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0. Introduction 

As was shown in [2], totally categorical structures (i.e. which are categorical in 
all powers) are not finitely axiomatizable. On the other hand, the most simple 
totally categorical structures: infinite sets, infinite projective or affine geometries 
over a finite field, are quasi finitely axiomatizable (i.e. axiomatized by a finite 
number of axioms and the schema of infinity, we will use the abbreviation ‘qfa’. 
Since all totally categorical structures are ‘built up’ from these simple structures, 
it was conjectured in [2] that all totally categorical structures are quasi finitely 
axiomatizable (which from now on means: being interdefinable with a qfa 
structure). 

We prove in this paper 

Theorem. All totally categorical almost strongly minimal theories are quasi finitely 

axiomatizable. 

This includes the case of totally categorical structures of modular type (i.e. 
which do not have affine geometries attached), for example, structures having a 
disintegrated set attached. 

In Sections 1 and 4 we deal with transfer theorems, which allow us to infer qfa 
of one structure from the qfa from a related structure. 

The results of Section 1 are essentially known: qfa is invariant under 
bi-interpretability of structures and bi-interpretability of structures can easily be 
checked by looking at the automorphism groups: Two countable X,-categorical 
structures are bi-interpretable iff their automorphism groups are isomorphic as 
topological groups. In Section 4 we look at countable X0-categorical structures 
5!I = (A, W) with an n-to-one surjection n :A-, W. If W (with the structure 
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induced by.%) has a ‘nice’ enumeration, we can lift qfa from W to ‘X A modular 
Grassmannian W is the structure of N-element (dimensional) subsets (subspaces) 
of a countable set (projective geometry over a finite field). By the methods of 
Section 1, W is again qfa and in Section 3 we show that W has a nice 
enumeration. 

The proof of the theorem is now completed in Section 2 where it is proved that 
every countable totally categorical strongly minimal structure is bi-interpretable 
with Yl as considered in Section 4, where W is a modular Grassmannian. For 
arbitrary totally categorical structures a similar theorem is not known. Thus the 
question whether all totally categorical structures are qfa remains open. 

It is also not known if - up to interdefinability - there are only countably many 
totally categorical theories. Our theorem implies that there are only countably 
many totally categorical almost strongly minimal theories. But we were not able 
to find such theories explicitly. 

Remark. Our proof also shows that every totally categorical strongly minimal 
structure is interdefinable with a structure which is model complete and has a 
finite language. 

Special cases of our theorem were proved earlier: the disintegrated case by the 
second author (1983), the case where W is a projective geometry over the field 
with 2 elements by the first author [l]. 

1. Interpretations 

All structures which are considered in this section are countable, ?&categorical 
and have a countable language. 

Definition. Let the L-structure 5!l and the L’-structure ?I have the same universe 
A. We say that %?I’ is definable in 3, if every relation (function, constant) R” 
(R E L’) is %-definable. 

Theorem 1.1. a’ Is dejiinable in 5% iff Aut $?l c Aut 8’ 

Proof. The relations definable in $?I are just the relations which are invariant 
under all automorphisms of 8. 

Definition. If ?l’ is definable in 3, and % is definable in ‘u’, then we call a and 
a interdejinable. 
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A lot of properties are invariant under interdefinability e.g. w-stability, 
Xi-categoricity (and X0-categoricity). 

Definition. A structure ‘2L is quasi finitely axiomatizable, if there is a structure ?l’ 
interdefinable with 3 such that Th(%‘) . IS axiomatized by finitely many axioms and 

the scheme of infinity 

3x1, . . . ) xn lJxifxi (n =2, 3, . . .). 

(Note, that the language of 2X’ must be finite. If the language of 2l is finite, we 
can take ‘LL = a’.) 

Interpretability is a generalization of definability. In many cases one checks 
interpretability most easily by looking at the automorphism-groups. This is the 
reason for the following study, where we turn the class 3K of all structures (i.e. 
countable, ?&-categorical, countable languages) into a category and Aut into a 
functor from X to the category of topological groups. 

The morphisms of X are interpretations f : ‘21- ‘x3. This is a surjection 
f : U-2 B, where B is the universe of 23, U is an a-definable subset of A” and the 
following relations are definable in 5!l: 

=f= {(a,, . : . ) a,, a;, . . . ) a;) E u2 if(q, . . . ) a,) =f(ai, . . . ) a;)}, 

Rf = {(a:, a$, . . . , aj!,, a:, . . . , a:, . . . , a;l, . . . , a:) 

E U” 1 R”(f(a:, . . . , a:), . . ,f(ay, . . . , a:))} 

for all R in the language of ‘23. (For simplicity we consider here only relational 
languages.) 

The identical interpretation lpi is given by idA :A+A. 

The composition of two interpretations f : i?l- 23 and g : 23-E is defined as 
follows: If f : U+ B, U c A” and g : V - C, V c B”, we define 

gof:%-rrc,CS 

byg*f:W+C, where 

w = {(a:, . . . ) a;, . . . , a?, . . . , a;) 

EUml(f(a: )..., aA) )...) f(aT )...) a;))EV} 

and 

g of(& . . .) =g(f(& . . .), . . . ) f(q, . . .)). 

It is easy to check that this makes X a category. 
Now we turn Aut into a functor. First note that Aut $?l is a topological group 

whose basis of open neighbourhoods of 1 are the subgroups Aut(Yl, al, . . . , ak). 
If f is an interpretation f : 2l- 23 and (T E Aut 2l, then there is a unique 

permutation p of B which makes the following diagram commutative (o operates 
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in a natural way on U): 

UAB 

0 
1 I 

P 

U-B. 

p is always an automorphism of 8. And, if we define Autf(a)=p, Autf is a 
continuous homorphism from Aut 2l to Aut 23. As one sees easily Aut is now a 
functor from X to the category of topological groups. 

Remark. Let B be a trivial structure (i.e. having the empty language or-more 
generally - such that Aut B = Sym B (=full permutation group)). If f : 2X - B is an 
interpretation, the closure of the image of Autf is already the automorphism 
group of an X,-categorical structure with universe B: the induced structure on B. 
This structure is uniquely defined up to interdefinability. 

Theorem 1.2. A continuous homorphism q : Aut ?I+ Aut 23 is of the form Aut f 
for an interpretation f : 2X - 23 iff the image of p, has only finitely many orbits. 

Proof. The necessity follows from the above remark: in fact im q is again the 
automorphism group of an &,-categorical structure. 

For sufficiency choose representatives bl, . . . , bk for the orbits of im cp. Choose 

al, . . . , a, such that aut(‘$ a,, . . . , a,) is mapped into Aut(2.J bl, . . . , bk) by q. 
We can assume that k G m and all ai are different. Let U c Am+l consist of all the 
conjugates of (al, a,, . . . , a,), (az, al, . . . , a,), . . . , (ak, a,, . . . , a,). Define 
f:U+Bby 

f(a(aJ, u(al), . . . , a(a,)) = q(a)bi, i = 1, . . . , k, o E Aut ‘LI. 

Remark. We do not have to assume that 23 is &-categorical. This will follow. 

Definition. Two interpretations f : VI- 58 and g : ‘8 - 23 are homotopic (f - g), if 
the relation 

Cf=g)=((al,...,a,,b,,...,b,) 

EUXVIf(.al,...,a,)=g(b,,...,b,)) 

is %-definable. 

Theorem 1.3. f and g are homotopic iff Aut f = Aut g. 

Proof. This is a simple matter to check, using the fact that definable = Aut 2l- 
invariant. 
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Definition. 2X is called a retraction of %3 if there are interpretations f : ‘8 - 93 and 
g : 23 - 91 such that g of - 18r. If moreover fog - lm, then !?I and 93 are called 
bi-interpretable. 

Corollary 1.4 [4]. (i) 5!l is a retraction of 23 iff there are continuous 
homomorphisms 

Aut‘$l-%AAut%?%AAut?l such that ~oq=l. 

(ii) 2l and 23 are bi-interpretable iff Aut 53 and Aut %3 are isomorphic as 

topological groups. 

Theorem 1.5 [4]. Zf 3 1s a retraction of 93 and 23 is quasi finitely axiomatizable, 
then also 3 is quasi finitely axiomatizable. 

Proof. We can assume that 93 is of finite language. Now, besides saying that ?I is 
infinite, the axioms of 3 will tell that (via f) there is a structure (-%) interpreted 
in ‘?I, which satifies a certain finite number of axioms (=the axioms of 93) and 
which again has in it a structure interpreted (via g) which is definably isomorphic 
to 9l itself. The latter we need only to express for those relation symbols of the 
language of 5?l which occur in the previous axioms. In fact !?l is interdefinable with 
its restriction to this finite language. 

Theorem 1.6. For any open subgroup G of Aut % there is a structure r23, an 

isomorphism @ : Aut 2l -+ Aut 93 and an element b E B such that q(G) = 
Aut(93, b). 

Proof. We find Aut((lI, aI, . . . , a,,) c G. If C CA” is the G-orbit of (aI, . . . , a,), 
we have G = (0 E Aut $3 1 a(C) = C}. Note that C is definable with parameters 

al, . . . , a,. Let D be the set of all conjugates of C. Set 93 = (“3, D, E) - a 2-sorted 
structure, where E c A x D. There is an obvious isomorphism Q, : Aut 3 -+ Aut 8. 
(cp is continuous, since all elements of D are definable with parameters in 8.) 
One sees also that Aut !3 has only finitely many orbits. By the remark following 
1.2 we conclude that 93 is X,-categorical. Clearly q(G) = Aut(‘3, C). 

Corollary 1.7 (Essentially in [5]). Zf %?I’ is definable in YI and Aut !?I is open in 
Aut %I’, then 8 is quasi finitely axiomatizable iff 2X’ is. 

Proof. We find a !-X3 and b E B such that Aut a’ = Aut % and Aut 8 = Aut(Z3, b). 
Having the same automorphism group preserves qfa by 1.4 and 1.5. So we have 
to know that !3 is qfa iff (%, b) is. But this is trivially true (for &categorical 
structures of course). 

Remark. We can derive the X,-categoricity of % from the K,-categoricity of %!I’. 
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Example 1. Let H be an &-categorical minimal set (i.e. a structure whose 
universe is a minimal set.) Let W be the set of all algebraically closed subsets of H 

of dimension N. There is an obvious map cp : Aut H -+ Sym W. The image of 9 
operates transitively on W. By 1.2 (and the remark) we obtain an interpretation 
of W in H, which induces an X,-categorical structure on W having im ~1 as 
automorphism group. We call this structure W the N-Grassmannian of H. 

Example 2. Let V be an X,-dimensional vector space over a finite field F and H 

the set of all one-dimensional subspaces. GL(V) induces a group r, of 
permutations of H. Also-if we fix a basis of V - Aut F induces a group of 
permutations of H, which we also call Aut F. Let r be the permutation group 
generated by r, and Aut F (in a semi-direct way). The fundamental theorem of 
projective geometry tells us that r is the automorphism group of the projective 
space (H, Coll), where Co11 = {(a, b, c) 1 dim({a, b, c}) c 2). Also, by well 
known axioms, (H, Coil) is qfa and totally categorical. Since r, is of finite index 
in r (=IAut FI), To is open in r. Whence, by 1.6 and 1.7 every group G between 
& and r is the automorphism group of an X,-categorical structure on H and all 
these structures are qfa. We call these structures projective geometries. 

Remark. All these structures have the same notion of algebraic closure: 
acl(s) = (S) = the subspace spanned by S. 

To define affine geometries, we start with H = V and the permutation groups 
&, generated by GL(V) and the transvections x + Q (a E V), and r, generated by 
r, and Aut F. Again every G between r, and r is the automorphism group of a 
qfa, totally categorical structure on H: the affine geometries. 

Example 3. If H is either a disintegrated set or a projective geometry over a finite 
field, then H is minimal and the map from Aut H to the automorphism group of 
the Grassmannian W is an isomorphism. Therefore W and H are bi-interpretable 
and we can conclude that W is quasi finitely axiomatizable. 

Example 4. Let f : ‘21 -B be an interpretation. f induces in a natural way an 
interpretation of the pair (A, B) in ?I. We denote the induced structure by 
(‘?I, B). Clearly this structure is bi-interpretable with 3. We say that B (with the 
induced structure) is attached to 8. 

2. Almost strongly minimal structures 

In [2] it is shown that every totally categorical structure has a strictly minimal 
set H attached to it, i.e. H is strongly minimal and {a} = acl(u) fl H for all a E H. 

The classification theorem of Cherlin and Zil’ber says that every (countable) 
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X,-categorical strictly minimal set is (up to interdefinability) disintegrated, a 
projective geometry or an affine geometry over a finite field. [2] 

Disintegrated and projective strictly minimal sets are called modular. 

Definition. Let 3 be a countable, totally categorical structure. 
(i) 5!l is of modular type, if for every finite sequence a,, . . . , a, EA every 

strictly minimal set attached to (‘8, al, . . . , a,) is modular. 
(ii) % is almost strongly minimal, if there is a finite sequence a,, . . . , a, E A 

and a strongly minimal set H definable with parameters a,, . . . , a, such that A is 
algebraic over H U {a,, . . . , a,}. 

The following theorem is shown in [l]. 

Theorem 2.1. If the totally categorical structure ‘21 is of modular type, then it is 
almost strongly minimal. 

If a disintegrated set is attached to some (a, a,, . . . , a,), then ?I is of modular 
type (and whence almost strongly minimal.) 

It is well known that there are totally categorical structures which are not 
almost strongly minimal, e.g. (Z/~B)‘O. By [l] these are exactly those structures 
for which there exists no finite sequence a,, . . , a, for which (5% a,, . . . , a,) is of 
modular type. 

Theorem 2.2. For every (countable) &,-categorical, almost strongly minimal 
structure ‘B there exists a two-sorted structure 8 = (A, W) such that 

(‘) ’ 

is bi-interpretable with (‘%, bl, . . . , b,) for some finite sequence 

b . , b, in B. 
“(ii) Th ere is a O-definable surjection n :A+ W with fibers of a fixed finite 

cardinality. 
(iii) W (with th e induced structure) is a modular Grassmannian. 

Proof. Let H be strongly minimal, definable with parameters bZ, . . . , b,, such 
that B is algebraic over H U {b2, . . . , b,}. Choose bI to be a non-algebraic 
element of H. Now we argue in the structure $3’ = (93, bI, . . . , b,). 

Call two elements of H equivalent, if they have the same algebraic closure. The 
set H’ of equivalence classes of non-algebraic elements of H is a strictly minimal 
set attached to !?3’. It is modular, by the choice of b,. Since the equivalence 
classes are finite, B is algebraic over H’. Choose N minimal such that every 
element of B is algebraic over an N-dimensional, algebraically closed subset of 
H’. Let W be the N-Grassmannian of H’ and A = {(b, w) 1 b E acl w}. The 
obvious map Aut \E3’ + Sym(A, W) is easily seen to be an isomorphism onto a 
subgroup of Sym(A, W), which is the automorphism group of an HO-categorical 
structure % with universe (A, W). Clearly the projection JG to the second 
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component is invariant under all automorphisms, whence definable, and all fibers 
have the same cardinality, since W is transitive. 

Remark. The minimal possible N is the Morley rank of B’. 

3. Nice enumerations 

Definition. A set P together with a transitive and reflexive relation c is called a 
partial well ordering, if every subset A of P is generated by finitely many elements 
ai (i = 1, . . . , n), i.e., ai E A and for all b E A there is an ai below: a, s 6. This is 
equivalent to saying that P is well founded and has no infinite antichains. 

Let wT (i E w) be an enumeration of the structure W. We introduce the 
following notations: 

* - w<, - {wo*, w;, . . . ) W,*_l}. 

2 is the set of all pairs (w, S) which are conjugate to a pair (WE, W.&J. 
(w’, S’) s (w, S), if for some subset S” of S, (w’, S’) is conjugate to (w, S”). 

Definition. An enumeration w; (i E w) of a structure W is called nice, if the 
following three properties hold. 

(i) (2, S) is a partial well ordering. 
(ii) There is a finite bound kO such that for (w, S) E 2 with ISI 2 /co, tp(wlS) is 

either algebraic or minimal. 
Notation: A set S conjugate to some w:, is called ‘nice’. 
(iii) For all k there is a k’ such that between any pair of sets T c S, where 

ITI < k and S is nice, we can find a nice set S’ with Is’I <k’. 

Theorem 3.1. Let H be either a countable disintegrated set (i.e. with trivial 
structure) or an X,-dimensional projective geometry over a finite jield. Then any 

Grassmannian W of H has a nice enumeration. 

We will make use of a trivial and a non-trivial lemma. The trivial one is 

Lemma 3.2. Zf f : PI+ P2 satisfies f(x) Sz f Cy)+x <I y, then (PI, Q~) is a partial 
well ordering, if (P,, +) is. 

Lemma 3.3 [3]. Let D be a finite alphabet. Then Q* - the set of all finite words in 
62 - becomes a partial well ordering, if we define: (a,,, . . . , a,_I) =S (b,, . . . , b, _J 
iff there is a monotone map E : m -+ n such that ai = bE(i) (i < m). 

We split the proof of 3.1 into three cases: the case when H is disintegrated, the 
case when H is a projective geometry and W = H, and the general case of a 
Grassmannian W of a projective geometry. 
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Lemma 3.4. W has a nice enumeration, if W is the structure of all N-element 

subsets of a disintegrated set H. 

Proof. We identify H with the set w of natural numbers. We then write every 
w E W as {wi, . . , , wN}, where w, < w2< ’ . . -=c w,. This gives rise to a lexi- 
cographical ordering of W: u < w iff there is an i such that 2ri < w, and Uj = w, for 
all j > i. This orders W of type o and defines our enumeration. Notations: 

w<={vEW~zJ<W}, Y = {(w, W<) 1 w E W} 

We have to show that (i), (ii) and (iii) of the definition are true. 
(i) It is enough to show that (C’, c) is a partial well ordering. We will apply 

Lemma 3.2 and Lemma 3.3. 
The alphabet we use is D = (0, l}. We attach a word w* to every w E W as 

follows: 

1 0, if i # w, 
W *:w,+ l-+Q, w*(i) = 

1, if i E w. 

It is enough to show that 

tJ*sw* 3 (V, tJ<)C(W, W<) 

Proof. If 21 * 4 w* via E : 2rN + l+ w, + 1, we choose a permutation o of H which 
extends E. o yields an automorphism of W, which is also denoted by CJ. It is easy 
to see that 

u<v * a(u)<a(v)=w. 

This shows that (v, v,) 6 (w, w<) via (T (i.e. a(v) = w, a(~,) c w<). 
(ii) Set k0 = N + 1. Assume that (w, S) E 2:’ and IS/ 2 N + 1. Since the set of all 

N-element subsets of (0, . . . , N} forms the first N + 1 elements of our enumera- 
tion, all these sets belong to S and we have N < w,. Choose two different 
elements a, b from (0, . . . , N} \ { wr, . . . , w,._i}. Then {a, w,, . . . , w,,,-~} and 

{b, ~1, . . . > w~-~} belongs to S. Whence 

{Y, . . . > wN-J = {a, Y, . . . , W.-J n (6, w, . . . , WN-11 

is definable in S (as an element of the N - l)-Grassmannian of H, which is 

attached to W). 
w 4 acl S means w + lJ S. In our case this implies w, 4 lJ S. Thus tp(w,,JS) is 

minimal. (Here we think of H being attached to W.) By the above this implies 
that tp(wlS) is minimal. 

(iii) Let k be given. k’ = (y) will do. 
So let T be a subset of w, and ITI <k. Then, if J = U T U w we have 

IJI = k” G kN. Choose a permutation o of H which induces a monotone map from 
k” onto J. Let v E W be the preimage of w (a being extended to an automorphism 
of W). Then, if we set S’ = a(~,), we have T c S’ c w, and /.!?‘I < (g) <k’. 
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Lemma 3.5. W has a nice enumeration, 
geometry over a finite field F. 

M. Ziegler 

if W is an X,-dimensional projective 

Proof. Let V be a vector space over F with basis vO, vr, . . . , vi, . . . (i E 0). Let, 
for a E V\ {0}, ii denote the l-dimensional subspace generated by a. We can 
assume that W consists of all G and that every linear automorphism of V induces 
an automorphism of W. 

We fix a linear ordering of F with 0 as the least and 1 as the second least 
element. 

Then, a lexicographical ordering of V is defined by 

a = C aivi < b = 2 &vi iff for some i, ai < pi 

and q = pi for all j > i. 

Our enumeration of W is given by an ordering of W, which is defined as follows: 

v < w iff a < b, where a, b are minimal elements of V 

representing v resp. w. 

Note that a is minimal representing a iff a has the form 

a = C qvj + v,. 
i<m 

(i) We show that (E’, s) is a partial wellordering, using 3.2 and 3.3. Set 
Q = F U {w}. Let b = Cicn &vi + v, represent w E W. We define then w * by 

w”:n+l+Q, w*(i) = 
i 

PI, i < n, 

x, i = n. 

Claim. v* 6 w* 3 (v, v,) s (w, W<). 

Proof. Let a = Ci<m (yivi+v, represent v. If V*GW* via c:m+l+n+l, then 
cwi = PEci) and e(m) = n. 

Choose an automorphism u of V with 

1 VE (i), i<m, 

o(v,) = v, + C {PjVj 1 j <n, j 4 {e(O), . . . , E(m)>}, i = m. 

Clearly o(a) = b. If u < v take c minimal reprznting u. Then c <a. By the next 
lemma we have a(c) < o(a). Whence a(u) = a(c) < 6 = w. This proves the claim. 

Lemma 3.6. Let a = Ci<m ajvi, an increasing sequence of numbers e(0) < ~(1) < 
. . . < e(m) and an automorphism o of V be given. Suppose that for all i =Z m, 
IT(V~)E (~0, vl,. . ., v,(~)) and, if ai# 0, that 

o(vi) - v+) E (vi 1 j < E(i), j $ {E(O), . . . , E(i))). 

Then c < a implies o(c) < u(a). 
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PrOOf. If C = C yjz)i, a(C) = C GiVi, a(U) = C pi u i, we have for some i, yi < cu, and 

rj = aj for all j > i. Note that aj # 0. Now it is easy to see that 8E(ij = yi < (L; = 
PE(i) and Sj = pi f or all j > e(i). Whence a(c) < a(a). 

Now we continue the proof of Lemma 3.5 
(ii) We can use k0 = 0: Since W is a minimal set, we have tp(wlT) algebraic or 

minimal. 
(iii) If k is given and f = (F(, set 

k’ =ffk - ’ 
f-1. 

Now suppose T c w,, ( TI < k and IV, c (I?,, . . . , I?,). Define an equivalence 
relation E on (0, . . . , n} by 

iEj iff yi=yj forallc=xYiuj, EETU{W}. 

We enumerate the equivalence classes E,,, El, . . . , EkSC--l in such a way that 
max Ei < max Ej whenever i < j. Choose an automorphism (7 of V such that 
a(vJ = C {I+ 1 i E Ei} (i -=c k”). CJ restricted to (v,, . . . , ZJ~~~-~), which is an initial 
segment of W, respects the ordering. Furthermore we have a({& . . . , Ckff_-l)) 2 

T U {w}. Whence, if u is the preimage of w, we have T c (v,) c w,. Finally note 
that k” c f” and 

(V<( < I( fi,, . . . , fitr,L,)l =fss k’. 

Lemma 3.7. W has a nice enumeration, if W is the N-Grassmannian of an 
X,-dimensional projective geometry over a finite field F. 

Proof. Let W be the N-Grassmannian of the geometry H, V as in the proof of 
Lemma 3.5 such that H = (5 ( a E V\(O)). 

As in the proof of Lemma 3.4 the ordering of V gives rise to an ordering of all 
N-element linearly independent subsets 

a = {a*, . . . , a,} (U~<fz,<~~~<U,) 

of V. We use the notation 6 = (G,, . . . , CN) E W. 
This gives us an ordering of W, which defines our nice enumeration: For v, w in 

W choose minimal (5, 6 such that v = 2 and w = 6. Then set v < w iff ti < 6. 
(i) Let Sz be th e alphabet used in the proof of 3.5. We will use 3.2 and 3.3, 

now for the alphabet ON. 
For any w E W choose 6 minimal such that w = 6. Write br = C /31,jvi + v,,. 
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Define w*:nN+l-+@by 

w*(i) = (/?i,i, . . . , PkJ, where p;i= i = Itr, 

(i > nj. 

Remark. Since otherwise we could produce a smaller 6 representing w (using 
‘row operations’), we have 

(a) n1<n2<..*<nN, 

(b) Pl,nk = 0, if I # k. 

Claim. 21* s w* * (v, u,) s (w, W<). 

Proof. Let a be minimal representing U, a, = c ~~,iVi. If ZJ* c w* via E : mN + l-+ 

nN + 1, then a/,i = Pl,e(i) and s(ml) = nl. Choose an automorphism o of V such 
that for all i = 0, . . . , mN, 

{ 

vE(i), i${%. . .? mN), 

a(vi) = 21n, + c {PI,jvj Ii+ t&(O), E(l), . . . , @N))), (i = ml). 

By the above remark (applied to V) it is clear that a(aJ = b, and thus o(u) = w. 
Now suppose u < v. Choose E minimal such that u = E. We then have C <a. (a) 

of the above remark applied to u shows that a(q) <. . * < o(q). There is an I 
such that q < al and cI = ak for all k > 1. By Lemma 3.6 and the remark applied to 
v we can conclude that a(q) < a(a!). Whence d = (T(F) < 6. This implies 
o(u) = d < 6 = o(w). Thus we have shown that (v, v,) s (w, w<) via o. 

(ii) Set 

f 
AJ+1- 1 

ko= f_1 . 

Assume that (w, S) E 2’ and ISI > ko. Since the set of all N-dimensional subspaces 
of 210, . . . ) vN forms the first k, elements of our enumeration of W, all these sets 
belongtoS. Sincea<uNimpliesaE(uO,...,uN), WehaveVO<vl<O”<uN< 
bw Pick two elements a, b from (v,, . . . , UN) which are linearly independent 

over (bl,..., bN--l). Then (6, &, . . . , &_1) and (6, &, . . . , 6N-_l) belong t0 

S. Whence 

& . . . , &-_l) = (6, 61, . . . , b-,-l) n (6, 61, . . . , 6,-l) 

is definable in S (as an element of the (N - 1)-Grassmannian of H, which is 
attached to W). 

w b acl S implies therefore that bN 6 acl S. But tp(b,lS) is minimal (in H being 
attached to W.) By the above this implies that tp(w/S) is minimal. 

(iii) If k . g’ e IS IV n, take for k’ the number of N-dimensional subspaces of an 
fNk-dimensional projective space over F, (f = IF\). 

Assume T c w, and ) Tj <k. By the proof of Lemma 3.5 (iii), there is a number 
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s < fNk and an automorphism CJ which preserves the ordering on ( uO, . . . , v,) and 
such that lJ T U w is included in a( ( Do, . . . , 13~)). The preimage u of w is a 
subspace of ( fiO, . . . , ~3~). Whence we have T c a(~,) c w,. (Note that 6 also 
preserves the ordering of the N-dimensional subspaces of (B,, . . . , OS).) 

4. Proof of the theorem 

Let ‘21 be an X,-categorical two-sorted structure (A, W) with the following 
properties: 

(a) There is a O-definable surjection n :A + W all fibers of which A, = n-‘(w) 

are finite, of cardinality K. 

(b) W has a nice enumeration (with the properties (i), (ii), (iii) of 3.1). 
We look at W carrying the structure induced by a. This is determined up to 

inderdefinability. 
We are going to show 

Theorem 4.1. ?I is quasi finitely axiomatiable, if W is. 

Corollary. NO-categorical almost strongly minimal theories are quasi finitely 
axiomatizable. 

Notations. If T is a subset of W, we denote by AT the union of the A,,,, w E T. 
G stands for a sequence ala*, . . . , a “. 
ti =A, means {a*, a’, . . . , aK} =A,. 
Variables x, y, . . . range over A, X etc. is a sequence of variables x1, x2, . . . , x”. 

The variables ar, /3, . . . range over W. 
tp(alB) is the type of a over B in 59. Note that, if a and B belong to W, we can 

read tp(alB) also as the type of a over B in the structure W. Since W has the 
induced structure, this latter type is equivalent to the first one. 

For types P(X), q( ) x with finitely many parameters, p k q means that 2l b 
p(a)+I%i=q(a) for all a l A UM. 

2 is the set of nice pairs as defined in 3.1. 

Lemma 4.2. tp(wlS) t- tp(w/A,) for aZZ (w, S) E C such that w # acl S and IS\ > k,,. 

Proof. 
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Lemma 4.3. There is a finite constant A such that for all (w, S) E 2 there is a subset 
S’ofSwithIS’I<& (w,S’)~ZandforG=A, 

(i) tp(GlA,. U {w}) k tp(GIAs U {w}), 
(ii) if w E acl S, 

(a) tp(wl-%,) k tp(wl&), 
(b) tp(w/S’) k tp(w/S). 

(Note: (i) & (i&a) imply tp(ti/A,,) k tp(iilAs).) 
Moreover, if ISI 2 kO we can find IS’] s kO. 

Remark. An example of Cherlin shows that given a projective geometry W we 
cannot bound A by a function of K. 

Proof. First we prove that there is a bound kI for the degrees of all types tp(wlS) 
where (w, S) E 2, w E acl S: By 3.1(i), the set of these types is generated by a 
finite number of them. Let kI be the maximal degree of these generating types. 
Our claim now follows from the fact that, if w E aclS’ and S’ c S, then 
deg tp(wlS’) b tp(wlS). 

Now look at the following sets: 
2’ = {(w, S) E 2 1 w E acl S}, 
~;={(w,S)E~‘I h ( w as exactly) s conjugates over As} (1 =S s s k,), 
Z:={(W,S)EZ’/ h w as r conjugates over S} (1 Gs G kI), 
2~={(w,S)~2lifZ=A w : ii has t conjugates over As U {w}} (1 G t C K). 

Applying 3.1(i), we see that there is a bound A such that if K is any of the sets Et 
or Et f-12; fl Ei,‘: and if (w, S) E K, then we find S’ c S such that IS’1 <il and 
(w, S’) E K. 

Now let (w, S) E _Z be given. Then one of the following two cases occur: 
Case 1: (w, S) E Zz:,\2’. 
Then we find (w, S’) E 2Zt as above. Since ti has over As, U {w} the same 

number of conjugates as over As U {w}, every conjugate over As, U {w} is also a 
conjugate over As U {w}. This proves (i). 

Case 2: (w. S) E _Zr II 2: fl 2;. 

Here we find (w, S’) in ,IZt n 2: fI 2:. (w, S) E J$ again entails (i), (w, S) E 2: in 
the same way implies (ii.a) and (w, S) E 2:’ yields (ii.b). 

For the supplement we take also 2”’ = {(w, S) E 2 ( (SI 2 k,} into consideration. 
Note that k,, < )3. 

Now in order to give a quasi finite axiom system for %?l we define a new 
language for %!I. 

For every type p(XI, . . . , iA) = tp(&, . . . , &) (5, =AUz), we introduce a new 
K-A-place relation symbol & We interpret it in the obvious way: 

&$G, . . . 2 &) iff p = tp(b,, . . . , bA). 



Quasi finitely axiomatizable totally categorical theories 77 

In this way %?l turns into an L*-structure %*, where 

L* = L, U {.n} U {&, ) p a type as above}. 

Here Lw denotes the language of the structure W and n is a function symbol for 
Jr. 

Definition. Let ‘2’ (i = 1, 2) be two L*-structures both having the structure W as 
second sort and with surjections JGi : A i+ W. A *-map IJ between a1 and 2X2 is a 
partial isomorphism defined on a set of the form As U S (S nice) such that o 1 S is 
an elementary map between W and W. 

Lemma 4.4. A *-map u between a* and !?I* is %-elementary (we will say simply 
‘elementary’). 

Proof. (To get a better picture of the proof, the reader can imagine that o is the 
identity on S. Note that (T 1 S can be extended to an automorphism of 8.) 

First we note that it suffices to show that o 1 As is elementary. 
Now we proceed by induction on the cardinality of S. By the choice of the R, 

we already know the claim to be true, if ISI d A. 
Suppose now that the nice set S” has more than ?, elements, and that 

u:A,,, U S”-+A U W is a *-map. 
We decompose S” = S U {w}, where (w, S) E E. Then by induction o 1 A.$ U S 

is elementary. Choose S’ as in Lemma 4.3, and E = A,. 

Case 1: w $ acl S. Since (SI > /J > k,,, we have by Lemma 4.2, 

tp(wlS) t tp(w/A,). 

Whence, since o r S U {w} is elementary and since o 1 As U S is elementary, we 
can conclude that u 1 As U {w} is elementary. 

Case 2. w E acl S. Here we have, by 4.3(ii.a), 

tp(wlA,.) t tp(wlA,). 

Whence, since cr r A,. U {w} is elementary (for IS’ U {w}l S A), and since c~ 1 As 
is elementary, we can conclude that o 1 As U {w} is elementary. 

Thus in both cases we have that o 1 As U {w} is elementary. From this, the fact 

(4.3(i)) 

tp(alA,, U {w>) 1 tp@lA, U {w}), 

and the elementarity of u 1 As, U {w} U A, (for IS’ U {w}l s A), we can deduce 
that CJ 1 As U {w} U A,,, is elementary. This was to be shown. 

Corollary. % and IX* are interdefinable. 

Proof. \22* is definable in ‘21. For the converse let u be an automorphism of %*. 
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Since W is the union of an increasing chain of nice sets S, A U W is the union of 
an increasing chain of sets of the form As U S (S nice). Whence o is an increasing 
union of the *-maps u r As U S, which are elementary by 4.4. Thus o is 
elementary, and therefore an automorphism of ?I. 

In order to state the axioms of 9l*, we choose a number p such that for all nice 
S and all T c S with ITI -=c (K + l)h - 1 there is a nice S’ with T c S’ CS and 
IS’\ < p. This is possible by the property 3.l(iii) of nice enumerations. 

Also we make use of the following notion: An L*-formula Q)(x~, . . . , x,, 

al> . * . I an) is called *-quantifier free (*-qf) if it is a boolean combination of 
quantifier free formulas and arbitrary &,-formulas ~(a~, . . . , cv,J. Note that the 
*-maps are just the maps which preserve *-qf formulas (and are defined on the 
right sets.) 

Now look at the following axioms. 
(a) Infinite two-sorted structure: “8 defines a surjection from the first sort onto 

the second sort, all fibres have cardinality K. ” 
The finitely many nontrivial axioms of W 

(b) All sentences of the form 

3x1, . . . , xk”, al, . . . , ako q(%, . . . , xko, al, . . . , ak”) (v *-Sf)> 

which are true in 8”. 
(c) All sentences of the form 

3x1, . . . , 5, &I, . . * 7 b;c 47&, . . . , 5, al, . . . , qJ (Q7 *-@I > 

which are true in ?I*. 
(d) All sentences of the form 

which are true in 5?l*. 
Note that on the basis of the axioms in (a) we have only finitely many *-qf 

formulas with a fixed set of free variables (up to equivalence). Therefore we have 
essentially only finitely many axioms of type (b), (c), (d). 

We want to show that the complete theory of 2l* is axiomatized by these 
axioms. To this effect we show that the axioms yield an X,-categorical theory. 
Thus let !-?3* be a countable model of the axioms. Since W is &-categorical, and 
the axioms (a) hold in %*, we can assume that %* = (B, W). Set B,. = n-‘(w). 
We will show that the subset of *-maps between ?I* and B* with domain As U S 
(ISI 3 k,) is non-empty and has the back and forth property. This then implies 
that %!I* and !23* are isomorphic. 

Lemma 4.5. Let S be a nice set of cardinal@ k ,,. Then there is a *-map o between 

‘21* and P3* defined on As US. 
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Proof. Let S be {ul, . . . , u,,,}, A,, = a,. If the *-qf formula QJ(X~, . . . , akJ 

describes the *-qf type of al, . . . , uko, the sentence 

3x1, . . . , ako q 

is an axiom of type (b). Choose for a(ci,), . . , o(vko) a realization of q in ‘x3*. 

Lemma 4.6. Let the *-map CJ between ‘Ix* and !B* be defined on A, U S and 
(w, S) E 2, w E acl S. Then c~ can be extended to a *-map defined on As,,(w) U S U 

{w>. 

Proof. Choose S’ CS as in Lemma 4.3. Write S’ = {v,, . . . , uk}, A,< = tij and 

A, = 6, (k c /I). 

Claim 1. o 1 As, U S’ has a prolongation z to As,u(wj U S’ U {w}. 

Proof. Let the *-qf formula q,(X,, , .fkj ml, . . . , a&) describe the *-qf type Of 

al, . . . , ak, ul, . . . , uk and let P)$~, . . , &, J, el, . . . , a&, p) describe the *-qf 

type of al, . . . , iik, 6, v,, . . , uk, w. 

Subclaim. El, . . . , fk, a,, . . . , ak 3j, /3 (VI+ CpJ is an axiom of type (d). 

We have to show that this sentence is true in ‘?I*. So let ‘2x* k 

&?;, . . . ) ii;, v;, . . . , vk). Then the map p defined by p(Zi) = G! and p(vj) = V: 

is a *-map. By Lemma 4.4, p is elementary. Therefore ?I* F 

3jj, p &sil, . . . , j, vl, . . . , p) implies ‘21* k 3jj, p q2(ti;, . . . , j, vi, . . . , /3). This 

proves the subclaim. 

Now we know that ‘xi* ‘F~J, 6 g?*(a(Z,), . . . , y, a(~,), . , /3), since %* k 

ql(o(al), . . . , a(~,), . . .). Choose for z(6), t(w) a realization of 

41*(o(&), . . > Y, a(v,), . . . , p) in ‘93*. This proves Claim 1. 

Claim 2. (J U z is a *-map defined on Asuc,,,) U S U {w} 

Proof. Clearly o U z is compatible with x and yields a bijection of corresponding 

fibers. 

Since by 4.2(ii.b), tp(wlS’) k tp(wlS) (in the structure W) the elementarity of 

z r S’ U {w} and of 0 1 S implies that (a U z) 1 S U {w} is elementary. 

It remains to show that (T U z is compatible with the R,. Since the arity of the 

R, is K?L, it is enough to show that (a U t) r A’ U A, is compatible with the R, for 

every subset A’ of A, of cardinality smaller than KA. A’ given, choose a nice S” 

such that S’ c S” c S, A’ c Ay and IS”1 c p. (Note that IS’ U x(A’)[ < KA + A - 1.) 

We show that CJ U z restricted to Ay,uIwl U S” U {w} preserves *-qf formulas. 

Write S” = {v,, . . . , vk, . . . , v,}, A,, = a, (I < p). 

Let the *-qf formula r@1, . . . , X,, a,, . . . , c_Y[) describe the *-qf type of 

ti,, . , c?l, vl, . . . , VI and let p)&,, . . . , J, al, . . . , /3) describe the *-qf type of 

al, . . . , 6, 211, . . . ) w. 

Subclaim. V.iZ1, . . . , x,, y, a,, . . . , cub P ( q2 A q3-+ cp4) is an axiom of type (c). 
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To see that this sentence is true in ‘%* we consider a realization 
a;, . . ., ii;, b’, II;, . . . , vi, w’ of q2 A q3 in !?I*. By Lemma 4.4, the map p 
defined by p(&) = rZ;, . . . , p(6) = 6’, p(vl) = vi,. . . , p(w) = w’ is elementary 
restricted to Assut,,,) U S’ U {w} and restricted to As,, U S”. This together with 

(4.3) 

tp@/S,.) t tp(61AY) c tp@lA,) 

implies that p is elementary. Whence !?I* = ~)~(a.;, . . . , w’). This proves the 
subclaim. 

Since t is a *-map, we have 

!ZJ* L 4)2((7(&), . . . , I, m, a(%), . f . 7 4%), z(w)>. 

Since o is a *-map, we have 

B* k &o(&), . . * , 4vJ). 

Whence, since EJ* is a model of our axioms, 

Q?* != (p4(o(&), . . . , o(G), t(6), 4Vl), * . . , 4%), r(w)>, 

i.e. o U z restricted to AYut,,,) U S” U {w} preserves *-qf formulas. 

Lemma 4.7. Assume (w, S) E 2, w 4 acl S and ISI 2 k,,. Let o be a *-map between 
2l* and %* defined on As U S. Then 

(i) o 1 S can be extended to a W-elementary map a’, defined on S U {w}. 
(ii) For every such o’, o U CT’ can be extended to a *-map defined on 

As_+) U S u {w>. 

Proof. (i) o 1 S is W-elementary and W is &-saturated. 
(ii) Choose S’ and the notations as in the last lemma. We can find (S’j 2 k@ 

Claim 1. (o U a’) 1 A,. U S’ U {w} can be extended to a *-map defined on 

A S’U{w} u S’ u {w>. 

Proof. Let the *-qf formula ~l&?i, . . . , &, aI, . . . , (L/k, p) describe the *-qf type 
of til, . . . , cik, VI, . . . , uk, w. Take cp2 from the proof of the last lemma. 

Subclaim. vzl, . . . , iifk, aI, . . . , a&, p (q5+ 3y (q,z A &y’) = p)) iS an axiom of 

type (d) 

Indeed, if a* b &tii, . . . , vi, . . . , w’), then the map p defined by p(&) = 
a;,..., P(Vl) = u;, . . . 7 p(w) = w’ preserves *-qf formulas. Whence, by 4.4, p is 
elementary restricted to S U {w} and restricted to As U S. Together with (4.2) 

tp(w/S) 1 tp(wlAs), 

this shows that p is elementary. Whence 

%*b3jj((?7p,(al).‘.) y,vi )..., w)r\&Vl)=w) 
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implies 

%?I* k 3y ((&(a;, . . . ) j, v;, . . . ) w’) A jrd(y’) = w’). 

This proves the subclaim. 

Now o U 0’ preserves *-qf formulas. Therefore 

!B* k (&(o(GJ, . . . . a(v,), . . . ) a’(w)). 

B* being a model of the above axiom we find a realization t(6) = B,,,,, of 
~)~(o(cI*), . . . , J, o(v,), . . . , a’(w)) in 58”. This proves Claim 1. 

Claim 2. 0 U z is a *-map. 

Proof. It remains to show that u U t is compatible with the Rp. We proceed as in 
the proof of the last lemma. We take S” and the notations from there and show 
that o U t restricted to Ayut,,,) U S” U {w} preserves *-qf formulas. 

Let the *-qf formula Q)&?~, . . . , Xl, aI, . . . , cq, /I) describe the *-qf type of 

al, . . . , aI, VI, . . . , ul, w. Take q4 from the proof of the last lemma. 

Subclaim. kf,fl, . . . , xl, y, aI, . . . , a/, p (472 A q6- q4) is an axiom of type (c). 

We want to show that this sentence is true in a*. So take a realization 

a;, . . . ) a;, tT’, ?J;, . . . , u;, w’, of Q?2 A 4)6 in a*, and look at the map p defined 
by p(iiJ = a;, . . . , p(b) = 6’, p(vJ = vi, . . . , p(w) = w’. Then, by Lemma 4.4, 
p is elementary restricted to the following sets: 

(a) As,u{w) U S’ U {w>, (b) As,, U S”, (c) S”U {w}. 

Since both types tp(wlS’) E tp(wlS) are minimal (3.l(ii)), also tp(wlS”) is 
minimal. Whence, by the proof of Lemma 4.2, 

tp(wlS”) t tp(wlA,.). 

Together with (b) and (c) this implies that p is elementary restricted to 
Ay U S” U {w}. This and (a) allow us to deduce from 

tp(61As, U {w}) t- tp@lAY U {w}) c tp(61As U {w}) (4. Xi)) 

that p is elementary. Whence %!I* b Q)~(CS;, . . . , w’). This proves the subclaim. 

Since r is a *-map, we have 

B* k cp*(o(&), * . . , 4&d, Qq, 4Vl), . . . , 4%), T(W)). 

Since 0 U 0’ preserves *-qf formulas, 

B* k 976(44), . . . , a(zl>, o(ul), . . . , a(%>, p(w)). 

Whence, since %* is a model of the above axiom, 

B* k %((J(%), . . . 7 44>, a D(R), . . f O(Vl), t(w)>, 

i.e., o U t preserves *-qf formulas. 
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Lemma 4.8. The set of all *-maps between ?I* and 23* defined on sets As U S (S 
nice), where ISI 2 kO, has the back and forth property. 

Proof. We call an enumeration (t~,)~~~ of W nice if it is conjugate to the given 
nice enumeration (wT)i_. 

If o is a *-map defined on As U S, there is a nice enumeration (vi) such that 
s = u,,. Using Lemma 4.6 in case that ui E acl uCi and Lemma 4.7 in case that 
Vi # acl z.J<~, we can extend CJ to *-maps defined on A,<< U 2rci for arbitrarily large 
i. This shows that our set of *-maps has the forth-property. 

If w # acl S, then the back property is clear by Lemma 4.7. In the other case it 
follows from the following 

Claim. If o is a *-map between a* and 93* defined on As U S, where ISI 2 k,,, 
and if (v, o(S)) E 2, 21 E acl a(S) is given, then we can extend o to a *-map z 
defined on As”{,+,) U S U {w} such that (T(W) = ZJ. 

Proof. Along a nice enumeration we can extend o to a *-map o’ defined on 
A,, U S’ such that acl, S is included in S’. Now there must be a w in S’ which is 
mapped to ZJ. r is the restriction of (7’ to Asucwl U S U {w}. 
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