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Complex biochemical pathways can be reduced to chains of elementary reactions, which can be described in terms of chemical
kinetics. Among the elementary reactions so far extensively investigated, we recall the Michaelis-Menten and the Hill positive-
cooperative kinetics, which apply to molecular binding and are characterized by the absence and the presence, respectively, of
cooperative interactions between binding sites. However, there is evidence of reactions displaying a more complex pattern: these
follow the positive-cooperative scenario at small substrate concentration, yet negative-cooperative effects emerge as the substrate
concentration is increased. Here, we analyze the formal analogy between the mathematical backbone of (classical) reaction kinetics
in Chemistry and that of (classical) mechanics in Physics. We first show that standard cooperative kinetics can be framed in terms
of classical mechanics, where the emerging phenomenology can be obtained by applying the principle of least action of classical
mechanics. Further, since the saturation function plays in Chemistry the same role played by velocity in Physics, we show that a
relativistic scaffold naturally accounts for the kinetics of the above-mentioned complex reactions. The proposed formalism yields
to a unique, consistent picture for cooperative-like reactions and to a stronger mathematical control.

1. Introduction

1.1. The Chemical Kinetics Background. The mathematical
models that describe reaction kinetics provide chemists and
chemical engineers with tools to better understand, depict,
and possibly control a broad range of chemical processes
(see, e.g., [1, 2]). These include applications to pharmacology,
environmental pollution monitoring, and food industry. In
particular, biological systems are often characterized by com-
plex chemical pathwayswhosemodeling is rather challenging
and can not be recast in standard schemes [3–15] (see also
[16–19] for a different perspective). In general, one tries to
split such sophisticated systems into a set of elementary
constituents, in mutual interaction, and for which a clear
formalization is available [20–25].

In this context, one of the best consolidated, elementary
scheme is given by the Michaelis-Menten law. This was
originally introduced by LeonorMichaelis andMaudMenten
to describe enzyme kinetics and can be applied to systems
made of two reactants, say 𝐴 (the binding molecule or, more
generally, the binding sites of a molecule) and 𝐵 (the free
ligand, i.e., the substrate), which can bind (and unbind) to
form the product 𝐴𝐵. If we call 𝑆 the concentration of free
ligand, 𝑌 the saturation function (or fractional occupancy),
namely, the fraction of bound molecules (𝑌 ∈ [0, 1]), and,
accordingly, 1 − 𝑌 the fraction of the unbound molecules,
under proper assumptions, one can write

𝑆 (1 − 𝑌) = 𝑘𝑌, (1)
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where 𝑘 is the proportionality constant between response
and occupancy (otherwise stated, it is the ratio between the
dissociation and the association constants). In particular, as
standard, it is assumed that (𝑎) the reaction is in a steady
state, with the product being formed and consumed at the
same rate, (𝑏) the free ligand concentration is in large excess
over that of the binding molecules in such a way that it can
be considered as constant along the reaction, and (𝑐) all the
binding molecules are equivalent and independent. Also, the
derivation of theMichaelis-Menten law is based on the law of
mass action.

By reshuffling the previous equation we get 𝑌 = 𝑆/(𝑆 + 𝑘)
which allows stating that 𝑘 is the concentration of free ligand
at which 50% of the binding sites are occupied (i.e., when 𝑆 =𝑘, then 𝑌 = 1/2). Thus, denoting with 𝑆0 the half-saturation
ligand concentration, we get

𝑌 = 𝑆𝑆 + 𝑆0 . (2)

This equation represents a rectangular hyperbola with hor-
izontal asymptote corresponding to full saturation; that is,𝑌 = 1; this is the typical outcome expected for systems
where no interaction between binding sites is at work [26].
This model immediately settled down as the paradigm for
Chemical Kinetics, somehow similarly to the perfect gas
model (where atoms, or molecules, collisions apart, do not
interact) of the Kinetic Theory in the early Statistical Physics
[27]. Nevertheless, deviations from this behaviour were not
late to arrive: the most common phenomenon was the
occurrence of a positive cooperation among the binding
sites of a multisite molecule. Actually, many polymers and
proteins exhibit cooperativity, meaning that the ligand binds
in a nonindependent way: if, upon a ligand binding, the
probability of further binding (by other ligands) is enhanced,
the system is said to show positive cooperativity.

To fix ideas, let us make a practical example and let
us consider the case of a well-known protein, that is, the
hemoglobin.This is responsible of oxygen transport through-
out the body and it ultimately allows cellular respiration.
Such features stem from hemoglobin’s ability to bind (and
to dislodge as needed) up to four molecules of oxygen in a
nonindependent way: if one of the four sites has captured
an oxygen molecule, then the probability that the remaining
three sites will capture further oxygen increases, and vice
versa. As a result, if the protein is in an environment rich
of oxygen (e.g., in the lungs), it readily binds up to four
molecules of oxygen, and, as much readily, it gets rid of
them when crossing an oxygen-deficient environment. To
study quantitatively its behaviour one typically measures its
characteristic input-output relation. This can be achieved
by considering a set of 𝑀 elementary experiments where
these proteins, in the same amount for each experiment, are
prepared in a baker and allowed to bind oxygen, which is sup-
plied at different concentrations 𝑆𝑖 for different experiments
(e.g., 𝑆1 < 𝑆2 < ⋅ ⋅ ⋅ < 𝑆𝑀). We can then construct a Cartesian
plane, where on the abscissas we set the concentration of
the ligand 𝑆 (oxygen in this case, i.e., the input) while on
the 𝑦-axes we put the fraction of protein bound sites 𝑌

(the saturation function, i.e., the output). In this way, for
each experiment, once reached the chemical equilibrium,
we get a saturation level and we can draw a point in the
considered Cartesian plane; interpolating between all the
points a sigmoidal curvewill emerge (see Figure 1). Archibald
V. Hill formulated a description for the behavior of 𝑌 with
respect to 𝑆: the so-called Hill equation empirically describes
the fraction of molecules binding sites, occupied by the
ligand, as a function of the ligand concentration [28–31].This
equation generalizes the Michaelis-Menten law (2) and reads
as

𝑌 = 𝑘𝑆𝑛𝐻𝑆0 + 𝑆𝑛𝐻 , (3)

where 𝑛𝐻 is referred to as Hill coefficient and can be
interpreted as the effective number of binding sites that are
interacting with each other. This number can be measured as
the slope of the curve log[𝑌/(1−𝑌)] versus log(𝑆), calculated
at the half-saturation point. Of course, if 𝑛𝐻 = 1 there is no
cooperation at all and each binding site acts independently
of the others (and, consistently, Michaelis-Menten kinetics is
restored), and vice versa; if 𝑛𝐻 > 1, the reaction is said to
be cooperative (just like in hemoglobin), and if 𝑛𝐻 ≫ 1 the
cooperation among binding sites is so strong that the sigmoid
becomes close to a step function and the kinetics is named
ultrasensitive.

The Michaelis-Menten law, together with the extension
by Hill, provided a good description for a bulk of chemical
reactions; however, things were not perfect yet. For instance,
some yeast’s proteins (e.g., the glyceraldehyde 3-phosphate
dehydrogenase [32]) produced novel (mild) deviations from
the Hill curve: for these enzymes, the cooperativity of
their binding sites decreases while increasing the ligand
concentration. The following work by Daniel E. Koshland
allowed understanding this kind of phenomenology by
further enlarging the theoretical framework through the
introduction of the concept of negative cooperativity. In fact,
in the previous example, beyond the positive cooperation
between the binding sites there are also negative-cooperative
effects underlying. Their effective action is to diminish the
overall binding capabilities of the enzyme and thus to reduce
the magnitude of its Hill coefficient.

1.2.TheMechanics Background. Theprogressive enlargement
of a theoretical scaffold to fit the always increasing amount of
evidences is a common feature in the historical development
of scientific disciplines [36, 37]. This is the case also for
Mechanics and, as we will see, the analogy with Chemical
Kinetics goes far beyond this feature.

Beyond Kinematics, which describes the motion of sys-
tems without considering their mass or the forces that caused
the motion, in the seventeenth century Newton gave a sharp
description of Mechanics, in the form of laws describing
how masses dynamically respond when stimulated by an
external force (or moment). Here, the input is the force
while the output is the motion of the body. The Newtonian
dynamics has been ruling for centuries and, in fact, it was
so well-consolidated that scientists, among which Giuseppe
L. Lagrange, William R. Hamilton, and Carl G. J. Jacobi,
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Figure 1: These plots show comparison between data from experiments (symbols) and best-fits through (22) (lines). Data refer to
noncooperative and positive-cooperative systems [33, 34] (a) and an ultrasensitive system [35] (b). For the latter we report two fits: dashed
line is the result obtained by constraining the system to be cooperative but not ultrasensitive (i.e., 𝐽 ≤ 1), while solid line is the best fit (without
constraints) which yields to 𝐽 ∼ 1.1, hence a “first-order phase transition” in the language of statistical mechanics. The relative goodness of
the fits is 𝑅2coop ∼ 0.85 and 𝑅2ultra ∼ 0.94, confirming an ultrasensitive behavior. The tables in the bottom present the value of 𝐽 derived from
the best fit and the resulting 𝑛𝐻 according to (24); the estimate of the Hill coefficient taken from the literature is also shown for comparison.
This figure was presented in [28].

later reformulated the entire theory in a powerful and elegant
variational flavor. The theory was overall brilliant to explain
the perceivable reality, but with exceptions emerging in the
limit of too little or too fast.

We will focus on the latter. In the Newtonian world, if an
applied force is kept constant over a mass, this will constantly
accelerate, eventually reaching diverging velocities. This was
perfectly consistent with the general credo that the speed
of light was infinite. However, this postulate broke down in
1887 when the famous experiment by Albert A. Michelson
and Edward Morley proved that such a velocity is actually
finite. The next years were dense of novel approaches and
ideas by many scientists, as Hendrik Lorentz and Hermann
Minkowski, and culminated with the special relativity by
Albert Einstein in 1905. According to this theory, no mass
can exist whose velocitymay diverge, the limiting speed being
the speed of light. The classical Hamilton-Jacobi equations
and Galilean transformations left the place to the Klein-
Gordon formulation and Lorentz covariances and contravari-
ances (the natural metric being Minkowskian) [38]. Clearly,
classical mechanics were still a good reference framework
for the vast majority of the data collected (much like the

positive cooperativity accounted for the bulk of the empirical
data in the chemical counterpart); however, there were rare
phenomena (e.g., a muon decay in atmosphere [39]) that
required a broader scaffold which, in the opportune limits,
could recover the classical one.

Although this historical connection between Chemical
Kinetics and Classical Mechanics may look weird at a first
glance, as we will prove, there is a formal analogy between
their mathematical representations. In the next section we
will summarize the main results concerning the analogy at
the classical level.More sharply, the saturation plot of classical
(positive-cooperative) chemical kinetics (namely, the input-
output relation between the saturation function and the
concentration of the substrate) can be derived by a minimum
action principle that is the same that holds in classical
mechanics, when describing a mass motion in the Hamilton-
Jacobi framework. In this parallelism, the saturation function
in Chemistry plays as the velocity in Physics: thus, exactly
as what happens in special relativity, the velocity of the
mass is bounded (by definition, the saturation function can
not exceed one). Indeed, we can follow this mathematical
equivalence and verify that there is actually a natural broader
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formulation for chemical kinetics that is exactly through
the Klein-Gordon setting (rather than its classical Hamilton-
Jacobi counterpart) and the theory as a whole is Lorentz-
invariant. Remarkably, when read with chemical glasses, this
extended relativistic setting allows for the anticooperative
corrections that Koshland revealed in the study of the yeast
enzymes, resulting in a complex mixture of positive and
negative cooperation among binding sites.

2. The Standard Mathematical Scaffold for
Classical Cooperativity

As anticipated in Section 1.1, cooperativity is a widespread
phenomenon in Chemistry and its underlying mechanisms
can be multiple: for example, if the adjacent binding sites
of a protein can accommodate charged ions, the attrac-
tion/repulsion between the ions themselves may result in
a positive/negative kinetics; in most common cases, the
bonds with the substrate modify the protein conformational
structure, by influencing possible further links in an allosteric
way [21, 40].Whatever the origin, cooperativity in Chemistry
is a typical emergent property that directly relates the micro-
scopic description of a system at the single binding-site level,
with the macroscopic properties shown by its constituent
molecules, cells, and organisms; thus the use of Statistical
Physics for its investigation appears quite natural [26, 28].
Usually, in Statistical Physics one is provided with (inverse)
temperature 𝛽 and with Hamiltonian (i.e., a cost-function)𝐻(𝜎, 𝐽, ℎ) describing the model at the microscopic level,
namely, in terms of elementary variables 𝜎𝑖, 𝜎𝑗, couplings
among elementary variables 𝐽𝑖𝑗 and external fields ℎ𝑖 acting
over these. The goal is to obtain the free energy 𝐴(𝛽, 𝐽, ℎ) of
the model, from which the average value of the macroscopic
observables can be directly derived [26].

2.1. Formulation of the Problem: The Thermodynamical Free
Energy. In the followingwe summarize theminimal assump-
tions needed when modelling chemical kinetics from the
Statistical Physics perspective; for a more extensive treatment
of this kind of modelling we refer to [21, 26, 28, 29, 41], while
for a rigorous explanation of the underlying equivalence
between Statistical Mechanics and Analytical Mechanics we
refer to the seminal works by Guerra [42], dealing with the
Sherrington-Kirkpatrick model (and then deepened in, e.g.,
[43–46]), and by Brankov and Zagrebnov in [47], dealing
with the Husimi-Temperley model (and then deepened in,
e.g., [48–51]).

(i) Each binding site may or may not be occupied by a
ligand: this allows us to code its state (empty versus
full) by a Boolean variable. For the generic 𝑖th site,
we will use an Ising spin 𝜎𝑖 = ±1, where 𝜎𝑖 = −1
represents an empty 𝑖th site, and vice versa; 𝜎𝑖 = +1
means that the 𝑖th site is occupied. Clearly, if there are
overall𝑁 binding sites, 𝑖 ∈ (1, . . . , 𝑁).

(ii) It is rather inconvenient (and ultimately unneces-
sary) to deal with the whole set 𝜎𝑖, . . . , 𝜎𝑁 if we are
interested in the properties of large numbers of these

variables (i.e., in the so-called thermodynamic limit
corresponding to𝑁 →∞). If we want to distinguish
between a fully empty state 𝜎𝑖 = −1 ∀𝑖 ∈ (1, . . . , 𝑁)
(ordered case), a fully occupied state 𝜎𝑖 = +1 ∀𝑖 ∈(1, . . . , 𝑁) (ordered case), and a completely random
case where 𝜎𝑖 = ±1with equal probability (disordered
case), it is convenient to introduce the order parameter
for these variables as the magnetization𝑀 (this term
stems from the original application of the Statistical
Mechanics model in the context of magnetism) that
reads as the arithmetic average of the spin state,
namely,

𝑀 = 1𝑁 𝑁∑𝑖=1𝜎𝑖 ∈ [−1, +1] . (4)

There is a univocal relation between the magne-
tization in Physics and the saturation function in
Chemistry, where, we recall, we denote with𝑌 ∈ [0, 1]
the fractional occupation of the binding sites. In fact,
one has [28, 29]

𝑌 = 12 (1 +𝑀) . (5)

Equation (5) constitutes the first bridge between the
Chemistry we aim to describe (via the saturation
function 𝑌) and the Physics that we want to use (via
the magnetization𝑀).

(iii) All the binding sites interact with the ligand by
the same strength. This is a standard assumption
in Chemical Kinetics [29, 31, 52] and it means that
the diffusion of the ligands is fast enough to ensure
a homogeneous solution. The concentration of free
ligands is mapped into a one-body contribution 𝐻1
in the cost-function.This term encodes for the action
of an external magnetic field in such a way that, if
the field acting on 𝑖th is positive, the spin will tend to
align upwards (namely, this direction is energetically
favored), and vice versa. This homogenous mixing
assumption translates into a homogeneous external
field ℎ, and the related contribution reads as

𝐻1 (𝜎, ℎ) = −ℎ 𝑁∑
𝑖=1

𝜎𝑖. (6)

Notice that ℎ plays as a chemical potential and, consis-
tently, it can be related to the substrate concentration
as

ℎ = 12 log( 𝑆𝑆0) , (7)

𝑆0 being the value of the ligand concentration at half
saturation.
Equation (7) constitutes the second bridge between
the Chemistry we aim to describe (via the ligand
concentration 𝑆) and the Physics that we want to use
(via the magnetic field ℎ).

(iv) The binding sites can cooperate in a positive manner:
this can be modelled by introducing a coupling
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between the 𝜎 variables. The simplest mathematical
form is given by a two-body contribution 𝐻2 in the
cost-function. This term encodes for the reciprocal
interactions among binding sites and it reads as

𝐻2 (𝜎, 𝐽) = − 𝐽𝑁 𝑁∑𝑖<𝑗𝜎𝑖𝜎𝑗, (8)

where 𝐽 ≥ 0 is the interaction strength and the
sum runs over all possible pairs; the normalization
factor 1/𝑁 ensures the linear extensivity of the cost-
function with respect to the system size. A positive
value for 𝐽 implies an imitative interaction among
binding sites: configurations where spins tend to be
aligned each others (namely, where sites tend to be
either all occupied or all unoccupied) are energetically
more favoured and will therefore be more likely.

(v) Combining together the previous contributions we
get the total Hamiltonian:𝐻(𝜎, 𝐽, ℎ) = 𝐻1 (𝜎, ℎ) + 𝐻2 (𝜎, 𝐽)

= − 𝐽𝑁 𝑁∑𝑖<𝑗𝜎𝑖𝜎𝑗 − ℎ
𝑁∑
𝑖=1

𝜎𝑖
= −𝑁( 𝐽2𝑁𝑀2 + ℎ𝑀) .

(9)

It is possible to introduce the free energy associated
with such a Hamiltonian as

𝐴 (𝛽, 𝐽, ℎ) = 1𝑁 log
2𝑁∑
𝜎1 ,...,𝜎𝑁

exp [−𝛽𝐻 (𝜎, 𝐽, ℎ)] (10)

= 1𝑁 log
2𝑁∑
𝜎1,...,𝜎𝑁

exp( 𝛽𝐽2𝑁 𝑁∑𝑖,𝑗 𝜎𝑖𝜎𝑗 + 𝛽ℎ
𝑁∑
𝑖

𝜎𝑖) , (11)

where 𝛽 is the inverse temperature in proper units
and the sum runs over all possible configurations.The
free energy is a key observable because it corresponds
to the difference between the internal energy 𝑈
and the entropy 𝑆 (at given temperature), that is,𝐴(𝛽, 𝐽, ℎ) = 𝑆(𝛽, 𝐽, ℎ)−𝛽𝑈(𝛽, 𝐽, ℎ). If we could obtain
an explicit expression for 𝐴(𝛽, 𝐽, ℎ) in terms of the
order parameter 𝑀, we could obtain an expression
for the magnetization expected at equilibrium by
imposing 𝛿𝑀𝐴(𝛽, 𝐽, ℎ) = 0; in fact, this implies
that we are simultaneously asking for the minimum
energy and the maximum entropy.
Notice that, having stated the two bridges given by
(5) and (7), other mappings between the two fields
(e.g., the relation between the coupling strength 𝐽
and the Hill coefficient 𝑛𝐻; see (24) later on) emerge
spontaneously as properties of the thermodynamic
solutions of the problems.

2.2. Resolution of the Problem: The Mechanical Action. We
want to find an explicit expression (in terms of 𝑀) for the
free energy defined in (10). To this task let us rename −𝛽𝐽 = 𝑡

and 𝛽ℎ = 𝑥 and let us think of these fictitious variables as
a time and a space, respectively. Thus, we can write the free
energy as

𝐴 (𝑡, 𝑥) = 1𝑁 log
2𝑁∑
𝜎1 ,...,𝜎𝑁

exp( −𝑡2𝑁 𝑁∑𝑖,𝑗 𝜎𝑖𝜎𝑗 + 𝑥
𝑁∑
𝑖

𝜎𝑖) , (12)

wherewe alsowrote∑𝑖<𝑗 𝜎𝑖𝜎𝑗 ∼ (1/2)∑𝑖,𝑗 𝜎𝑖𝜎𝑗, which implies
vanishing corrections in the thermodynamic limit. If wework
out the spatial and temporal derivatives of the free energy (12)
we obtain 𝑑𝐴 (𝑡, 𝑥)𝑑𝑡 = −12 ⟨𝑀2⟩𝑡,𝑥 ,𝑑𝐴 (𝑡, 𝑥)𝑑𝑥 = ⟨𝑀⟩𝑡,𝑥 , (13)

where the average ⟨⋅⟩𝑡,𝑥 for a generic observable𝑂 depending
on the spin configuration is defined as

⟨𝑂⟩𝑡,𝑥 = ∑𝜎𝑂 exp [𝑁 (−𝑡 ⋅ 𝑀2 + 𝑥 ⋅ 𝑀)]∑𝜎 exp [𝑁 (−𝑡 ⋅ 𝑀2 + 𝑥 ⋅ 𝑀)] , (14)

and, posing 𝑡 = −𝛽𝐽 and 𝑥 = 𝛽ℎ, the Boltzmann average for
the original system (9) is recovered and this shall be simply
denoted as ⟨⋅⟩

If we now introduce a potential𝑉(𝑡, 𝑥), defined as half the
variance of the magnetization, that is,

𝑉 (𝑡, 𝑥) = 12 (⟨𝑀2⟩ − ⟨𝑀⟩2) , (15)

we see that, by construction, the free energy of this model
obeys the following Hamilton-Jacobi equation:

𝑑𝐴 (𝑡, 𝑥)𝑑𝑡 + 12 (𝑑𝐴 (𝑡, 𝑥)𝑑𝑥 )2 + 𝑉 (𝑡, 𝑥) = 0, (16)

and therefore𝐴(𝑡, 𝑥) is also an action of Classical Mechanics.
We can simplify the previous equation by noticing that, for
large enough volumes, the magnetization is a self-averaging
quantity [26, 43]; thus in the infinite volume limit the
potential must vanish; that is, lim𝑁→∞𝑉(𝑡, 𝑥) = 0. Here, we
are restricting to large volumes and we are therefore left with
a Hamilton-Jacobi equation describing a free propagation;
since the potential is zero, the Lagrangian L coupled to the
motion is just the kinetic term:

L = 12 ⟨𝑀2⟩ , (17)

that is, the analogous of the classical formulaL = (1/2)𝑚V2,
where the mass 𝑚 is set unitary (i.e., 𝑚 = 1), and the
role of the velocity V is played by the average magnetization⟨𝑀⟩. Solving the Hamilton-Jacobi equation is then straight-
forward: the solution is formally written as

𝐴 (𝑡, 𝑥) = 𝐴 (𝑡 = 0, 𝑥 = 𝑥0) + ∫𝑡
0
L (𝑡󸀠, 𝑥) 𝑑𝑡󸀠. (18)
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The evaluation of the Cauchy condition 𝐴(𝑡 = 0, 𝑥 = 𝑥0)
is trivial because, at 𝑡 = 0, the coupling between variables
disappears (see (10)), while the integral of the Lagrangian
over time reduces to the Lagrangian times time (as the
potential is zero). Pasting these two contributions togetherwe
obtain

𝐴 (𝑡, 𝑥) = ln 2 + ln cosh (𝑥0) + 12 ⟨𝑀2⟩ ⋅ 𝑡. (19)

Finally, noticing that the equation of motion is a Galilean
trajectory as 𝑥(𝑡) = 𝑥0 + ⟨𝑀⟩𝑡 (hence 𝑥0 = 𝑥 − ⟨𝑀⟩𝑡) and
recasting the solution back in the original variables, that is,𝑡 = −𝛽𝐽 and 𝑥 = 𝛽ℎ, we get the free energy associated with
this general positive-cooperative reaction:

𝐴 (𝛽, 𝐽, ℎ) = ln 2 + ln cosh (𝛽𝐽 ⟨𝑀⟩ + 𝛽ℎ)
− 12𝛽𝐽 ⟨𝑀2⟩ . (20)

By extremizing 𝐴(𝛽, 𝐽, ℎ) with respect to ⟨𝑀⟩ we get
𝑑𝐴 (𝛽, 𝐽, ℎ)𝑑 ⟨𝑀⟩ = 0 󳨐⇒

⟨𝑀⟩ = tanh [𝛽 (𝐽 ⟨𝑀⟩ + ℎ)] . (21)

This result recovers the well-known self-consistency equation
for the order parameter of the Curie-Weiss model in Statisti-
cal Mechanics [26, 43].

2.3. Chemical Properties of the Physical Solution. The self-
consistent equation in (21) is an input-output relation for
a general system of binary elements, possibly positively
interacting, under the influence of an external field: the input
in the system is the external field ℎ and the output is the
magnetization 𝑀. We can rewrite (21) in a chemical jargon
by using the bridges coded in (5) and (7) and fixing, for the
sake of simplicity, 𝑆0 = 1; that is,

𝑌 (𝐽, 𝑆) = 12 [1 + tanh(𝐽 (2𝑌 − 1) + 12 ln 𝑆)]
= 𝑆𝑒2𝐽(2𝑌−1)1 + 𝑆𝑒2𝐽(2𝑌−1) .

(22)

Before proceeding, we check that if cooperation disap-
pears (i.e., binding sites are reciprocally independent), the
Michaelis-Menten scenario is recovered. Posing 𝐽 = 0 in the
equation above we get

𝑌 (𝐽 = 0, 𝑆) = 𝑆1 + 𝑆 , (23)

that is (apart a constant factor that can be reintroduced by
taking 𝑆0 = 𝑘, rather than 1), the Michaelis-Menten equation
(see (2)).

One step forward, we now take into account the coupling𝐽 and relate it to the Hill coefficient 𝑛𝐻. The latter is defined
in Chemistry as the slope of𝑌(𝑆) at half saturation (i.e., when

𝑌 = 1/2), and we can obtain its expression following this
prescription by using (22), namely,

𝑛𝐻 = 1𝑌 (1 − 𝑌) 𝑑𝑌𝑑𝑆 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑌=1/2 = 11 − 𝐽 . (24)

We note that as 𝐽 → 0 we get, as expected, 𝑛𝐻 → 1:
if there is no cooperation between binding sites, the Hill
coefficient must be unitary; further, the stronger the coupling𝐽, the (hyperbolically) larger the value of the Hill coefficient.
In particular, for 𝐽 → 1 the kinetics get ultrasensitive
and discontinuities emerge. We remark that, with simpler
statistical mechanics model as linear chains of spins, phase
transitions are not allowed; hence ultrasensitive behavior can
not be taken into account: the present framework is the
simplest nontrivial scheme where all these phenomena can
be recovered at once (see Figure 1 and [28] for more details
on ultrasensitive kinetics).

Also, it is worth highlighting the full consistency between
our treatment of ultrasensitive kinetics and more standard
ones as, for instance, reported in [2] (see eq. 5.17 therein),
where the expression for the Hill coefficient can be translated
into our formulation as

𝑛𝐻 = 𝑁(⟨𝑀2⟩ − ⟨𝑀⟩2)1 − ⟨𝑀⟩2 . (25)

We see that for ⟨𝑀⟩ → ±1 theHill coefficient diverges, which
is the signature of an ultrasensitive behavior: this is perfectly
coherent with our approach where, in that limit, the input-
output relation (see the hyperbolic tangent (22)) becomes a
step function.

However, as mentioned in the Introduction, this theory
has its flaws, in Chemistry as well as inMechanics. Regarding
the former, the complex picture of yeast’s enzymes evidenced
by Koshland [32, 53], where positive and negative coopera-
tivity appear simultaneously (and with the anticooperativity
effect getting more and more pronounced as the substrate
concentration is raised), still escapes from this mathematical
architecture. Further, from the mechanical point of view, two
weird things happen: the velocity 𝑀 is bounded by 𝑐 =1, while in Classical Mechanics the velocity may diverge;
further, if we look at the Boltzmann factor in the free energy
(see (12)), this reads as exp[𝑁(−𝑡𝑀2/2 + 𝑥𝑀)] and, recalling
that the kinetic energy in this mechanical analogy reads as𝑀2/2 (the mass is unitary, thus velocity and momentum
coincide), we are allowed to interpret 𝐴(𝛽, 𝐽, ℎ) as a real
action. From this perspective, the exponent can be thought
of as the coupling between the stress-energy tensor and the
metric tensor: a glance at the form of the Boltzmann factor
reveals that the natural underlying metric is (−1, +1) rather
than (+1, +1) as in classical Euclidean frames, or in other
words, it is of the Minkowskian type. All these details point
toward the generalization of the equivalence including special
relativity.

Plan of the next section is to follow the mechanical path
and extend the classical kinetic energy including relativistic
corrections and then to investigate its implications. We will
see that in the broader, relativistic framework for chemical
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kinetics the deviations that Koshland explained adding an
anticooperative interactions, beyond the cooperative ones, at
high ligand’s doses are the chemical analogies of the deviation
from classicalmechanics at high velocities observed in special
relativity.

3. The Generalized Mathematical Scaffold for
Mixed Cooperativity

3.1. Relativistic Setting. The relativistic extension of the
Hamiltonian (9) is defined by Hamiltonian of the form

𝐻(𝜎, 𝐽, ℎ)𝑁 = −𝐽√1 +𝑀2 − ℎ𝑀, (26)

where𝑀 = (1/𝑁)∑𝑁𝑖 𝜎𝑖 as usual. Next, we have to insert (26)
into the free energy (10):

𝐴 (𝑡, 𝑥) = 1𝑁 log
2𝑁∑
𝜎
exp (−𝑡 ⋅ 𝑁√1 +𝑀2 + 𝑥 ⋅ 𝑀) , (27)

where we already replaced 𝑡 = −𝛽𝐽 and 𝑥 = 𝛽ℎ in order to
work out their streaming that read as

𝜕𝐴 (𝑡, 𝑥)𝜕𝑡 = −⟨√1 +𝑀2⟩
𝑡,𝑥
,

𝜕𝐴 (𝑡, 𝑥)𝜕𝑥 = ⟨𝑀⟩𝑡,𝑥 ,
𝜕2𝑡𝑡𝐴 (𝑡, 𝑥) − 𝜕2𝑥𝑥𝐴 (𝑡, 𝑥)𝑁
= 1 − ⟨√1 +𝑀2⟩2

𝑡,𝑥
+ ⟨𝑀⟩2𝑡,𝑥 ,

(28)

where the Boltzmann averages ⟨⋅ ⋅ ⋅ ⟩𝑡,𝑥 are defined as (using
the magnetization as a trial function)

⟨𝑀⟩𝑡,𝑥 = ∑𝜎𝑀 exp [𝑁 (−𝑡 ⋅ √1 +𝑀2 + 𝑥 ⋅ 𝑀)]∑𝜎 exp [𝑁 (−𝑡 ⋅ √1 +𝑀2 + 𝑥 ⋅ 𝑀]) . (29)

As before, the averages ⟨⋅ ⋅ ⋅ ⟩𝑡,𝑥 will be denoted by ⟨⋅ ⋅ ⋅ ⟩
whenever evaluated in the sense of thermodynamics (i.e.,
for 𝑡 = −𝛽𝐽 and 𝑥 = 𝛽ℎ). By a direct calculation,
it is straightforward to see that expression (27) obeys the
relativistic Hamilton-Jacobi equation:

(𝜕𝑡𝐴)2 − (𝜕𝑥𝐴)2 + 𝑉𝑁 (𝑡, 𝑥) = 1,
𝑉 (𝑡, 𝑥) = 1𝑁◻𝐴 (𝑡, 𝑥) , (30)

where the symbol ◻ represents the D’Alembert operator
and 𝑉(𝑡, 𝑥) is the potential whose expression is chosen in
order to make the equation valid by construction and, this
time, it is automatically Lorentz invariant. If the functional𝐴(𝑡, 𝑥) is sufficiently smooth (i.e., its derivatives are regular
functions of 𝑡 and 𝑥), in the thermodynamic limit, we have

lim𝑁→∞𝑉(𝑡, 𝑥) = 0; hence in this high-volume limit we are
left with

(𝜕𝜇𝐴)2 = 1, (31)

which is the Klein-Gordon equation for a free relativistic
particle with unitary mass in natural units (𝑚0 = 1).

In relativistic mechanics, the stress energy tensor of this
particle is defined as 𝑝𝜇 = (𝐸, 𝛾V) , (32)

where V is the classical velocity of the particle, 𝛾 = 1/√1 − V2,
and 𝐸 = 𝛾𝑚0 = 𝛾 is the relativistic energy. In addition, the
contravariant momentum is expressed through the action by
the following equation:

𝑝𝜇 = − 𝜕𝐴𝜕𝑥𝜇 = (⟨√1 +𝑀2⟩𝑡,𝑥 , ⟨𝑀⟩𝑡,𝑥) . (33)

Comparing (32) and (33), it is immediate to identify the
magnetization as the relativistic dynamical variable:

⟨𝑀⟩𝑡,𝑥 = V√1 − V2
, (34)

while the Lorentz factor is

𝛾 = √1 + ⟨𝑀⟩2𝑡,𝑥. (35)

In the thermodynamic limit, the particle is free and its
trajectories are the straight lines 𝑥 = 𝑥0 + V𝑡. Since the
relativistic Lagrangian L = −𝛾−1 is constant along these
classical trajectories, the free energy can be computed as

𝐴 (𝑡, 𝑥) = 𝐴 (0, 𝑥0) + ∫𝑡
0
𝑑𝑡󸀠L (𝑡󸀠) = 𝐴 (0, 𝑥0) − 𝑡𝛾

= log 2 + log cosh (𝑥0) − 𝑡𝛾
= log 2 + log cosh (𝑥 − V𝑡) − 𝑡√1 + ⟨𝑀⟩2𝑡,𝑥
= log 2 + log cosh(𝑥 − ⟨𝑀⟩𝑡,𝑥 𝑡√1 + ⟨𝑀⟩2𝑡,𝑥)
− 𝑡√1 + ⟨𝑀⟩2𝑡,𝑥 .

(36)

Setting 𝑡 = −𝐽𝛽 and 𝑥 = 𝛽ℎ, we finally get an explicit
expression for the free energy:

𝐴 (𝛽) = log 2 + log cosh( 𝐽𝛽 ⟨𝑀⟩√1 + ⟨𝑀⟩2)
+ 𝐽𝛽√1 + ⟨𝑀⟩2 .

(37)
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Requiring that the free energy is extremal with respect to
the magnetization (from a thermodynamical perspective
this condition can be seen as the simultaneous effect of
the minimum energy and the maximum entropy principles
and from a mechanical perspective as the minimum action
principle), the associated self-consistency equation becomes

⟨𝑀⟩ = tanh( 𝐽𝛽 ⟨𝑀⟩√1 + ⟨𝑀⟩2 + 𝛽ℎ) . (38)

3.2.The Classical Limit from a Chemical Perspective. Reading
the self-consistency (38) in chemical terms, that is, using the
bridges (5) and (7), we obtain

𝑌 (𝑆, 𝐽) = 12 [[[1
+ tanh( 𝐽𝛽 (2𝑌 − 1)√1 + (2𝑌 − 1)2 + 𝛽2 log( 𝑆𝑆0))]]] .

(39)

We can now check whether, under suitable conditions, this
broader theory recovers the classical limit. First, we notice
that under the assumption of no interactions among binding
sites (i.e., 𝐽 = 0) and replacing ℎ = (1/2)log(𝑆/𝑆0), the
Michaelis-Menten behaviour is recovered.This can be shown
by rewriting (39) as

𝑌 (𝑆, 𝐽) = 𝑆𝑒2𝐽𝛽(2𝑌−1)/√1+(2𝑌−1)21 + 𝑆𝑒2𝐽𝛽(2𝑌−1)/√1+(2𝑌−1)2 , (40)

where we also shifted 𝑆/𝑆0 → 𝑆 for simplicity. For 𝐽 = 0 the
previous equation reduces to𝑌(𝑆) = 𝑆/(1+𝑆). Further, taking
the classical limit, at the lowest order, we have the following
expansions:

11 + ⟨𝑀⟩2 = 1 − ⟨𝑀⟩22 + O (⟨𝑀⟩3) ,
⟨𝑀⟩1 + ⟨𝑀⟩2 = ⟨𝑀⟩ + O (⟨𝑀⟩3) , (41)

such that (38) reduces to (21), in the physical context, and to
(22), in the chemical context. Clearly, also the slope at 𝑌 =1/2 is preserved; hence, in the classical limit, we recover the
expected expression for Hill coefficient (see (24)), namely,

𝑛𝐻 = 1𝑌 (1 − 𝑌) 𝜕𝑌𝜕𝑆 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑌=1/2 = 11 − 𝐽 . (42)

3.3. Beyond the Classical Limit. To understandwhywe expect
variations with respect to the Hill paradigm at relatively large
values of the substrate concentration, wemust check carefully
the relativistic self-consistency (38). Let us assume we are
working at not too high velocities (i.e., ⟨𝑀⟩ < 1) and we

can expand the argument inside the hyperbolic tangent; in
particular, approximating 1/(√1 + 𝑥2) ∼ 1 − 𝑥2/2, we get

⟨𝑀⟩ = tanh(𝛽𝐽 ⟨𝑀⟩ − 𝛽𝐽2 ⟨𝑀3⟩ + 𝛽ℎ) . (43)

The relativistic effects in chemical kinetics become transpar-
ent in this way: if we look at the field felt by the binding sites
(i.e., the argument inside the hyperbolic tangent), we see that,
beyond the standard Hill term 𝛽𝐽⟨𝑀⟩ (that positively pairs
binding sites together), another term appears that, this time,
negatively pairs binding sites together. Retaining this level of
approximation, we could write an effective Hamiltonian to
generate (43) that reads as

𝐻(𝜎, 𝐽, ℎ) = − 𝐽𝑁 𝑁∑𝑖<𝑗𝜎𝑖𝜎𝑗 + 𝐽2𝑁3 ∑
𝑖<𝑗<𝑘<𝑙

𝜎𝑖𝜎𝑗𝜎𝑘𝜎𝑘; (44)

hence, beyond the two-body positive coupling coded by
the first term, another four-body negative coupling appears.
The latter is responsible for the deviation from the classical
paradigm and these deviations are in full agreement with
the Koshland generalization toward the concept of mixed
positive and negative cooperativity [32].

In particular, we can see at work the entire reasoning of
Koshland who pointed out how, at large enough substrate
concentration, the positivity of the reaction diminishes. In
fact, for ⟨𝑀⟩ ∼ 0 no relativistic effect can be noted. By
increasing 𝑆 (the input in the system), we get a growth in⟨𝑀⟩ (the output in the system): the latter raises in response
of 𝑆 and it is enhanced because of the two-body term in
the effective Hamiltonian (44), the four-body term still being
negligible. As 𝑆 keeps on growing, ⟨𝑀⟩ increases as well, up
to a point where it reaches high enough values such that,
from now on, also the four-body term inside the effective
Hamiltonian (44) becomes relevant. At this point, a novel,
anticooperative effect is naturally induced in the reaction and
it yields to a reduction of the Hill coefficient. In the next
analysis these qualitative remarks shall be addressed in more
details.

We focus on the definition of the Hill coefficient based on
the Hill equation:

𝑌 = 𝑆𝑛𝐻𝑘 + 𝑆𝑛𝐻 . (45)

This equation accounts for the possibility that not all receptor
sites are independent: here 𝑛𝐻 is the average number of
interacting sites and the slope of the Hill plot. The latter is
based on a linear transformation made by rearranging (45)
and taking the logarithm:

log( 𝑌1 − 𝑌) = 𝑛 log (𝑆) − log (𝑘) . (46)

Thus, one plots log𝑌/(1 − 𝑌) versus log 𝑆, fits with a linear
function and the resulting slope, calculated at the half-
saturation point, and provides the Hill coefficient. As already
underlined, the Michaelis-Menten theory corresponds to
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𝑛𝐻 = 1 and any deviations from a slope of 1 tell us about
deviation from that model.

For the (classical and relativistic) models analyzed here
(coded in the Hamiltonians (9) and (26)) we can estimate
the slope 𝑛𝐻 directly from the self-consistency equations (22)
and (39). Let us start with the classical model.We preliminary
notice that𝑑𝑑 log (𝑆) log( 𝑌1 − 𝑌)󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑌=1/2

= 1𝑌 (1 − 𝑌) 𝑑𝑌𝑑 log (𝑆) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑌=1/2 = 4 𝑑𝑌𝑑 log (𝑆) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑌=1/2 .
(47)

Therefore, we just need to evaluate 𝑑𝑌/𝑑 log(𝑆) in 𝑌 = 1/2,
which reads as𝑑𝑌𝑑 log (𝑆) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑌=1/2 = 12 sech2 [𝐽 (2𝑌 − 1) + 12 log (𝑆)]

⋅ (2𝐽 𝑑𝑌𝑑 log (𝑆) + 12)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑌=1/2 .
(48)

Posing 𝑥 = 𝑑𝑌/𝑑 log(𝑆)|𝑌=1/2 and noticing that 𝑆 = 1 when𝑌 = 1/2, we have
𝑥 = 12 (2𝐽𝑥 + 12) 󳨐⇒
𝑥 = 14 11 − 𝐽 .

(49)

By plugging this result in (47), we finally have

𝑛class𝐻 = 11 − 𝐽 . (50)

One can see that when 𝐽 = 0 the Hill coefficient is unitary
as expected for noncooperative systems, when 𝐽 > 0 the
coefficient is larger than 1, indicating that receptors are
interacting, and when 𝐽 < 0 the coefficient is smaller than
1, as expected for negative cooperativity.

Let us now move to the relativistic model. Again, we just
need to evaluate 𝑑𝑌/𝑑log(𝑆) in𝑌 = 1/2, which, recalling (39),
reads as 𝑑𝑌𝑑 log (𝑆) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑌=1/2

= 12 sech2 [[[
𝐽 (2𝑌 − 1)√1 + (2𝑌 − 1)2 + 12 log (𝑆)]]]

(51)

× ( 2𝐽[2 + 4𝑌 (𝑌 − 1)]3/2 𝑑𝑌𝑑 log (𝑆) + 12)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑌=1/2 . (52)

Exploiting the fact that 𝑆 = 1 when 𝑌 = 1/2, the previous
expression simplifies as𝑑𝑌𝑑 log (𝑆) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑌=1/2 14 11 − 𝐽/√27 . (53)

Thus, we can write

𝑛rel𝐻 = 𝑑𝑑 log (𝑆) log( 𝑌1 − 𝑌)󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑌=1/2
= 4 𝑑𝑌𝑑 log (𝑆) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑌=1/2 = 11 − 𝐽/√27 .

(54)

Note that 𝑛class𝐻 /𝑛rel𝐻 < 1, confirming that the relativistic
correction weakens the emerging cooperativity.

3.4. Further Robustness Checks. As stressed above, for a fixed
interaction coupling 𝐽, the relativistic model is expected to
exhibit a lower cooperativity with respect to the classical
model. In order to quantify this point we considered different
quantifiers for cooperativity and we compared the outcomes
for the relativistic and the classical models set at the same
value of 𝐽. Let us start with the Koshland measure of
cooperativity which is defined as the ratio (notice that the
Koshland index 𝜅 is actually strongly related to the Hill
coefficient (see, e.g., [2]))

𝜅 = 𝑅0.9𝑅0.1 , (55)

where 𝑅0.9 denotes the substrate concentration correspond-
ing to a 90% saturation, while 𝑅0.1 denotes the substrate
concentration corresponding to a 10% saturation; that is,𝑌(𝑅0.9) = 0.9 and 𝑌(𝑅0.1) = 0.1. In the noncooperative case
one has 𝑅0.9/𝑅0.1 = 81 and, accordingly, if the ratio is smaller
than 81 (meaning that the saturation curve is relatively steep)
one has positive cooperativity, while if the ratio is larger
than 81 one has negative cooperativity. The advantage in
using the index 𝜅 is that it can be easily measured, yet it
ignores all information that can be derived from the shape of𝑌(𝑆). In particular, this quantifier can be estimated starting
from a Klotz plot (see, e.g., Figure 2(a)) where the saturation
function is shown versus the logarithm of the (free) ligand
concentration; in the presence of positive cooperativity this
plot yields to a characteristic sigmoidal curve. For the models
analyzed here we can estimate𝑅0.9/𝑅0.1 directly from the self-
consistency equations (22)–(24), (26)–(39). Starting from the
classical model and posing 𝑌 = 0.9 and 𝑌 = 0.1 we get,
respectively,910 = 12 {1 + tanh [𝐽 (2 × 910 − 1) + 12 log (𝑆0.9)]} ,110 = 12 {1 + tanh [𝐽 (2 × 110 − 1) + 12 log (𝑆0.1)]} ,

(56)

and,with some algebra (recalling 2 atanh(𝑥) = log[(1+𝑥)/(1−𝑥)]),
log (𝑆0.9) = 2 atanh(45) − 85𝐽 = log (9) − 85𝐽 󳨐⇒𝑆0.9 = 9𝑒−8𝐽/5,
log (𝑆0.1) = 2 atanh(−45) + 85𝐽 = − log (9) + 85𝐽 󳨐⇒

𝑆0.1 = 19𝑒8𝐽/5;
(57)
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Figure 2: Summary of analysis on cooperativity. (a) Klotz plot showing the saturation function 𝑌 versus the substrate concentration 𝑆 (notice
the logarithmic scale on the 𝑥-axis) for the relativistic (dashed line) and the classical (solid line) models. Data for 𝑌 are collected by solving
numerically the self-consistent equations ((39) and (22), resp.) for 𝐽 = 0.9 and different values of 𝑆. Both models exhibit the sigmoidal shape
typical of cooperative systems; however, the former displays a slower saturation. Analogous results are obtained for different values of 𝐽 > 0.
(b) A Scatchard plot is built with the same collection of data by showing the ratio 𝑌/𝑆 versus 𝑌. Both models exhibit the concave-down shape
typical of cooperative systems. However, for relatively small values of 𝐽 the plot for the relativistic model is monotonically decreasing (see
also Figure 3). (c) A Hill plot is built with the same collection of data by showing 𝜃 = 𝑌/(1 − 𝑌) versus 𝑆; both observables are taken under
the logarithm. When 𝑆 is close to one (here 𝑆0 = 1) the relativistic and the classical model give overlapped curves, while when 𝑆 is either very
large or very small the two curves are shifted. (d) By further analyzing the plots in the previous panels we can derive estimates for the extent
of cooperativity characterizing the systems. As explained in the main text, starting from data in (a) we measured the Kloshand quantifier𝜅 = 𝑆0.9/𝑆0.10 (⬦), by extrapolating the maximum value for data in (b) we get 𝜎 (∇), and by fitting the data in (c) at the half-saturation point
we get 𝑛𝐻 (◻). These estimates are obtained for both the relativistic (white symbol) and the classic (black symbols) models.

that is,

𝜅class = 𝑆0.9𝑆0.1 = 81𝑒−16𝐽/5. (58)

Of course, when 𝐽 = 0 we recover the value 81, when 𝐽 > 0
we get 𝑅class < 81, and when 𝐽 < 0 we get 𝑅class > 81.

Repeating analogous calculations for the relativistic
model we get

910 = 12 {{{{{1 + tanh[[[𝐽
2 × (9/10) − 1√1 + (2 × (9/10) − 1)2

+ 12 log (𝑆0.9)]]]
}}}}} ,

110 = 12 {{{{{1 + tanh[[[𝐽
2 × (1/10) − 1√1 + (2 × (1/10) − 1)2

+ 12 log (𝑆0.1)]]]
}}}}} ,

(59)

and, with some algebra,

log (𝑆0.9) = 2 atanh(45) − 8√41𝐽 = log (9) − 8√41𝐽 󳨐⇒
𝑆0.9 = 9𝑒−8𝐽/√41,
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log (𝑆0.1) = 2 atanh(−45) + 8√41𝐽 = − log (9) + 8√41𝐽 󳨐⇒
𝑆0.1 = 19𝑒8𝐽/√41;

(60)

that is,

𝜅rel = 𝑆0.9𝑆0.1 = 81𝑒−16𝐽/√41. (61)

Again, one can check that when 𝐽 = 0we recover the value 81,
when 𝐽 > 0 we get 𝜅rel < 81, and when 𝐽 < 0 we get 𝜅rel > 81.
Also, 𝜅rel/𝜅class = 𝑒−16𝐽/√41+16𝐽/5 > 1. This means that, even
with this quantifier, when fixing the same coupling constant𝐽, the emerging cooperativity is weaker for the relativistic
model, as expected.

Next, let us consider the cooperativity quantifier derived
from the Scatchard plot. We recall that this plot is built
by showing the behavior of 𝑌/𝑆 with respect to 𝑌. In fact,
according to the simplest scenario (this corresponds to the
Michaelis-Menten theory and toClark’s theory and it requires
a set of simplifying assumptions, among which the interac-
tion is reversible; all the bindingmolecules are equivalent and
independent; the biological response is proportional to the
number of occupied binding sites; the substrate only exists in
either a free (i.e., unbound) form or bound to the receptor),
at equilibrium, one can write𝑆 (1 − 𝑌)𝑌 = 𝑘, (62)

where 𝑘 is the proportionality constant between response and
occupancy (i.e., it is the ratio between the dissociation and the
association constants), and rearranging (62) we have𝑌𝑆 = −𝑌𝑘 + 1𝑘 . (63)

The previous expression fits the equation of a line for 𝑌/𝑆
versus 𝑌, whose slope is −1/𝑘. The advantages in using
the Scatchard plot is that it is a very powerful tool for
identifying deviations from the simplemodel, which, without
deviations, is represented by a straight line. In particular,
a concave-up curve may indicate the presence of negative
cooperativity between binding sites, while a concave-down
curve is indicative of positive cooperativity. Also, in the latter
case, the maxima occurs at the fractional occupancy 𝑌∗
which fulfills

𝑌∗ = 𝜎 − 1𝜎 , (64)

where 𝜎 provides another quantifier for cooperativity.
Starting from the classical model, we can build the

function 𝑌/𝑆, by first getting 𝑆 as a function of 𝑌, and can
be obtained by inverting formula (22); namely,𝑆 (𝑌) = exp [2 atanh (2𝑌 − 1) − 2𝐽 (2𝑌 − 1)] . (65)

By deriving 𝑌/𝑆 with respect to 𝑌 we get𝑑𝑑𝑌 ( 𝑌𝑆 (𝑌)) = −𝑒2𝐽(2𝑌−1) [1 − 4𝐽 (1 − 𝑌)] , (66)

which is identically equal to −1 when 𝐽 = 0, monotonically
decreasing with 𝑌 when 𝐽 > 0 and monotonically increasing
with 𝑌when 𝐽 < 0. The (possible) root therefore provides the
extremal point; that is,

𝑌∗ = 4𝐽 − 14𝐽 , (67)

and, comparing with (64), we get

𝜎class = 4𝐽. (68)

We now repeat analogous calculations for the relativistic
model. First, we get 𝑆 as a function of 𝑌, by inverting formula
(39), namely,

𝑆 = exp[[[2 atanh (2𝑌 − 1) − 2𝐽
2𝑌 − 1√1 + (2𝑌 − 1)2]]] . (69)

By deriving 𝑌/𝑆 with respect to 𝑌 we get

𝑑𝑑𝑌 (𝑌𝑆 )
= −𝑒𝐽(2𝑌−1)/√𝑌(𝑌−1)+1/2 {1 − 4𝐽 (1 − 𝑌)[2 − 4𝑌 (1 − 𝑌)]3/2} ,

(70)

which is again identically equal to −1 when 𝐽 = 0, but it is no
longer monotonic when 𝐽 ̸= 0. More precisely, by studying𝑑(𝑌/𝑆)/𝑑𝑌 we can derive that when 𝐽 is relatively small, 𝑌/𝑆
does not exhibit any extremal points, but there is a flex at
intermediate values of𝑌; for intermediate values of 𝐽 there is a
minimumat small values of𝑌 and amaximumat larger values
of 𝑌; for large values of 𝐽 there is a maximum. The extremal
points can be found as roots of a 6th degree function of 𝑌.
We can obtain an estimate of the value 𝑌∗ corresponding to
the maximum by recalling 𝑌 ≤ 1 and neglecting high-order
terms. In this way we get

𝑌∗ ≈ −3 + 2𝐽2 − √−9 + 26𝐽22 (−9 + 𝐽2) , (71)

and, comparing with (64), we get

𝜎rel = 2 (−9 + 𝐽2)−15 + √−9 + 26𝐽2 . (72)

The three plots considered here (i.e., Klotz, Scatchard, and
Hill) and the related estimates for the extent of cooperativity
are presented in Figure 2. In particular, in (d) we compare the
cooperativity quantifiers for several values of 𝐽: as anticipated,
in general, for a given value of 𝐽, the relativistic model gives
rise to a weaker cooperativity.

We proceed our analysis by deepening the role of the
coupling constant 𝐽 in the binding curves related to the two
models. In Figure 3 we present Klotz’s plot (a), the Scatchard
plot (b), and the Hill plot (c) for the relativistic and the classic
models, comparing the outcomes for different values of 𝐽. As
expected, the point corresponding to 𝑆 = 1 and 𝑌 = 1/2 is
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Figure 3: The role of the interaction coupling 𝐽. We resume the plots presented in (a)–(c) of Figure 2 and we show how they are affected by
the interaction coupling 𝐽. In particular, we compare the outputs for 𝐽 = 0.1 (black), 𝐽 = 0.5 (blue), and 𝐽 = 0.9 (bright blue). Again, the
relativistic model (dashed line) and the classical model (solid line) are compared. Notice that the gap between relativistic and classical model
is larger when 𝐽 is relatively large.

a fixed point in each plot and, in general, the gap between
the two models is enhanced when 𝐽 is larger (i.e., when 𝐽 is
closer to 1). Also, when 𝐽 is not too small, the Scatchard plot
for the relativistic model displays a flex at small values of 𝑌
suggesting that when the saturation is small, the cooperativity
is not truly positive.

In the final part of this sectionwewant to get deeper in the
comparison between the classical and the relativistic models.
To this aim, we solved numerically (39), for different values
of 𝑆 and of 𝐽, getting a set of data 𝑌(𝑆, 𝐽). We can think of this
set of data as the result of a set of measurements where we
collect the saturation value at a given substrate concentration.
Now, assuming that in this experiment we have no hints
about the underlying cooperative mechanisms, we may apply
the formulas for the plain positive cooperativity and infer
the value of 𝐽. More practically, we calculate numerically 𝑌
from the relativistic model for different values of 𝑆 and of
the coupling strength, referred to as 𝐽rel for clarity. Next, we
manipulate the set of data 𝑌(𝑆, 𝐽rel) by inverting the formula
in (22): as the value of 𝑆 is assumed to be known, we can
derive the coupling strength, referred to as 𝐽class, expected
within a classical framework. In this way, we can compare
the original coupling constant 𝐽rel with the inferred one𝐽class. We can translate these procedures in formulas as fol-
lows:

𝐽class = atanh (2𝑌 − 1) − (1/2) log (𝑆)2𝑌 − 1

2𝑌 − 1 = tanh[[[
𝐽rel (2𝑌 − 1)√1 + (2𝑌 − 1)2 + 12 log (𝑆)]]]⇓

𝐽class = 𝐽rel√1 + (2𝑌 − 1)2 ≤ 𝐽rel,
(73)

with equality holding only when 𝑌 = 1/2.
In Figure 4(a) we plot 𝐽class versus 𝐽rel, for different values

of 𝑆. Notice that the two parameters are related by a linear
law, whose slope is smaller than 1 and decreases with 𝑆.
This confirms that the relativistic model yields to a weak
cooperativity. The negative contributions in the relativistic
model get more effective when 𝐽rel and 𝑆 are large, as further
highlighted in Figure 4(b).

4. Conclusions

The rewards in the overall bridge linking Chemical Kinetics
and Analytical Mechanics are several, both theoretical and
practical, as we briefly comment.

The former lie in a deeper understanding of the mathe-
matical scaffold for modelling real phenomena: it is far from
trivial that the description of chemical/thermodynamical
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Figure 4: Comparison between relativistic and classical model. We performed numerical experiments where we obtained 𝑌(𝑆, 𝐽rel) for the
relativistic model by solving the self-consistent equation (39). From this data we inferred the expected classical coupling 𝐽class by inverting
the self-consistent equation (22). We repeated the same operations for several values of 𝑆 and 𝐽rel. In (a) we show the inferred 𝐽class versus the
fixed 𝐽rel: different colors represent different values of 𝑆 and the identity function is also shown for reference (dashed, black curve). Notice
that, in general 𝐽class < 𝐽rel and the inequality is enhanced as 𝑆 grows. In (b) we show a contour plot for the ratio 𝐽class/𝐽rel versus ℎ = log(𝑆)/2
and 𝐽rel. Again, one can notice that, in general, 𝐽class/𝐽rel < 1 and this inequality is enhanced for relatively large values of 𝑆.

equilibrium is formally the same as the mechanical one.
In particular, the self-consistency relation (38) that emerges
from the thermodynamic principles (in fact, it stems from
the requirement of simultaneous entropy maximization and
energy minimization) also turns out to be, in the mechanical
analogy, a direct consequence of the least action principles𝛿𝐴(𝑡, 𝑥) = 0. This means that the stationary point corre-
sponds to a light perturbation of the evolution of the system in
the interval [0, 𝑡]. Explicitly, we shift infinitesimally ⟨𝑀⟩𝑡,𝑥 →⟨𝑀⟩𝑡,𝑥 + 𝛿⟨𝑀⟩𝑡,𝑥; then
0 = 𝛿𝐴 (𝑡, 𝑥) = 𝜕𝐴 (𝑡, 𝑥)𝜕 ⟨𝑀⟩𝑡,𝑥 𝛿 ⟨𝑀⟩𝑡,𝑥
= tanh(𝑥 − ⟨𝑀⟩𝑡,𝑥 𝑡√1 + ⟨𝑀⟩2𝑡,𝑥)(− 𝑡𝛿 ⟨𝑀⟩𝑡,𝑥(1 + ⟨𝑀⟩2𝑡,𝑥)3/2)
+ ⟨𝑀⟩𝑡,𝑥 𝛿 ⟨𝑀⟩𝑡,𝑥 𝑡(1 + ⟨𝑀⟩2𝑡,𝑥)3/2 = 0,

(74)

from which (38) is recovered (as usual by setting 𝑡 = −𝐽𝛽 and𝑥 = 𝛽ℎ), since this holds for all variations 𝛿⟨𝑀⟩𝑡,𝑥.
Even more exciting, still by the theoretical side, is the

realization of the complexity of systems presenting mixed
reaction (i.e., where both positive and negative cooperativity
are simultaneously at work) and the possible applications in
information processing, as we are going to discuss.

First, let us clarify that in the Literature we speak
of complex network or complex system with (mainly) two,

rather distinct, meanings: in full generality, let us consider a
Hamiltonian as 𝐻(𝜎, 𝐽) = ∑

𝑖<𝑗

𝐽𝑖𝑗𝜎𝑖𝜎𝑗 (75)

and let us write the two-body coupling matrix as 𝐽𝑖𝑗 =𝐴 𝑖𝑗𝑊𝑖𝑗, where 𝐴 is the adjacency matrix, accounting for the
bare topology of the system (its entry 𝐴 𝑖𝑗 is 1 if there is a
link connecting the related nodes (𝑖, 𝑗), which are therefore
allowed to interact each other, and it is zero otherwise) and𝑊 is the weight matrix, accounting for the sign and the
magnitude of the links (i.e., the type of interactions among
binding sites).

Dealing with 𝐴, networks where the topology is very
heterogeneous (e.g., the distribution of the number of links
stemming from a node has a power-law scaling) are called
complex networks, as it is case for the Barabasi-Albert model
[54].

Dealing with𝑊, networks where the entries of the weight
matrix are both positive and negative are termed complex
systems, as the Sherrington-Kirkpatrickmodel [55] for the so-
called spin glasses.

Crucially, spin glasses spontaneously show very general
information-processing skills and computational capabilities:
for instance, Hopfield neural networks [56] and restricted
Boltzmann machines [57], key tools in Artificial Intelligence
(resp., in neural networks and machine learning), are two
types of spin glasses and it is with this last definition of
complexity that we now can read the information processing
capabilities of the elementary reactions we studied. For a
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given macromolecule under consideration, we could paste
each binding site on a node and draw the links among nodes
that are interacting: if two nodes are correlated (they show
positive cooperativity), their relative interaction is positive,
while if two nodes are anticorrelated (they show negative
cooperativity), their relative interaction is negative. Dealing
with mixed reactions we have to deal with spin glasses and
we can thus assess howmuch information has been processed
in a given reaction by evaluating the amount of information
processed in its corresponding spin-glass representation,
using our bridge. We have already started this investigation
in [21, 28, 41].

Finally, from a practical perspective, in the classical limit
(i.e., for simple reactions) we have an explicit expression that
directly relates theHill coefficient 𝑛𝐻, which can bemeasured
experimentally, to the interaction coupling 𝐽 assumed in the
model; namely, 𝑛𝐻 = 1/(1 − 𝐽). This allows designing specific
models and very simple validations (at least at this coarse-
grained level) and gives a new computational perspective by
which analyze already developed ones (see, e.g., [58–62]).
Then, regarding complex reactions, the puzzling scenario,
evidenced by Koshland, finally finds out a simple descriptive
framework that, crucially, also recovers to the standard coop-
erative scenario in the proper limit: full coherence among
various, apparently antithetic, results is obtained within a
unique framework.
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