical
character recognition, electric load forecasting, and other fields.
SVM can be a useful tool in the case of non-regularity in the data,
for example when the data are not regularly distributed or have
an unknown distribution (Auria and Moro, 2008). Linear SVM
constructs an optimal hyperplane creating a decision surface
maximizing the margin of separation between the closest data
points belonging to different classes (Aghajani et al., 2013).
The observations were randomly partitioned into k groups of
approximately the same size. One group was selected as the
testing and the rest as the training data. Principal component
analysis (PCA) was applied to the training set. We applied PCA
separately on each feature subgroup (11 subgroups, with the
subgroups divided further by frequency bands as described in
our feature extraction methods). For example, the EEG alpha
frequency band power (8–12Hz) consisted of the time series
from 19 EEG channels. After PCA, these signals yielded 19
principal components (PC) and their associated time series as the
new set of features. A similar PCA was applied to each feature
subgroup. The resulting PCs contained a set of weights (for

Frontiers in Human Neuroscience | www.frontiersin.org 6 July 2017 | Volume 11 | Article 359

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Aghajani et al. Measuring Mental Workload with EEG+fNIRS

FIGURE 5 | Sample preprocessed EEG+fNIRS data for one of the subjects. Vertical dashes separate different n-back task and rest blocks. (a) Concentration

changes of oxy-hemoglobin (red curve) and deoxy-hemoglobin (blue) for channel 17. (b) EEG Time-frequency map of the channel O2.

FIGURE 6 | Four different epoch styles based on length of windows. The task and rest blocks are divided into (A) 5, (B) 10, (C) 20, and (D) 25 s windows (wi).

the EEG channels), which could be interpreted as an activation
map. PCA therefore allowed us to interpret the topographic
distribution of activation associated with every feature. PCA
also yielded an eigenvalue corresponding to the variance of that
feature. The eigenvalues typically decrease sharply, the sum of
the first few accounting for almost all of the total energy of the
19 PCs. However, the most energetic PCs are not necessarily
the most informative, as shown in Results (Table 1). In order to
estimate the features’ discriminating ability, we used the Pearson
correlation coefficient method (Mwangi et al., 2014). A reference
time series was constructed by labeling each window by a distinct
integer that represented the rest or the task difficulty level ({0
(rest), 1 (0-back), 2 (1-back), 3 (2-back), 4 (3-back)}). We used
R2, the square of the Pearson correlation between the time
series and the reference signal, to rank the set of features. The
testing data were projected into the PC space that was obtained
from the training data and the testing features were ranked
by using the same method. In part of our analysis, we have
chosen to reduce the number of features of the systems (EEG,
fNIRS, and Hybrid) by truncating all systems at the same fixed
size, eliminating the lowest ranked features. The labeled training
examples were fed into a binary linear SVM. Each training

example contained a vector of feature values in a given window
and its label that denoted one of the two classes of interest. The
SVM constructed an optimal hyper-plane creating a decision
surface maximizing the margin of separation between the closest
data points belonging to different classes (Aghajani et al., 2013).
In this study there were 10 possible pairs of binary classifications
corresponding to our five distinct classes. In order to investigate
the ability to discriminateWM loading against a baseline, we have
chosen the pairs {1-back v rest}, {2-back v rest}, {3-back v rest},
{1-back v 0-back}, {2-back v 0-back}, and {3-back v 0-back} and
performed binary classifications on them. We also investigated
the ability to discriminate between degrees of MWL by using
a multi-class scheme. For this purpose we utilized the error-
correcting output codemulticlass model (ECOC), which employs
a set of binary classifiers. We adopted an all-pairs ECOC model
to train a binary classifier on the pairs of classes in the training
data and, for each new instance in the testing data, assigned
the label that minimizes the aggregate Hamming loss from the
predictions of all binary classifiers (Dietterich and Bakiri, 1995).
In comparison to its alternatives, this approach has been shown to
enhance accuracy while maintaining a low run-time complexity
(Fürnkranz, 2002). We investigated four groups of multi-class
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TABLE 1 | The top R2 ranked features for three representative subjects for the binary rest v 3-back classification.

Subject 1 Subject 2 Subject 3

Rank R2 Descr. Freq. (Hz) PC or Chan.

Pair

R2 Descr. Freq. (Hz) PC or Chan.

Pair

R2 Descr. Freq. (Hz) PC or Chan.

Pair

1 0.37 PSD 4–8 PC3 0.26 PSD 8–12 PC1 0.19 NVR 28–32 PC2

2 0.30 PSD 12–16 PC5 0.23 PSD 4–8 PC1 0.18 NVR 12–16 PC2

3 0.26 PSD 8–12 PC1 0.21 PSD 0–4 PC1 0.18 NVR 24–28 PC2

4 0.18 PLV 3–5 O1-O2 0.18 PSD 12–16 PC1 0.18 NVR 20–24 PC2

5 0.17 NVR 20–24 PC4 0.16 HbO – PC4 0.18 NVR 16–20 PC2

6 0.16 NVR 8–12 PC4 0.13 COR – PC2 0.18 HbR – PC2

7 0.16 NVR 16–20 PC4 0.13 HbR – PC1 0.17 NVR 4–8 PC2

8 0.16 NVR 12–16 PC4 0.12 NVR 24–28 PC1 0.16 PLV 9–11 Fz-Poz

9 0.16 NVR 24–28 PC4 0.11 NVR 12–16 PC1 0.15 PSD 12–16 PC3

10 0.15 NVR 28–32 PC4 0.11 NVR 16–20 PC1 0.14 PSD 8–12 PC4

Columns indicate the feature description (Descr.), corresponding frequency range if applicable, and PC index in order of descending energy (or the channel pair for PLV). The HbO-HbR

corr. has been abbreviated as COR.

sets that contained narrow gradations of MWL: {3-back v 2-
back v 1-back}, {3-backv 2-back v 1-back v 0-back}, {3-back v
2-back v 1-back v rest}, and {3-back v 2-back v 1-back v 0-back v
rest}. The accuracy was computed as the fraction of labels in the
testing data that were correctly identified by the SVM. Finally,
the cross-validation was repeated k times with each group of
observations being used exactly once as the testing data. The
overall accuracy was calculated as the mean of the repetitions.
In addition to overall accuracy, confusion matrices yield a
very detailed overview of a classifier’s performance. Usually, the
confusion matrix is further summarized by some proportions
extracted from the confusion matrix. The main metrics are (a)
sensitivity of class A (Sens.A) which describes how well the
classifier recognize observations of class A, (b) specificity of class
A (Spec.A) which describes how well the classifier recognizes that
an observation does not belong to class A, (c) positive predictive
value of class A (PPVA) tells us given the prediction is class
A, what is the probability that the observation truly belongs to
class A?, (d) negative predictive value of class A (NPVA) tells
us given a prediction does not belong to class A, what is the
probability that the sample truly does not belong to class A
(Beleites et al., 2013)? We pooled all the k confusion matrices of
the k-fold cross validation to calculate Sens.A, Spec.A, PPVA, and
NPVA. For all the calculations described in this paper we used
Matlab v.8.6.0.267246 (R2015b) (The MathWorks, Inc., Natick,
Massachusetts, United States).

RESULTS

We initially investigated the relationship between the subjects’
performance and task difficulty, in order to insure that it
was consistent with expectations. Figure 7 shows the accuracy
and response time of all subjects with error bars showing the
standard deviation of inter-subject variability. The figure shows
that the fraction of accurate responses decreased with increasing
task difficulty. There was little or no accuracy decrement
between 0- and 1-back tasks, as expected (Jonides et al., 1997).

FIGURE 7 | Behavioral performance of the subjects during task conditions of

increasing difficulty, showing response accuracy (red) and response time

(black). Error bars indicate the standard deviation of inter-subject variability.

Asterisks indicate statistical significance derived from a two-way ANOVA

comparison of each two response accuracy (red) or response time (black) (*p

< 0.05, **p < 0.001, ***p < 0.0001).

Furthermore, the time it took subjects to produce a correct
response increased (and eventually more than doubled) with task
difficulty (Figure 7).

We next examined the HbO and HbR patterns during changes
in mental load. Figures 8 (a–e) shows the grand block average
of HbO (red) and HbR (blue) amplitude. The shaded area
shows the standard deviation of the inter-subject variability.
In this paper, the term grand block averaging denotes the
average over the blocks of the same class and over all channels
and subjects. Following neural activation, local blood flow and
volume typically increase on a time scale of seconds and, at the
beginning of the task, there is a localized rise in oxygenation in
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FIGURE 8 | Grand block average of normalized HbO (red) and HbR (blue) during (a) 0-back, (b) 1-back, (c) 2-back, (d) 3-back, (e) rest. The thick curves show the

average over all channels and subjects. The shaded area indicates the standard deviation of inter-subject variability. Grand block average of HbO (f) and HbR (g) for

rest (dashed curves) and task (solid). Increasing thickness of solid curves corresponds to increasing task difficulty from 0- to 3-back. AU means arbitrary units.

PFC (Huppert et al., 2006), which creates the positive peak of
HbO. After a few seconds due to the metabolic consumption of
oxygen the oxyhemoglobin concentration decreases leading to
a negative HbO amplitude. During the rest state which comes
after the task block, the oxyhemoglobin concentration starts to
increase and HbO returns to baseline. Toward the end of rest
window there is an apparent task anticipating rise in HbO. The
range of changes of HbO is obviously higher than those of HbR
during the task periods. From 0- to 2-back the positive peak
of HbO increases and then decreases from 2- to 3-back. HbO
and HbR have the opposite sign and are hence negatively short
time correlated in the rest state. However, this appears to change
during task in ways depending on the value of n. The range of
HbO changes increases with n although they appear to slightly
decrease as n changes from 2 to 3. In (Figures 8f,g) we show
the grand block average of all tasks v rest state for one specific
fNIRS channel (channel 10, which is located at Fpz, near the
center of the forehead). In this figure the curves corresponding
to rest and task with all values of n have been shown in one plot

to make the comparison easier. And we just show the first 25 s of
the n-back task block (out of the full 44 s). The shaded areas for
standard deviation are omitted for clarity. Figure 8f shows that
the peak amplitude of HbO is positive for task performance and
negative for rest. In addition, it decreases with increasing load for
n > 0. The area under curve clearly discriminates between rest
and task since it is negative during rest and positive for all other
n-back tasks. By contrast, the peaks of the amplitude of grand
block average of HbR (Figure 8g) that occur after the 10 s have a
positive correlation with the level of mental load. These patterns
are not observed in the case of the 0-back task since it is related
to perception only and is less involved with WM system. We also
examined the time course of selected features that were extracted
from the signals.

Figure 9 shows the PSD extracted from EEG, HbO/R Amp.
from fNIRS, and NVO/R features from EEG+fNIRS change in
relation to the degree of WM load. We use the term session
to denote a task block and the following rest block. For each
cognitive state, we then have 10 sessions per subject. In the case of
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FIGURE 9 | Grand block average of normalized features from 5 s windows: (a) PSD (delta, theta, alpha bands) of channel O2. (b) HbO/R Amp. for channel 10. (c)

NVO (delta, theta, alpha bands) for channel 10. (d) NVR features (delta, theta, alpha bands) for channel 10. Shaded areas indicate the standard deviation of

inter-subject variability.

5 s windowing, for each feature, we have 21 values in each session
(16 from task block and 5 from rest block). The curves in Figure 9
were computed by first applying a simple triangular moving
average filter covering three samples at each step, and then a cubic
spline interpolation. The figure shows that the theta and alpha
bands of EEG are positive during 0- and 1-back, although they
become negative for 2- and 3-back tasks. The positive peak of
HbO increases from 0- to 2-back and has a slightly lower peak for
3-back compared to 2-back. The figure also shows that theHybrid
features (such as NVO in the delta range) generally resemble the
corresponding uni-modal features (such as HbO and PSD in the
delta range) however they were dominated by neither, suggesting
that the Hybrid feature contained additional information.

Table 1 shows the top 10 highest ranked features (based
on R2) for three subjects obtained during the 3-back v rest
training set. The features are characterized by the description
(e.g., PSD, PLV, HbO, as described in Section Methods) and the
particular frequency band, where applicable. The frequency band
is applicable only to the EEG and neurovascular features. The
table also indicates the order of the feature according to the
magnitude of its eigenvalue [ordered from the most energetic (1)
to the least (19)]. Since PCA was not used in the case of PLV,
the channel label is given instead of the PC order. For example,
the highest ranked feature for subject one was the third most
energetic PC from the EEG frequency band power in the theta
range (4–8Hz). For subject 3, the highest ranked feature was the

second most energetic PC from the neurovascular feature based
on the correlation between HbR and the EEG frequency band
power in the high beta range (28–32Hz). The table illustrates that
the types of features in the top ranked group may vary among
subjects and that high discriminating ability of a feature does not
imply high energy in the sense of the PCA.

Figure 10 shows the classification accuracies of various
subsystems as well as the Hybrid system for the 3-back v
rest using 5 s windows. The error bars represent the standard
deviation of inter-subject variability. Within the EEG group (gray
bars), the leftmost bar is the accuracy of a system based only
the PSD features. On its immediate right is the accuracy of the
subsystem based only on PLV features, and similarly for PAC and
other feature types. The rightmost bar in the EEG group shows
the accuracy of the full EEG system which includes all feature
types based on EEG signals. Clearly the PSD is the primary
contributor to the discriminating ability of the EEG, however,
the accuracy appears to be slightly enhanced by including the
other types of features. Among the fNIRS systems (red) the
leftmost bar indicates that Hb amplitudes together with the HbO-
HbR correlation is the primary contributor to the accuracy of
detection. Unlike the EEG system, the other feature types such
as slope and higher order statistics significantly enhance the
accuracy of the fNIRS system. The overall accuracy of the fNIRS
system is lower than the overall accuracy of the EEG system. The
accuracy based only on the neurovascular features is indicated
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by the leftmost bar in the Hybrid group (green). The middle
bar in the Hybrid group represents the pooling of all features
from the EEG and fNIRS systems. Finally the inclusion of the
neurovascular features in the Hybrid system (rightmost green
bar) appears to slightly enhance the accuracy.

Figure 10 compared the accuracies of various systems with
each system containing the full set of features that belonged
to it. The number of features in the full set was different for
each system, for example the EEG, fNIRS, and Hybrid systems
contained 360, 209, and 873 features, respectively. This may raise

FIGURE 10 | Accuracy of types of features in classifying rest v 3-back with 5 s

feature windows. The error bars indicate the standard deviation of inter-subject

variability. The union of neurovascular features is abbreviated as NV. Features

are extracted from different systems: EEG (gray bars), fNIRS (red bars), and

Hybrid (green bars).

the question of to what extent these systems’ accuracies were
influenced by the number of features they contained, rather than
by the information content per feature. In order to examine
this topic, we computed the systems’ accuracies after they had
been truncated to contain the same number of features. This
was done by selecting the top ranking group after the features
had been sorted in order of descending values of R2. The goal
was to perform a comparison on an equal footing by truncating
each system in the same way. The calculation was repeated
by varying the number of features from two to the available
maximum. Figure 11a indicates that the fNIRS system had the
lowest accuracy over the entire range of the number of features.
The EEG system performed better, while the Hybrid accuracy
was consistently superior to either system, similar to the results
shown in Figure 10. Figure 11b shows the cumulative sums of R2

index v number of features for three systems which qualitatively
agree with Figure 11a. The calculations are for the 3-back v rest
using 5 s windows and they qualitatively agree with the results
(not shown) of binary classifications of other pairs of classes and
window sizes. The shaded areas indicate the standard deviation
of inter-subject variability.

Figure 10 provided the results for only one type of binary
classification (3-back v rest) and the variability over subjects as
a standard deviation. However, it is highly instructive to examine
the result for each subject as well as for every binary and multi-
class problem that was described previously in our Methods.
Tables 2, 3 break down the accuracy of classification for each
subject (S1, S2,..., S14), system type (EEG, fNIRS, Hybrid), and
the type of classification problem. The mean as well as the
minimum and maximum of the values for the subject population
are provided as three separate columns on the left. The height
of the rightmost bars within the EEG (gray), fNIRS (red), and
Hybrid (green) groups in Figure 10 correspond in Table 2 to
the accuracy percentages 83.5, 75.3, and 90.1 shown under the
column “Mean” and the row “3-back v rest.” In the columns for

FIGURE 11 | (a) Accuracy and (b) cumulative sum of R2 for EEG (black), fNIRS (red), and Hybrid (green) systems as a function of system size. Mean and standard

deviation over subjects are indicated by the solid curves and shaded areas, respectively. The classification task was rest v 3-back and feature window size was 5 s.
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TABLE 4 | Sensitivity (Sens.), specificity (Spec.), positive predictive value (PPV), and negative predictive value (NPV) are listed in percentage (%) for all classification cases

(binary and multi-class) and all systems (EEG, fNIRS, Hybrid).

Sens. Spec. PPV NPV

EEG fNIRS Hybrid EEG fNIRS Hybrid EEG fNIRS Hybrid EEG fNIRS Hybrid

Rest v 1back Rest 94.5 94.5 96.7 63.3 56.7 79.6 72.1 68.6 82.6 92.0 91.1 96.1

1back 63.3 56.7 79.6 94.5 94.5 96.7 92.0 91.1 96.1 72.1 68.6 82.6

Rest v 2back Rest 94.0 95.2 95.8 71.8 56.7 82.5 76.9 68.7 84.6 92.3 92.2 95.1

2back 71.8 56.7 82.5 94.0 95.2 95.8 92.3 92.2 95.1 76.9 68.7 84.6

Rest v 3back Rest 94.4 94.2 96.6 72.7 56.7 83.3 77.5 68.5 85.2 92.8 90.8 96.1

3back 72.7 56.7 83.3 94.4 94.2 96.6 92.8 90.8 96.1 77.5 68.5 85.2

0back v 1back 0back 86.7 69.2 90.9 86.7 72.9 92.4 86.7 71.9 92.3 86.7 70.3 91.0

1back 86.7 72.9 92.4 86.7 69.2 90.9 86.7 70.3 91.0 86.7 71.9 92.3

0back v 2back 0back 90.8 67.5 92.5 91.5 76.7 94.3 91.4 74.3 94.2 90.9 70.3 92.6

2back 91.5 76.7 94.3 90.8 67.5 92.5 90.9 70.3 92.6 91.4 74.3 94.2

0back v 3back 0back 90.7 68.8 93.0 93.3 71.2 94.0 93.1 70.5 93.9 90.9 69.6 93.1

3back 93.3 71.2 94.0 90.7 68.8 93.0 90.9 69.6 93.1 93.1 70.5 93.9

1back v 2back v 3back 1back 76.0 51.1 82.5 94.4 79.3 95.5 87.1 55.3 90.1 88.7 76.4 91.6

2back 83.8 60.4 89.6 87.7 78.3 90.9 77.3 58.1 83.1 91.6 79.8 94.6

3back 82.7 57.8 87.1 89.2 77.1 93.2 79.3 55.7 86.5 91.2 78.5 93.5

0back v 1back v 2back v 3back 0back 76.4 45.0 81.4 94.6 85.4 96.0 82.6 50.7 87.1 92.3 82.3 93.9

1back 79.9 48.1 86.7 91.7 82.6 93.9 76.2 48.0 82.5 93.2 82.7 95.5

2back 81.0 53.4 87.0 92.3 81.5 94.2 77.9 49.1 83.4 93.6 84.0 95.6

3back 79.7 50.7 83.8 93.7 82.8 95.5 80.8 49.5 86.2 93.3 83.4 94.6

Rest v 1back v 2back v 3back Rest 81.4 79.6 86.4 95.4 91.5 97.3 85.5 75.8 91.4 93.9 93.1 95.6

1back 79.3 51.6 86.6 93.9 85.1 95.6 81.3 53.5 86.8 93.2 84.0 95.5

2back 80.8 56.0 87.0 92.3 85.8 94.7 77.8 56.9 84.5 93.5 85.4 95.6

3back 80.8 54.7 86.4 92.5 84.9 94.6 78.3 54.7 84.2 93.5 84.9 95.4

Rest v 0back v 1back v 2back v 3back Rest 78.6 77.9 84.5 95.3 93.4 97.5 80.8 74.8 89.3 94.7 94.4 96.2

0back 79.4 47.3 85.4 94.2 87.5 95.9 77.5 48.7 84.0 94.8 86.9 96.3

1back 78.0 44.8 84.4 93.7 86.9 95.3 75.7 46.0 81.8 94.5 86.3 96.1

2back 75.9 49.9 84.3 94.4 87.7 96.1 77.3 50.4 84.6 94.0 87.5 96.1

3back 78.3 48.8 85.2 94.8 86.6 96.1 79.1 47.8 84.5 94.6 87.1 96.3

individual subjects, Table 2 shows the mean accuracy and the
standard deviation from the trials in the 10-fold cross validation.

Table 2 suggests that the mean accuracy of classifying task
against a baseline increases with n, as expected. The accuracy
of detecting 0-back v n-back appears to be slightly greater than
that of detecting rest v n-back (n > 0). For example, 87.2% for
1-back v rest and 91.4% for 1-back v 0-back. Table 3 shows the
results for multi-class classification. In this case, the accuracy
tends to decline slightly as more classes are included in the
classification problem. In all subjects and classification problems,
the Hybrid system has the greatest accuracy without exception.
We investigated whether the observed superiority of the Hybrid
system was statistically significant. A two-way ANOVA was
performed on every classification problem (a row of Table 2 or

Table 3) by using as the two factors the type of system (EEG,
fNIRS, Hybrid) and the subject. The analysis was repeated by
taking the classification problems as, first, the binary types in
Table 2 and, second, the multi-class types in Table 3. In all
cases, the differences of accuracy among the subjects were not
significant and there were no interactions between system type
and subject, while the differences in accuracy between the Hybrid
and the uni-modal system was significant with a p < 0.001.

Table 4 lists the sensitivity (Sens.), specificity (Spec.), positive
predictive value (PPV), and negative predictive value (NPV) for
each individual class within a classification case. For example
for the case of {Rest v 3back}, each one of rest and 3-back
classes would have a Sens., Spec., PPV, and NPV, respectively.
In addition, this table summarizes all these metrics for EEG,
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fNIRS, and Hybrid systems in order to make it easier to compare
between their capabilities.

The foregoing results corresponded to 5 s windows but
qualitatively agreed with patterns we observed with other
window sizes as well.We also assessed the effect of window length
on classification accuracy for EEG, fNIRS, and Hybrid systems.
Figure 12 shows the results of this assessment.We examined four
different lengths for the windows (5, 10, 20, and 25 s). Change of
window length has the same effect on all three types of systems.
By increasing the length from 5 to 20 the accuracy increases and
declines thereafter.

DISCUSSION AND CONCLUSION

The functional activity of the human brain can be observed with
various imaging techniques including fMRI, fNIRS, and EEG.
Each of these modalities has its advantages and disadvantages.
The advantage of using Hybrid EEG+fNIRS system can be
divided into two main categories: First, each of these modalities
is measuring the changes in a specific brain physiology. EEG
results directly from the electrical activity of cortical and
subcortical neurons with a sub-millisecond temporal resolution.
On the other hand, fNIRS yields local measures of changes in
HbO and HbR concentration and is, therefore, an indicator of
metabolic/hemodynamic changes associated with neural activity.
Second, the physics of measurement behind EEG and fNIRS are
quite different. This property, for example, makes EEG signal
prone to blink and muscle artifacts, while this is not the case for
fNIRS. Hence using amultimodal recording systemwe are able to
assess brain behavior from different physiological perspectives in
addition to compensating for some weaknesses of one modality
by the other one.

Our results suggest that EEG+fNIRS combined with a
classifier are capable of robustly discriminating among various
levels of MWL. In our study, the Hybrid system had an accuracy
higher than either EEG or fNIRS alone for every subject.
The pooling of EEG and fNIRS features and the inclusion of
neurovascular features resulted in a synergistic enhancement,
rather than in a diluting effect (which would have given
a performance intermediate between the two modalities). In
mission-critical contexts such as aviation or surgery, even small
improvements in MWL detection can translate into significant
gains in safety and efficiency. Our experiments were designed to
use WM load (adjusted through the value of n in the n-back task)
as a correlate of MWL in general. Furthermore, EEG and fNIRS
can be integrated without excessive cost, effort, or intrusiveness
for the user. The combination of all these considerations suggests
that EEG+fNIRS should be preferred to only EEG or fNIRS, in
developing passive BCIs and other applications which need to
monitor users’ MWL.

Our preliminary analysis of the experimental data was
consistent with expectations. For example Figure 7 indicated that
the fraction of accurate responses declined more steeply as n
increased. This can be explained by noting that temporal tagging
is the cognitive process that imposes the greatest load in the n-
back task, as compared to the other processes which are also

involved such as encoding, storage, matching, and inhibition to
dampen the oldest memory traces (Jonides et al., 1997).

Temporal tagging, unused in the 0- and 1-back, begins
to affect MWL substantially as n > 1. Another interesting
preliminary result was the observation that HbO showed
an anticipatory increase near the end of the rest sessions
(Figure 8E). This is consistent with related fMRI findings
(Sakai and Passingham, 2003) and with the fact that the PFC
is involved in planning future action. A negative correlation
between HbO and HbR has been seen in the literature. Based on
(Figures 8A–E), the shaded area, which is the standard deviation
of normalized HbO and HbR variations within the block for all
of the subjects and all of the fNIRS channels, is relatively high.
This shows the high level of inter-subjects variability and that
might be the reason that we are not seeing such anti-correlated
pattern betweenHbO andHbR in Figure 8. Izzetoglu et al. (2004)
showed that the reason behind the drop of the peak of HbO
in Figure 8d is that when a participant reaches his maximum
performance capacity or in another word starts to overloads
cognitively, he loses his concentration on the task and as a
result performance as well as the oxygenated hemoglobin changes
decline.

Figure 5 did not show any differences between rest and task
states that were obvious to visual inspection of the preprocessed
EEG or fNIRS signals. Subject and block averaging of various
features shown in Figure 9 did, however, indicate that such
systematic variations existed. Lower values of the EEG alpha
band power in the 2- and 3-back task, and higher values of HbO
in the beginning of the task period in the n-back (increasing
with n) relative to those in the rest state were examples of
such visible variations. To take advantage of such variations
we employed discrimination through linear SVM. In the case
of non-linear SVM, the kernel can help with the non-linearly
separable data and map it into a new feature space in which
the dataset are separable with a linear SVM. In non-linear
SVM in order to improve the accuracy choosing the optimum
kernel parameters, is necessary. This can reduce classifier’s
generalization potential for new subjects when we don’t want to
adjust the kernel’s parameters. It will increase the probability of
overfitting occurrence, since increasing the complexity level of a
classifier gives it the flexibility to match exactly to the train set. In
addition, the option of choosing a non-linear SVM depends on
the exact application tomake a trade-off between a slightly higher
accuracy rather than calculation speed. The same trade-off we
face to choose the windows size. The results shown in Figure 10,
Tables 2, 3 were highly promising for accurately discriminating
among the rest and task states. As Tables 2, 3 show, the subject
averaged accuracy of the Hybrid system in binary discrimination
was lowest (87.2%) for 1-back v rest and highest (96.6%) for 3-
back v 0-back. The corresponding lowest and highest results for
uni-modal systems were fNIRS (71.6%) and EEG (92.0%), both
for 3-back v rest. We calculated the overall average of accuracy
one time for all of the binary cases and one time for all of the
muli-class cases. We did this calculation for EEG, fNIRS, and
Hybrid systems separately. The results show that EEG, fNIRS,
and Hybrid system, in the case of binary classification, have 85.9,
74.8, and 90.9% overall accuracy, respectively. EEG, fNIRS, and

Frontiers in Human Neuroscience | www.frontiersin.org 15 July 2017 | Volume 11 | Article 359

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Aghajani et al. Measuring Mental Workload with EEG+fNIRS

FIGURE 12 | Accuracy of the rest v 3-back classification as a function of window size for EEG (gray), fNIRS (red), and Hybrid (green) systems. Error bars indicate the

standard deviation of inter-subject variability.

Hybrid system, in the case of multi-class classification, have 79.6,
57.0, 86.2% overall accuracy, respectively. These numbers convey
that the accuracy of each one of EEG, fNIRS, and Hybrid systems
are higher for the binary cases. The multi-class accuracies were
generally lower; however, note that the chance level accuracy for
multi-class classification is less than binary classification (33% for
3-back v 2-back v 1-back, 25% for 3-back v 2-back. v 1-back v rest
and also 3-back v 2-back. v 1-back v 0-back, and 20% for 3-back
v 2-back. v 1-back v 0-back v rest).

Table 4 reveals that, for all of the four extracted metrics from
the confusion matrix (sensitivity, specificity, PPV, NPV), always
Hybrid system has a higher value than EEG system and EEG
system has a higher value than fNIRS system. In the cases of
binary classification, for those that we are detecting between task
and rest, the sensitivity of detection of rest state is significantly
higher than the sensitivity of detection of task state. As its
complement, the specificity of detecting task state is higher than
detecting the rest state. In the cases of binary classification, for
those that we are detecting between task and task, the sensitivity
of detecting the task with a higher difficulty level is more than
those with less level of difficulty, although the difference is not
very significant. The PPV and NPV are usually more important
than sensitivity and specificity. Patients and doctors want to
know whether this particular patient is ill rather than whether
the test can recognize ill people (Beleites et al., 2013). Here, our
result (Table 4) shows that Hybrid system has at the same time
a very promising PPV and NPV for all of the classification cases.
Except for the case of {1-back v rest}, the minimum of sensitivity,
specificity, PPV, NPV for the Hybrid system are 81.4, 82.5, 81.8,
and 84.6%, respectively.

Selecting an optimal subset from the full set of features is
crucial for achieving high accuracy and avoiding over-fitting.
In some applications, e.g., those involving on-board real-time
analysis, it may also be important to keep the system size
small and avoid computational delays. Figure 11b shows the

cumulative sum of R2 v number of features for three systems
which qualitatively agrees with Figure 11a, suggesting that R2

ranking is an effective method of feature selection. We have not
used an explicit artifact rejection step in our analysis. However,
it is well known that PCA can segregate non-cerebral artifacts
(typically of higher amplitude than contributions of cortical
origin) into distinct PCs. Our feature selection based on R2 then
assigns a lower rank to such PCs and they are excluded from a
truncated system.

One of the main considerations in developing an online
system is computational speed. It is instructive to review the
computational loads of particular feature types in conjunction
with how effectively they discriminate among rest and task
states. For example, Figure 10 shows that PAC is the least
discriminating EEG feature. This may be important in designing
a compact and efficient detector, as PAC is also the most
computationally time-consuming feature. By contrast, the most
effective EEG feature (PSD) was also the fastest to compute. In
our study, the central processing unit (CPU) time required for
computing PSD, PLV, PAC, and Asym_PSD were, respectively,
0.1, 14.3, 44.4, and 0.2 s. The CPU times required for other
features were as follows: HbO/R Amp. and HbO-HbR Corr.
(0.1 s), HbO/R slope (14.3 s), Std., Skew. and Kurt. collectively
(3.3 s), and NVO and NVR (3.4 s).

Our results suggest that Hybrid outperforms the uni-modal
systems for each subject (Tables 2, 3), every classification
problem (Tables 2, 3), every number of features (Figure 11), and
every window size (Figure 12). This could have been due to
the neurovascular features that the uni-modal systems do not
contain. NV obviously had a higher classification performance
rather than any of fNIRS based feature subgroups. However,
Figure 10 indicates that such features contribute little if any
to the accuracy (two rightmost bars) after the other EEG and
fNIRS features have been pooled. The likely explanation instead
is related to inter-subject variability. We have found that the
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top ranked (in terms of R2) features tend to differ among
different subjects. Although, the EEG frequency band power
(especially in the alpha range) tended to play an important
role for most subjects, for other subjects other feature types,
fNIRS- or Hybrid based, dominated the top ranks. An example
of this is provided in Table 1 where the third subject’s most
discriminating PCs were neurovascular. EEG and fNIRS use
different physical processes for detection and the underlying
physiology which they detect are different. Hence deficiencies
such as artifacts, weak sensor coupling, or subject variability
leading to a weak signal would selective affect only one modality
rather than both. The Hybrid advantage may be associated
primarily with the complementary nature of the individual
modalities.

Figure 12 indicates that accuracy can be increased by using
larger windows. But this presents a tradeoff between accuracy
and rapid detection. The windows with the highest accuracy
were 20 s long and may be impractical for some applications if
the online response to rapid changes in MWL is desirable. As
window size increases, although the amount of information per
window likely increases, the number of windows available for
training the classifier decreases. Fewer training data are expected
to cause the classifiers to underperform (Grimes et al., 2008).
The decline in accuracy in Figure 12 for windows >20 s may
be due to the excessively small number of data available for
training.

A handful of studies on concurrent EEG and fNIRS and
WM tasks have been previously published. Hirshfield et al.
(2009) combined an 8 channel fNIRS covering the forehead
with 32 channel whole-head EEG with N = 4 subjects as they
performed a counting and mental arithmetic task with adjustable
difficulty. They used separate classifiers for the fNIRS and EEG
(k-nearest neighbor and Naive Bayes classification, respectively)
and obtained a maximum accuracies of 64% (with fNIRS) and
82% (EEG). They did not attempt to use the multi-modal
data concurrently. The generally higher accuracy of the EEG
is consistent with our results. Their overall lower accuracies
relative to our results may be due to the relatively short 2 s
feature extraction window. Liu Y. et al. (2013) used a 16-optode
fNIRS system covering the forehead and 28 EEG sensors at
the standard 10–20 sites, with N = 16 subjects performing a
n-back task. They found significant correlations between WM
load and some EEG frequency band powers as well as HbO
and HbR, however did not attempt classification. Their study
focused on discovering neural correlates of the effects of practice
time on performance. Coffey et al. (2012) recorded three fNIRS
channels over the left forehead together with 8 EEG electrodes
placed mainly in the frontal and central areas, from N = 10
subjects in a n-back task. They extracted EEG frequency band
power and fNIRS Hb amplitude features from 5 s windows and
employed them in linear discriminant analysis classifiers. They
report maximum accuracies of 89.6% (EEG), 79.7% (fNIRS),
and 91.0% (Hybrid). Their results differed from ours in that
in some subjects all their systems had very low accuracies and
their Hybrid accuracies were not always higher than those of
both uni-modal systems. However, the fact that EEG generally
had the higher uni-modal accuracy and that Hybrid could attain

the highest observed accuracy were consistent with our findings.
The differences from our results could be attributed to the
relatively lower number of sensors and fewer types of features
they employed.

Acquiring the very low-frequency (VLF) oscillations (<0.5
Hz) in the EEG signal requires highly specialized amplifiers
(DC-coupled, high input impedance, high DC stability, and a
wide dynamic range; Demanuele et al., 2007). In addition, VLF
oscillations are known to be linked with specific pathologies such
as epileptic seizures or attention deficit hyperactivity disorder
(Steriade et al., 1993; Vanhatalo et al., 2004; Demanuele et al.,
2007) that are not within the range of interest in this study. On
the other hand, some studies (Gevins et al., 1997; Berka et al.,
2007; So et al., 2017) demonstrated EEG within gamma range as
a biomarker for discrimination between different cognitive states.
We defined the band-pass filter cutoff frequency (0.5–80Hz)
based on these criteria. Although in the feature extraction section,
we did not consider gamma frequency range features and have
considered this as the future work.

The present study had several limitations which we have
not directly addressed due to constraints of available time
or effort. Firstly, the group of subjects included only one
female. This may have been due to the demographics of the
subjects, who happened to be interested in volunteering for our
study. In addition to the neural correlates of MWL, we have
recorded the subjects’ performance characteristics. However, it
may prove insightful to collect data on the MWL by using
additional techniques such as self-reporting, which was not
done in this study. In some studies for assessment of MWL
participants filled out the NASA Task Load Index (NASA
TLX) questionnaire (Hart and Staveland, 1988) to provide a
subjective evaluation of the mental demand induced by different
levels of task difficulty. In this study, we implicitly used the
assumption that an increase in the level of task difficulty will
result in a higher MWL. This can be also considered in future
studies. In addition, it is possible that during the course of an
experiment the subjects’ performance and MWL change through
training effects. Studying the performance and neural correlates
of MWL for subsets of our data could reveal differences in
the beginning and at the end of the study. This would also
require an additional investigation of statistical validity, and
was not attempted. The statistical significance of the results of
our study was demonstrated through a two-way ANOVA that
showed significant differences in the accuracy of the Hybrid v
uni-modal systems. However, we have not investigated whether
a smaller group of subjects would still yield a significant result.
We have investigated the capabilities of various subsets of the
types of features that were available. It would also be illuminating
to investigate the classification accuracy of subsets of the full
array of our sensors. Such information can help design more
compact headsets and is the subject of an ongoing study. The
headset we used is lightweight and no discomfort was reported
by any of the subjects. However, wearing it may nevertheless
affect performance, and this could be revealed in a parallel set
of experiments which we have not done. The primary goal of our
study was to applymachine learning techniques in discriminating
levels of MWL. We used multiple statistical techniques to ensure
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that the statistical significance of the values of accuracy that we
obtained for such discrimination. Our observations regarding
the range of changes of Hb are therefore only qualitative and
observational, serving to ensure that our results are consistent
with expectations.

In this study, we have taken steps toward investigating
the EEG+fNIRS feature extraction and analysis methods by
using a popular WM task. We anticipate and hope that
converging efforts in Hybrid hardware integration (Safaie et al.,
2013) and data analysis (Biessmann et al., 2011; Keles et al.,
2016), potentially based on detailed knowledge of underlying
physiology (Bari et al., 2012; Mandrick et al., 2016a), will
lead to more effective passive BMIs and other applications in
neuroergonomics.
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