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Abstract. Your choice behaviour is rational iff: if it permits a path through a sequence of 

decisions with a particular outcome, then that outcome is amongst the ones that you 

would have chosen directly from all possible outcomes of the sequence. This implies, and 

it is the strongest definition that implies, that anyone who is irrational could be talked 

out of their own preferences. It also implies weak but non-vacuous constraints on choices 

over ends. These do not include alpha or beta. 

 

 

A person 𝑋 prefers 𝐴 to 𝐵 if she’s disposed to take 𝐴 when 𝐵 is the only alternative. 𝐴 is 

chosen by 𝑋 from a set 𝑆 of options if 𝐴 is among the options that 𝑋 would be prepared to 

take from 𝑆 when constrained to take exactly one. Apples and pears are chosen by me 

from a menu consisting of apples, oranges and pears if I am prepared to take apples or 

pears from that menu. 

 When is choice rational? A traditional view identifies rational choice with means-

end rationality. Given your choices from the possible final outcomes – given your ends or 

tastes – it is rational to choose means that conduce to them, irrational to choose means 

that frustrate them. A definition of rational choice spells out this means-end connection. 

This essay offers such a definition.  

I want a theory of rationality that makes it normatively engaging. ‘Why should I be 

rational?’ A theory 𝑇 of rationality should say why, and in a way that gives people whose 

choices are (according to 𝑇) not rational a reason to change: a reason that those people 

can appreciate as such, if they are intelligent enough.1 
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An irrational mode of behaviour is one that I can hope to change by talking to the 

decision maker, by explaining the theory to him, and so forth. A rational mode of 

behaviour is one that is likely to remain in the data despite my preaching and 

teaching.2   

 

This very internalist approach to rationality is obviously open to question, but I won’t 

defend it here. If you like, read this essay as tracing the consequences of one natural way, 

out of many possible ways, of looking at rationality. I am not trying to capture all our 

intuitions about rationality or ‘rationality’. I want a definition that captures this one 

feature of rationality, its normative engagement, in general and precise terms.3 

My definition is constructed to capture that feature. Anyone who is irrational in my 

sense could be argued out of their choices. Anyone who is rational in my sense could not 

be argued out of them, not without additional resources.4 Like Gilboa in the quotation, I 

treat rational choice as a mode of behaviour (a pattern of dispositions) that is dialectically 

stable. The main proposal is the stability definition of means-end rationality.  

My guiding conception looks familiar, but the extension of the stability concept 

turns out to differ sharply from what Gilboa and most other writers have taken rationality 

to be. It turns out that one might rationally: prefer apples to bananas, bananas to cherries 

and cherries to apples. One might rationally: choose apples when bananas and cherries 

are on the menu but not when cherries have been taken off. One might rationally: choose 

apples or bananas indifferently when they alone are on the menu, but choose apples or 

cherries, but not bananas, when all three are on the menu. So if means-end rationality has 

normative force, it is less demanding than you’d think.     
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Here is the plan. §1 states the stability definition informally (1.1), then more 

formally (1.2). §2 explains why stability is necessary (2.1) and sufficient (2.2) for 

normative engagement. §3 argues that stability constrains ends as well as means (3.1). 

But it allows violations of intuitive conditions like transitivity of preference (3.2). §4 

compares stability with four other approaches to characterising rational choice: intuition 

(4.1), availability of reasons (4.2), immunity to money pumps (4.3) and consequentialism 

(4.4). §5 sketches some applications. The Appendix extends the definition to cover choice 

under uncertainty. 

 

 

 

1 Means-end rationality 

This section states the stability definition informally (1.1) and then more formally (1.2). 

My overall aim is to show how the stability definition capture the idea of normative 

engagement, and to explain its startling consequences. To do this, I need only consider 

deterministic situations: sequential choices involving no material uncertainty, whose 

outcome (in so far as you care) depends solely on your choices. So the main definition is 

stated, and its main consequences drawn, for this type of case. The Appendix extends the 

definition to decision situations involving material uncertainty.  

  

 

1.1 Informal definition 

Tonight you will visit one of two restaurants, 𝐴 and 𝐵. 𝐴 offers egg sandwiches, ham 

sandwiches and tuna sandwiches. 𝐵 offers ham sandwiches, salad and tuna sandwiches. 

At either restaurant you pick one thing from the menu. So you have two successive 
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choices, a choice of restaurant and a choice from its menu, that jointly determine the 

outcome.  

 Figure 1 represents this situation. Boxes with arrows coming out of them are 

choice nodes representing decision points. Boxes with no arrows coming out are 

outcomes. Reading left to right: the first node represents the decision between 

restaurants. The second and third (A and B) each represents a decision from a menu. 

(Ignore the bold arrows and text for now.) 

For instance, you might (a) go up at the first node (b) go up at the second node: 

restaurant 𝐴 and egg sandwiches. If so, you are choosing 𝐴 when the alternative is 𝐵, and 

egg sandwiches when the alternatives are ham sandwiches and tuna sandwiches. The 

choices (a) and (b) are marked as bold arrows in Figure 1. There is nothing irrational 

about this combination.  
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We do find irrationality if in addition (c) you are only prepared to choose salad 

given a straight choice from all available outcomes i.e. from egg sandwiches, ham 

sandwiches, salad and tuna sandwiches. ‘Salad’ is bold in Figure 1 to indicate that this is 

your favoured outcome. 

Combining the dispositions (a)-(c) puts you in this position: your choice of means 

for getting dinner (restaurant 𝐴) prevents you from realizing your chosen end (salad). By 

choosing 𝐴 you exclude any outcome that you yourself would have chosen from the four 

outcomes that were available ex ante.  

My stability definition exactly rules out the kind of self-frustration that (a)-(c) 

involve. Informally: your choice dispositions over means and ends are rational if and only 

if nobody there could be no sequential decision situation in which your chosen means 

frustrate your chosen ends.  

 The idea behind it is that anyone who is irrational in my sense can see by his own 

lights that his choices are unsatisfactory. To show him this, we show him a sequential 

decision problem that witnesses this irrationality. Given his choices over ends – over the 

outcomes – he can see that his own choices over means – over the pre-terminal options – 

frustrate those ends. Anyone whose preferences are irrational can therefore see what’s 

wrong with them.5 

 

 

1.2 Formal definition 

The technical preliminaries, which are simple and familiar, fall under three headings: 

outcomes, decision trees and choice functions.  
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1.2.1 Outcomes. Assume a finite set 𝑍 of possible outcomes or prizes. Let 𝑌 be a 

distinguished subset of the power set of 𝑍: a set of subsets of 𝑍 representing all possible 

menus over outcomes. I’ll call 𝑌 the set of menus. I focus on cases where 𝑌 = ℘(𝑍).  

For instance, 𝑍 may be the set of all possible lunches: bacon sandwich, cheese 

sandwich, egg sandwich etc. Then 𝑌 is the set of all lunch menus that are available at some 

restaurant. E.g. at a restaurant which offers only cheese sandwiches and egg sandwiches 

I face the menu 𝑦1 ∈ 𝑌, where 𝑦1 = {Cheese sandwich, Egg sandwich}.  

  

 

1.2.2 Decision trees. We turn now to sequential choice problems and their representation 

as decision trees.  

Define the level 𝐿 of an element 𝑧 of 𝑍 or of a non-empty set 𝑆 as follows:  

 

(i) 𝐿(𝑧) = 0 ≡def. 𝑧 ∈ 𝑍 

(ii) If all elements of 𝑆 have finite level, 𝐿(𝑆) = 1 + max {𝐿(𝑆′)|𝑆′ ∈ 𝑆}  

(iii) Nothing else has a level.  

 

A deterministic decision tree (usually just ‘tree’) is a set 𝑇 of finite level. A node of such 

a tree 𝑇 is any 𝑇′ such that 𝑇′ ∈∗ 𝑇, where for any relation 𝑅 I write 𝑅∗ for the ancestral of 

𝑅. So ∈∗ is the ancestral of set-membership: 𝑇′ ∈∗ 𝑇 means that 𝑧 is an element of 𝑇, or an 

element of an element of 𝑇, or an element of an element of an element of 𝑇, or… A 

terminal node of a tree is any node of that tree of level 0 i.e. an outcome. If 𝑍′ is a set of 

possible outcomes, then a tree over 𝒁′ is a tree 𝑇 such that the set of its terminal nodes 

is 𝑍′. If 𝑇 is a tree, then I’ll write 𝑻∗ for the set 𝑍′ ⊆ 𝑍 that it is a tree over i.e. the set of its 
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terminal nodes. In other words 𝑇∗ = {𝑧 ∈ 𝑍|𝑧 ∈∗ 𝑇}. For a given set 𝑍 of outcomes, 𝚫(𝒁) 

is the set of all deterministic trees over non-empty subsets of 𝑍.  

 In effect this definition treats each non-terminal node of a tree as a set whose 

elements are its successor nodes, and each terminal choice node as an element of 𝑌. Such 

a set represents a choice from its members. Any element of a node is either an outcome 

or itself a tree as well as a node. The elements of any node are the options at that node.  

For instance (see again Figure 1 above) suppose you can choose whether to dine 

at 𝐴, where the menu is egg sandwiches, ham sandwiches and tuna sandwiches, which we 

write 𝐴 = {𝑒, ℎ, 𝑡}, or at 𝐵 where the menu is ham sandwiches, salad and tuna sandwiches, 

which we write 𝐵 = {ℎ, 𝑠, 𝑡}. So initially, you are facing a tree over {𝑒, ℎ, 𝑠, 𝑡} of level 2: this 

is the tree 𝑇1 =def. {𝐴, 𝐵}. We can write this out in full as:  

 

𝑇1 = {{𝑒, ℎ, 𝑡}, {ℎ, 𝑠, 𝑡}} 

 

I emphasize that this definition only covers trees whose non-terminal nodes are 

all choice nodes. There are no nodes representing resolution of uncertainty. Confining 

attention to this simplest case lets me convey the central idea more clearly. The Appendix 

gives the corresponding definitions for choice under uncertainty. 

 

 

1.2.3 Choice function. A choice function 𝐶 on Δ(𝑍) is any function taking non-empty 

elements of Δ(𝑍) – non-empty trees – to non-empty subsets of themselves.  

 The choice function 𝐶 encodes the agent’s choice dispositions. 𝐶 represents an 

agent if for any 𝑇 in its domain, the elements of 𝐶(𝑇) are exactly the elements of 𝑇 that 
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the agent might take from 𝑇 if she had to take exactly one.6 I’ll write ‘𝑎’s choice function’ 

for the 𝐶 that represents 𝑎. We call 𝐶(𝑇) the set of options that 𝐶 permits from 𝑇.  

Preference is the relation revealed by applying 𝐶 to binary sets: 

 

• 𝑪 weakly prefers 𝒂 to 𝒃, written 𝒂 ≿𝑪 𝒃, if 𝑎 ∈ 𝐶({𝑎, 𝑏}) 

• 𝑪 strictly prefers 𝒂 to 𝒃, written 𝒂 ≻𝑪 𝒃, if 𝑏 ∉ 𝐶({𝑎, 𝑏}) 

• 𝑪 is indifferent between 𝒂 and 𝒃, written 𝒂~𝑪𝒃, if 𝐶({𝑎, 𝑏}) = {𝑎, 𝑏} 

 

When 𝑇 ⊆ 𝑍 these definitions specify the subset of 𝐶 that constitutes the choice 

function, and the subsets of ≿𝐶  and ≻𝐶  that constitute the preference relations, over 

outcomes or ends. But fully defined choice functions and preferences allow higher-level 

nodes (e.g. sets of restaurants as well as menus), to fall under their scope.   

 Lastly, write 𝑻 →𝑪 𝑻′ for 𝑇′ ∈ 𝐶(𝑇). The set of outcomes that 𝑪 permits in 𝑻 is 

𝑪∗(𝑻) = {𝑧 ∈ 𝑍 ∩ 𝐶(𝑋)|𝑇 →𝐶
∗ 𝑋}, →𝐶

∗  the ancestral of the →𝐶 relation. Informally, 𝐶∗(𝑇) 

defines the outcomes that one could reach by applying choice function 𝐶 to tree 𝑇. 

 Altering the previous example: suppose you always choose randomly between 

restaurants, that you always choose ham sandwiches if possible when salad is on the 

menu, and that you always choose tuna sandwiches if possible when salad is not on the 

menu. Applying the choice function 𝐶 that represents you, to the tree 𝑇1 and to its nodes, 

gives these results: 

 

𝐶(𝑇1) = {𝐴, 𝐵} 

𝐶(𝐴) = {𝑡} 

𝐶(𝐵) = {ℎ} 

𝐶∗(𝑇1) = {ℎ, 𝑡} 
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See the bold arrows as marked in Figure 2. (Ignore the bold outcomes for now.) 𝐶∗(𝑇1) =

{ℎ, 𝑡} means that your choice dispositions will, if acted upon, realize the outcome in which 

you get ham sandwiches or the outcome in which you get tuna sandwiches.  
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1.2.4 Rational choice function. Now the main definition. If 𝐶 is a choice function on a set 

Δ(𝑍) of trees over a set 𝑍 of possible prizes, then:  

 

Means-end rationality (stability definition): 𝐶 is a rational choice function 

over 𝑍 if and only if for any 𝑇 ∈ Δ(𝑍), 𝐶∗(𝑇) ⊆ 𝐶(𝑇∗).  

 

This means that in any sequential choice 𝐶 always leads to an outcome that you (i.e. 𝐶) 

would have accepted from those available at the outset. 

For instance: still on Figure 2, suppose again that you are indifferent between any 

two restaurants, that you choose ham sandwiches if possible when salad is on the menu, 

and that you choose tuna sandwiches if possible whenever salad is not. But now imagine 

that the only foods you would choose in a straight choice from the available items are (i) 

ham sandwiches (ii) salad. So:  

 

𝐶(𝑇1
∗) = 𝐶({𝑒, ℎ, 𝑠, 𝑡}) = {ℎ, 𝑠} 

 

These are marked as bold outcomes in Figure 2. We know that this choice function, when 

applied to 𝑇1, leads to either ham sandwiches or tuna sandwiches, i.e. 𝐶∗(𝑇1) = {ℎ, 𝑡}. 

𝐶∗(𝑇1) is not a subset of 𝐶(𝑇1
∗) = {ℎ, 𝑠}. So 𝐶is means-end irrational on the stability 

definition.  

Because it is irrational in that way, you can see what is wrong with it. Suppose you 

contemplate 𝑇1. This tree has four possible outcomes: egg sandwich, ham sandwich, salad, 

tuna sandwich i.e. 𝑇1
∗ = {𝑒, ℎ, 𝑠, 𝑡}. Of these you would be happy with ham sandwiches or 

salad, because 𝐶({𝑒, ℎ, 𝑠, 𝑡}) = {ℎ, 𝑠}. But your choice function is liable to deliver tuna 

sandwiches instead, because 𝑡 ∈ 𝐶∗(𝑇1), and this is something you do not want ex ante. 
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So you cannot guarantee getting what you want: not because of your ignorance, or 

because of anything outside your control, but because of your own choices. Your choice 

function is failing to get you where you would choose to be! You are as well-placed as 

anyone else to appreciate this fact. And since your ends are being frustrated, you are more 

likely than anyone else to care.   

 

    

   

2 Dialectical stability 

This section puts that last point more generally: the stability definition makes means-end 

rationality both necessary (2.1) and sufficient (2.2) for the dialectical stability that makes 

it normatively compelling.  

 

 

2.1 Dialectical stability implies means-end rationality 

Let some agent’s choice function 𝐶 be irrational in my sense. There is then a tree 𝑇 from 

which 𝐶 may yield an outcome that 𝐶 would not have chosen from those available at the 

outset i.e. 𝐶∗(𝑇) ⊈ 𝐶(𝑇∗). Therefore, there is an outcome 𝑧 ∈ 𝐶∗(𝑇) − 𝐶(𝑇∗) for some 𝑧 ∈

𝑇∗.  

 We address the agent as follows. ‘The outcomes that you want from this tree 𝑇 are 

just the elements of 𝐶(𝑇∗). You want to avoid every other outcome in 𝑇∗. So 𝑧 is an 

outcome that you want to avoid, because 𝑧 ∉ 𝐶(𝑇∗). But nothing is stopping you from 

avoiding it. What you get from this tree depends entirely on your choices. But your 

choices are liable to yield 𝑧, because 𝑧 ∈ 𝐶(𝑇∗). So clearly your choice function is 

unsatisfactory by your own lights.’  
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 The agent cannot be indifferent to this argument; nor can he resist it. It just does 

follow from my definition that an irrational choice function is liable to get the agent 

outcomes that he wants to avoid. The agent can see this. So he can see what is wrong with 

his choice function. That is why the stability concept is normatively gripping. 

But it is gripping in a second way. There are situations where the agent herself 

will, if she can follow this argument, be motivated to bypass her choice function.  That is, 

given a choice between following her own choice function down a tree and being forced 

into an outcome, she strictly prefers the latter. Informally – she would pay to bind herself.    

  We can put it more precisely using this definition.  

 

Foresightedness. A choice function 𝐶 on ∆(𝑍) is foresighted if for any tree 𝑇 ∈

∆(𝑍),  𝐶(𝑇) ⊆ {𝑇′ ∈ 𝑇|𝐶∗(𝑇′) ⊆ 𝐶(𝑇∗)} whenever the latter is non-empty.  

 

Foresightedness captures something like sophistication: a foresighted choice function 

represents an agent who makes present choices that will if possible get her what she now 

wants, given her future choices conditional on this or that present choice.7 It chooses at 

any node 𝑛 those successor nodes if any to which its own application would result in 

outcomes that it wanted from those available at 𝑛. 

Let 𝐶 be foresighted and irrational. Because 𝐶 is irrational there is a tree 𝑇 such 

that 𝑧 ∈ 𝐶∗(𝑇) − 𝐶(𝑇∗) for some (unwanted) 𝑧 ∈ 𝑇∗. Choose some (desirable) 𝑧∗ ∈ 𝐶(𝑇∗). 

Let 𝑆 = {𝑇, {𝑧∗}}: this corresponds to a choice between following one’s own choice 

function along 𝑇 and being forced into the outcome 𝑧∗. Since 𝑧∗ ∈ 𝑇∗, 𝑆∗ = 𝑇∗. So 𝐶(𝑆∗) =

𝐶(𝑇∗), so 𝑧∗ ∈ 𝐶(𝑆∗),  therefore 𝐶∗({𝑧∗}) ⊆ 𝐶(𝑆∗). Since 𝑇 witnesses the irrationality of 𝐶 

it must be that 𝐶∗(𝑇) ⊈ 𝐶(𝑇∗), so 𝐶∗(𝑇) ⊈ 𝐶(𝑆∗). So because 𝐶 is foresighted, 𝐶(𝑆) =

{{𝑧∗}}, so {𝑧∗} ≻𝐶 𝑇. That is: the foresighted but irrational agent strictly prefers being 



Rational choice 

15 
 

bound to an outcome of some tree (in this case, 𝑧∗) over applying her own choice function 

to it.  

This is a second sense in which stability is normatively attractive, or rather in 

which instability is normatively repulsive. It is not just that a sufficiently intelligent but 

practically irrational agent will regret his choice function. But also: a foresighted but 

practically irrational agent will choose to bypass her choice function.8 

To illustrate: suppose that in any binary choice between 𝑚 and 𝑛 glasses of wine, 

you always take 𝑚 glasses whenever 𝑚 > 𝑛; but from all available amounts of wine you 

only want exactly one glass. You are at a party where first you get offered one glass; if you 

accept you get offered a second. Write 𝑧𝑖 for the outcome in which you take 𝑖 glasses total. 

You are facing the tree 𝑇3 = {𝑧0, {𝑧1, 𝑧2}}, Figure 3.  
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Figure 3 
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Since optimal consumption is one glass, your choice function satisfies 𝐶(𝑇3
∗) =

{𝑧1}. But since you always prefer more wine to less, if you get to the point where one glass 

is an option, you will always choose two. So in 𝑇3 your 𝐶 gets either no wine or two 

glasses. Either way, it isn’t what 𝐶 itself considers optimal out of those available: 𝐶∗(𝑇3) ⊈

𝐶(𝑇3
∗). Your 𝐶 is irrational. 

 Imagine now that before the party, the host offers self-binding to one glass of wine 

but no more. This option doesn’t make available any outcome that wasn’t already 

available. (Nothing was stopping you from having just one glass when you got to the 

party.) But it does inevitably yield that outcome, whereas your own choice function leads 

away from it. So the only way to get what you want is to acquiesce in this self-restriction. 

And, if your 𝐶 is foresighted then that is what you (i.e. it) will do. 

The stability definition of rational choice thus explains its normativity. It says why 

you should be rational in a way that moves the irrational. More precisely, it guarantees 

that we can present to any agent whose 𝐶 is irrational an argument against it that is 

compelling by his own lights. Exactly what the argument is will vary from one irrational 

𝐶 to another, because the 𝑇 satisfying 𝐶∗(𝑇) ⊈ 𝐶(𝑇∗) must vary from one such 𝐶 to 

another. But the definition guarantees that it exists. Means-end irrationality in my sense 

implies dialectical instability. Equivalently, dialectical stability implies rationality.   

 

 

2.2 Means-end rationality implies dialectical stability 

Suppose an agent’s choice function 𝐶 is rational. Then in every tree, 𝐶 must yield an 

outcome that it might have chosen from those available ex ante: every 𝑇 satisfies 𝐶∗(𝑇) ⊆

𝐶(𝑇∗). We cannot confront the agent with any decision sequence – e.g. a ‘money pump’ – 

through which 𝐶 might generate outcomes she does not want. We may consider her 
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outcomes sub-optimal, but she can shrug her shoulders. ‘The outcome of my choices may 

seem bad to you; but I’ll always end up with something that satisfies me.’ 

Imagine e.g. that 𝐶 makes preference intransitive because you accept small 

increments of pain for small monetary compensations but not big increments for a big 

compensation. Specifically: let the set 𝑍 of outcomes include vectors (𝑥, 𝑦), where 𝑥 is 

wealth in dollars, 𝑦 pain in volts, 𝑥 and 𝑦 integers in [0, 𝑁] for 𝑁 ≥ 3. You weakly prefer 

(𝑥2, 𝑦2) to (𝑥1, 𝑦1) iff: the cube root of the difference between their first components 

weakly exceeds the difference between their second: 

 

(𝑥2, 𝑦2) ≿𝐶 (𝑥1, 𝑦1) ↔ √𝑥2 − 𝑥1
3 ≥ (𝑦2 − 𝑦1) 

 

(Recall 𝐶 weakly prefers 𝑎 to 𝑏 if and only if 𝑎 ∈ 𝐶({𝑎, 𝑏}).) The choice function induces 

intransitive preferences between these vectors: 

 

𝑧0 = (0,0) 

𝑧1 = (2,1) 

𝑧2 = (4,2) 

 

For it follows from the definitions of weak and strict preference that 𝐶 induces a strict 

preference cycle over these vectors (i.e. 𝑧2 ≻𝐶 𝑧1 ≻𝐶 𝑧0 ≻𝐶 𝑧2). Intransitivity of strict 

(and weak) preference is a straightforward consequence.  

Now imagine that you start with zero units of money and pain and are twice 

offered two extra units of money and one extra unit of pain. So you are facing 𝑇4 =

{{𝑧0, 𝑧1}, {𝑧1, 𝑧2}} (Figure 4). 
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Figure 4 
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Given 𝑧2 ≻𝐶 𝑧1 ≻𝐶 𝑧0 ≻𝐶 𝑧2, you inevitably end up with 𝑧1 or 𝑧2 when you face 𝑇4, 

because you will inevitably go straight along at A (if you reach it) and up at B (if you reach 

it): see the bold arrows.  Both outcomes are consistent with your preferences as 

described, because which one you reach depends not only on your preferences between 

𝑧0, 𝑧1 and 𝑧2, but also on your preference between the level 1 nodes 𝐴 = {𝑧2, 𝑧1} and 𝐵 =

{𝑧1, 𝑧0}, which were unspecified.9 Whatever that other preference is, you will end up with 

an outcome to which you strictly prefer another: if you end up with 𝑧1 then you strictly 

prefer 𝑧2 to what you get, and if you end up with 𝑧2 you strictly prefer 𝑧0. Suppose for 

definiteness that 𝐶({𝐴, 𝐵}) = {𝐴, 𝐵}, so both outcomes are possible: 𝐶∗(𝑇4) = {𝑧1, 𝑧2}.  

But that is no reason for concern over how 𝐶 deals with 𝑇. Whether you should be 

concerned depends on what you – what 𝐶 – wanted out of 𝑇4 in the first place: that is, on 

𝐶(𝑇4
∗) = 𝐶({𝑧0, 𝑧1, 𝑧2}). Rationality implies 𝐶∗(𝑇4) ⊆ 𝐶(𝑇4

∗). Suppose e.g. that 𝐶(𝑇4
∗) =

{𝑧1, 𝑧2}: you regard both vectors as acceptable outcomes of the present adventure. Then 

your being liable to get 𝑧1 or 𝑧2 needn’t worry you at all. Applying 𝐶 to 𝑇4 yields an 

outcome that you find acceptable from all available outcomes, even though some other 

outcome is pairwise preferred to it. 𝑇4 is therefore no reason either to rue your choice 

function or to restrict it by self-binding.    

In short: means-end rationality implies that there is no possible tree in which the 

outcomes of your choices would not have been acceptable ex ante. There is no tree, of 

which the contemplation could motivate you to abandon, alter, or bind of your own choice 

function. So rationality implies dialectical stability.  
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3 Rational taste 

Means-end rationality might seem not to constrain preferences over ends as opposed to 

preferences over means. If rationality is just choosing means that suit our ends, it might 

seem that any ends are as rational as any other. ‘It is not contrary to reason to prefer the 

destruction of the whole world to the scratching of my finger.’ But even if rationality is 

the suiting of means to ends, there could still be rational criticism of ends. A combination 

of ends can be irrational if there could not be means that are suited to them. And although 

means-end rationality is a constraint on the relation of means (choices over nodes) to 

ends (choices over outcomes), it does exclude some combination of ends.  

 

 

3.1 Rational tastes 

Ends are rationally permissible if they could form part of a means-end rational choice 

function. Anyone whose ends are not rational in this sense does not have a rational choice 

function in the stability sense. If one has irrational ends then one’s means, whatever they 

are, are ill-suited to them. 

Here’s how I’ll cash that out. Let 𝑚 be a set of outcomes. Suppose we can divide 𝑚 

into possibly overlapping subsets 𝑚1, 𝑚2, … , 𝑚𝑛 from each of which your choice function 

𝐶 permits something that 𝐶 would not have chosen from 𝑚 itself. Then whatever your 

choice function over nodes, it is possible to structure your choices over 𝑚 in such a way 

that you are liable not to get what you wanted from 𝑚, namely the tree {𝑚1, 𝑚2, … , 𝑚𝑛}. 

So this pattern of choices over outcomes implies that 𝐶 is means-end irrational. Ruling 

out such a pattern is therefore a necessary condition on rationality of ends. We’ll see that 

it’s also sufficient. 
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We can formalize this with the topological concept of cover. A cover of a set 𝑆 is 

just a collection of sets that between them include all elements of 𝑆. An exact cover of 𝑆 is 

a collection of sets that between them include all and only elements of 𝑆. More formally, 

if 𝑌 is a set of menus (a set of sets) and 𝑚 a menu: 

 

𝑌 is a cover of 𝑚 iff 𝑚 ⊆ ⋃ 𝑌. 

𝑌 is an exact cover of 𝑚 iff ⋃ 𝑌 = 𝑚.  

 

For instance, suppose: 

 

𝑚 = {Cheese sandwich, Egg sandwich, Ham sandwich} 

𝑦1 = {Cheese sandwich, Egg sandwich} 

𝑦2 = {Cheese sandwich, Ham sandwich} 

 

Then {𝑦1, 𝑦2} is an exact cover of 𝑚.  

For any choice function we can define its restriction to ends or outcomes, or 

equivalently the tastes that it induces:  

 

If 𝐶is a choice function over ∆(𝑍) then its taste function is 𝐶 =def. 𝐶 ↾ ℘(𝑍)  

 

The taste function of 𝐶 is simply its restriction to sets of outcomes. And this is what it is 

for tastes or end to be rational: 
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Rationality of ends / tastes: 𝐶 is a rational taste function if: for any 𝑍′ ⊆ 𝑍 and 

any perfect cover 𝐾 of 𝑍′, ∃𝑘 ∈ 𝐾 (𝐶(𝑘) ⊆ 𝐶(𝑍′)).10 

 

As we just saw informally, what justifies this definition is that anyone whose tastes 

are not rational must have an irrational overall choice function i.e. if 𝐶 is an irrational 

taste then 𝐶 is means-end irrational. Equivalently, if 𝐶 is an irrational taste then any 

choice function 𝐷 such that 𝐷 = 𝐶 is means-end irrational. That is, if your ends are 

irrational then it is not always possible to choose means that will get what you want out 

of what is available.     

The converse also holds. If a taste function 𝐶 is rational then there is some means-

end rational choice function 𝐷 such that 𝐷 = 𝐶. So if you have rational ends then it is 

always possible to choose means that will achieve an available outcome that you want.  

 The formal statement of this connection is as follows:  

 

Means-end rationality and rationality of taste: If 𝐶 is means-end rational then 

𝐶 is a rational taste function. Conversely, if 𝐶 is a rational taste function then it has 

a means-end rational extension i.e. there is some means-end rational 𝐷 s.t. 𝐶 = 𝐷. 

 

For proof see footnote.11  

Rationality of ends is therefore as normatively compelling as means-end 

rationality. Anyone whose 𝐶 induces irrational ends 𝐶 can be made to see that her means 

are inadequate to her ends (because 𝐶 is means-end irrational). Moreover, she cannot fix 

this by adjusting her means, because any choice function 𝐷, such that 𝐷 = 𝐶, is also 

means-end irrational. In contrast, anyone whose taste function 𝐶 is rational either cannot 
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be shown that her means are inadequate to her ends, because they never are; or she can 

be brought to see this but can get around it by adjusting her means, for if 𝐶 is a rational 

taste then some means-end rational 𝐷 is such that 𝐶 = 𝐷. 

 This definition is very abstract: it doesn’t say whether a person with rational tastes 

must satisfy substantive conditions like transitive preference. It turns out that rational 

taste (hence rationality) demands very little, as I now argue. 

 

 

3.2 What rational taste demands 

Here are two famous principles of rational choice: 

 

 (𝛼): if 𝐴 ⊆ 𝐵 and 𝑥 ∈ 𝐴 ∩ 𝐶(𝐵) then 𝑥 ∈ 𝐶(𝐴) 

 

 (𝛽): if 𝐴 ⊆ 𝐵, 𝑥, 𝑦 ∈ 𝐶(𝐴) and 𝑦 ∈ 𝐶(𝐵) then 𝑥 ∈ 𝐶(𝐵).12 

 

(𝛼) says that nothing chosen from a menu becomes unchosen when you remove other 

options. If you are prepared to choose apples when bananas and cherries are on the menu 

then you are prepared to choose them when cherries have been taken off. (𝛽) says that if 

an originally chosen item remains chosen when you add others, so too do any originally 

chosen items. If you would choose apples or bananas indifferently when they alone are 

on the menu, then you would not choose apples and reject bananas when cherries are 

also on the menu.  

Both principles are intuitively plausible. But rational taste as defined here (hence 

also means-end rationality) allows violations of 𝛼 and 𝛽. More precisely: rational taste 
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neither entails nor is entailed by 𝛼. It neither entails nor is entailed by 𝛽. It doesn’t even 

entail their disjunction 𝛼 ∨ 𝛽. But it does follow from their conjunction 𝛼𝛽.  

This table sets out and justifies the foregoing non-entailments. (For proof of the 

entailment see footnote.13) There are choice functions 𝐶1, 𝐶2… whose outputs, when 

applied to subsets 𝑋 of a set 𝑍 of distinct outcomes 𝑎, 𝑏, 𝑐, are defined in the table. E.g. 𝐶1 

selects either of 𝑎 and 𝑏 when choosing from {𝑎, 𝑏, 𝑐}.14 

 

 

𝑿 𝑪𝟏(𝑿) 𝑪𝟐(𝑿) 𝑪𝟑(𝑿) 𝑪𝟒(𝑿) 𝑪𝟓(𝑿) 

𝑎, 𝑏, 𝑐 𝑎, 𝑏 𝑎, 𝑐 𝑎, 𝑏 𝑎 𝑎 

𝑎, 𝑏 𝑎 𝑎, 𝑏 𝑎 𝑎 𝑎, 𝑏 

𝑎, 𝑐 𝑐 𝑎, 𝑐 𝑎, 𝑐 𝑐 𝑎 

𝑏, 𝑐 𝑏 𝑐 𝑏 𝑏 𝑏 

𝜶 No Yes No No Yes 

𝜷 Yes No No Yes No 

Rational Yes Yes Yes No No 

   Table 1 

 

For instance, 𝐶1 is rational but violates 𝛼. It violates 𝛼 because it permits 𝑎 and 𝑏 from 

{𝑎, 𝑏, 𝑐}, but only 𝑎 from {𝑎, 𝑏}. And yet it is rational: any perfect cover 𝐾 of any subset 𝑋 

of 𝑍 = {𝑎, 𝑏, 𝑐} has an element 𝑘 from which 𝐶1 chooses only what it would have chosen 

from 𝑋. For instance, suppose 𝑋 = 𝑍 = {𝑎, 𝑏, 𝑐}. If 𝐾 is a perfect cover of 𝑋 then one of its 

elements must contain 𝑏. So one of its elements is {𝑏}, {𝑎, 𝑏}, {𝑏, 𝑐}, or {𝑎, 𝑏, 𝑐}. But given 

any of these 𝐶1 always selects only what it would select from 𝑋. The same goes for all 
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subsets of 𝑋: so 𝐶1 is a rational taste. So there some means-end rational choice function 

that extends 𝐶1 to trees.  

 This violation of 𝛼 also shows that rational taste does not entail transitivity of 

weak (or strict) preference. Since 𝐶1({𝑎, 𝑏}) = {𝑎} and 𝐶1({𝑏, 𝑐}) = {𝑏} we have 𝑎 ≿𝐶1
𝑏 

and 𝑏 ≿𝐶1
𝑐 (and 𝑎 ≻𝐶1

𝑏 and 𝑏 ≻𝐶1
𝑐); but since 𝐶1({𝑎, 𝑐}) = {𝑐} we don’t have 𝑎 ≿𝐶1

𝑐 

(or 𝑎 ≻𝐶1
𝑐). So transitivity of preference, on the stability view of rationality, is not a 

demand of rationality.  

 But isn’t it intuitively incoherent to select 𝑏 from {𝑎, 𝑏, 𝑐} but not from {𝑎, 𝑏}, as 𝐶1 

does? It would be odd if you accepted either fruit or ice cream from a dessert menu that 

also included cheese, but suddenly became averse to ice cream once cheese was off the 

menu. What does the availability of cheese have to do with whether you prefer fruit to ice 

cream?  

Odd yes – irrational no. Since 𝐶1 is a rational taste on my definition, it follows by 

§3.1 that some means-end rational choice function 𝐶 over ∆({𝑎, 𝑏, 𝑐}) exhibits the – 𝛼-

violating and intransitive – behaviour of 𝐶1 over those ends, i.e. 𝐶 = 𝐶1. If that 𝐶 is your 

choice function then we cannot persuade you that anything is wrong with it by your lights, 

however strange it seems to us. For since 𝐶 is means-end rational, for any tree 𝑇, 

following 𝐶 through 𝑇 inevitably yields an outcome that you would have found acceptable 

at the outset. So why should you see a problem?15 The same goes for any objections to 𝐶2 

and 𝐶3 on similar grounds.16  

 There is more to say about rationality of taste and other conditions, including 𝛾, 

the Nash Axiom and various kinds of ‘path-independence’.17 For instance, rationality of 

taste entails 𝛾, which says that if 𝐼 is a collection of sets of options, if 𝑎 ∈ ⋂ 𝐶(𝑋𝑖)𝑖∈𝐼  then 

𝑎 ∈ 𝐶(⋃ 𝑋𝑖𝑖∈𝐼 ). (If you choose apples when the alternative is bananas, and when the 
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alternative is cherries, then you choose apples when the alternatives are bananas and 

cherries.)18 The converse fails – 𝐶4 in Table 1 satisfies 𝛾 but is not rational.  

But I hope to have said enough to make the main point. If constraints on choice are 

rational if and only if normatively compelling, then rationality is much less demanding 

than everyone seems to think. Even a widely accepted principle like 𝛼 is not a demand of 

rationality, because there are ways to violate 𝛼 on which your means are unimprovably 

suited to your ends, and from which therefore you could not be persuaded to diverge. Still, 

rationality is not empty. Some conditions, like 𝛾, are legitimate demands on the 

harmonization of means and ends.19 

 

 

 

4 Existing theories of rationality 

There are four main alternative ways to think about rational choice. (i) Rational choices 

are those that intuition classes as rational. (ii) They are those for which one can give, or 

for which there exist, reasons. (iii) They are those that avoid a money pump. (iv) They are 

those that are consequentialist in the sense of Hammond. This section briefly discusses 

those approaches. I don’t quite reject all of them: rather, the stability concept refines both 

(iii) and (iv). But none of (i)-(iv) does what stability does: isolate the constraints on choice 

that exert a normative grip.  

 

 

4.1 Intuitive constraints on rationality 

Philosophers often defend norms of rational choice as ‘intuitive’, by which they mean that 

they are pre-reflectively reasonable.  
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For instance, Egan’s well-known argument against ‘Causal Decision Theory’ (CDT) 

involves two main examples: Murder Lesion, where CDT recommends ‘shooting’; and 

Psychopath Button, where it recommends ‘pressing’ (a button). The argument against 

CDT is that these recommendations are unintuitive. He adds: ‘Some people lack the clear 

intuition of irrationality for the Murder Lesion case. Pretty much everyone seems to have 

the requisite intuition for Psychopath Button, however. That’s enough for my purposes.’20 

That presupposes that we settle rationality of choice by measuring it not against some 

pre-defined technical notion but rather against our intuitions.21 

 This characterization of rationality lacks normative grip. There may be nothing we 

can say to persuade someone who is in this sense ‘irrational’. Suppose I consciously follow 

CDT and endorse ‘pressing’ in Psychopath Button. You upbraid me for ‘irrationality’ in the 

sense of violating intuition. Yes, I’m irrational in that sense. But so what? Given a choice 

between what seems ‘intuitive’ to most people and what has optimal effects (by my lights 

and in my expectation), I as a follower of CDT will choose the latter. It is unclear how you 

might reply.  

 Of course intuition is important for conceptual analysis – for trying to define the 

word ‘rational’, in terms of necessary conditions, paradigms or anything else, in a way 

that tracks its actual everyday uses. Here there is some point in respecting the endoxa.  

But if my project is conceptual anything, it’s not conceptual analysis but 

conceptual refinement: taking one thing we associate with rationality, namely its 

normative compulsion, asking what it demands, and then constructing a concept that 

meets these demands. Given the artificiality of this procedure, it is unsurprising (but 

hardly unwelcome) that its upshot, stability, diverges from our unsystematic, contingent 

and frequently contestable intuitions about ‘rationality’. 
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4.2 The existence of reasons  

The second approach identifies rational choices with those for which one has or can find 

some reason.  

To see what that rules out, consider the Future-Tuesday Indifferent: a person who 

on any day cares equally about his welfare then and on all future days except for future 

Tuesdays. He is completely indifferent to any fortune or suffering on any future Tuesday. 

For instance, if he has a dental operation on a future Monday, he may willingly pay in 

advance for anaesthetic to be used. But if the operation is on a future Tuesday then he 

will not pay now, however painful the operation to be and however cheap the 

anaesthetic.22  

Parfit, who invented the example, comments:  

 

This man’s pattern of concern is irrational. Why does he prefer agony on Tuesday 

to mild pain on any other day? Simply because the agony will be on a Tuesday. This 

is no reason. If someone must choose between suffering agony on Tuesday or mild 

pain on Wednesday, the fact that the agony will be on a Tuesday is no reason for 

preferring it. Preferring the worse of two pains, for no reason, is irrational.23 

 

But on the stability definition, choices may be rational even if made for no reason: 

there is nothing irrational about preferring (say) a pain next Tuesday to a pain next 

Wednesday, even if there is no difference between the pains that could rationalize the 

preference. What stability demands is that the preference is not part of an overall profile 

of choice-dispositions, over nodes and outcomes, that could in some tree frustrate its own 

ends.  
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 But there is nothing normatively compelling about the idea that one’s choice 

function ought to be backed by reasons, for there is nothing normatively repellent about 

choice functions that are not. On questions of taste in the everyday sense, we often do 

tolerate variations for which nobody could give a reason. As a matter of basic preference 

I prefer the taste of avocado to that of broccoli, but you might be the opposite. You 

couldn’t change my preferences (nor could I change yours) by explaining that there is no 

reason for them. Parfit might say that the timing of future pain ought not to be such a 

matter of taste; but then this is a sense of ‘ought’ that one can stably violate. Lacking a 

reason to hold onto this choice function isn’t the same thing as having a reason to switch 

to another. So if I don’t care about Tuesdays but I do care equally about all other days, 

Parfit could not show me that I have gone wrong by my own lights: that is, that my means 

are maladjusted to my ends.24 

 

 

4.3 Money pumps 

The third approach identifies rationality of a choice function 𝐶 with the impossibility of a 

money pump for it. A money pump for 𝐶 is a tree where 𝐶 yields an outcome that is (a) 

objectively worse than, or (b) binary dis-preferred to, some available alternative.25 The 

bad outcome needn’t involve literal money loss though typically it does.26 On the 

proposed definition, 𝐶 is rational over 𝑍 if and only if no tree in ∆(𝑍) is a money pump for 

𝐶.   

For instance, an alleged money pump for the cyclic preference structure 𝐴 ≻ 𝐵 ≻

𝐶 ≻ 𝐴 is the Rabinowicz Money Pump (RMP).27 It works like this: the agent (call her Alice) 

starts with 𝐴 and some monetary endowment. We repeatedly offer the trade: 
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  (*) I will give you 𝐶 for 𝐴, 𝐵 for 𝐶 or 𝐴 for 𝐵 at a charge of 1¢ 

 

Alice knows that this morning (Monday), and the next two mornings, she has an 

opportunity to take up (*). For instance, she might refuse (*) today but accept on Tuesday 

and Wednesday: so, she gets 𝐵 (swapping 𝐴 for 𝐶 on Tuesday, and 𝐶 for 𝐵 on Wednesday) 

but is 2¢ worse off. Or she might always refuse, leaving her 𝐴 and her original wealth.  

See Figure 5. An upward arrow means ‘accept’; a downward arrow means ‘reject’ 

(ignore the bold for now). If e.g. Alice accepts (*) on Monday morning and rejects on 

Tuesday morning (‘up’ then ‘down’) then just before Wednesday she has the same as if 

she had rejected (*) on Monday morning and accepted on Tuesday, namely 𝐶 − 1¢. (‘𝐴 −

3¢’ denotes that Alice has paid 3¢ and now holds 𝐴. Similarly for ‘𝐵 − 2¢’ and ‘𝐶 − 1¢’). 
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Fig. 5: Rabinowicz Money Pump   
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 What will Alice do? Assume she only cares about her final holding (on Wednesday 

afternoon) and that addition or subtraction of a single cent makes no difference to her 

cyclic preferences, so: 𝐴 − 3¢ ≻ 𝐵 − 2¢ ≻ 𝐶 − 1¢ ≻ 𝐴. Backwards induction shows that 

she accepts all three offers and ends up with 𝐴 − 3¢. The formal details are tedious, but 

the bolded arrows give the basic idea. They indicate options that she foreseeably takes if 

she can. For instance, at R4 she would go up because she prefers 𝐴 − 3 to 𝐵 − 2, and at R5 

she would go up because she prefers 𝐵 − 2 to 𝐶 − 1 (from now I omit ‘¢’). Foreseeing this, 

she would go up at R2 because she prefers 𝐴 − 3 to 𝐵 − 2. This kind of reasoning 

motivates her to go up at every stage, with outcome 𝐴 − 3, which she binary dis-prefers 

to an available alternative 𝐴. The fact that it yields this outcome seems to show that the 

cyclic 𝐴 ≻ 𝐵 ≻ 𝐶 ≻ 𝐴 irrational. 

 One objection to the money-pump definition concerns its normative force. 

Suppose either (a) that your 𝐶 creates an outcome that is in some sense objectively worse 

than an available alternative, or (b) that it creates an outcome in that you binary dis-prefer 

to an available alternative. Is that a reason by your lights to change or to bind your 

choices? Probably not. If you are e.g. Oblomov then you are indifferent about (a); and if 

you are e.g. Satan then you welcome it.28 As for (b): even if you strictly binary prefer e.g. 

𝐴 over 𝐴 − 3, the latter might still be choice-worthy, for you, from a set of options that 

includes 𝐴, 𝐴 − 3 and the other available outcomes.29 

There is a simple response: amend the definition of a money pump. What a pump 

gives its victim is not an outcome that she binary dis-prefers to some available alternative, 

but one that she would not have chosen from all available alternatives. Such a pump does 

exert normative grip. Seeing that her choice function 𝐶 creates an outcome that she (i.e. 

𝐶) would not have chosen ex ante, she sees that 𝐶 is frustrating her (i.e. its) own ends. 

This gives her a reason to change it or to bind it. 
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A second objection is that money pump arguments aim to show the irrationality 

of choice functions over outcomes. Thus the RMP addresses cyclic preferences 𝐴 ≻ 𝐵 ≻

𝐶 ≻ 𝐴. But what it really shows is the irrationality of a 𝐶 that includes not just these 

preference over outcomes, but also preferences over nodes that yield ex ante unchosen 

outcomes. In the RMP, the supposedly disastrous 𝐴 − 3 arises not just because of the 

cyclic preferences; Alice must also have preferences over nodes 𝑅4 ≻ 𝑅5, 𝑅2 ≻ 𝑅3. The 

total package is what is responsible for the supposed disaster. 

 What obscures this is that the preferences 𝑅4 ≻ 𝑅5 and 𝑅2 ≻ 𝑅3 can look 

unquestionable given 𝐴 ≻ 𝐵 ≻ 𝐶 ≻ 𝐴, because they emerge from the ‘sophisticated’ or 

backwards-inductive reasoning summarized in Figure 5. Such sophisticated reasoning 

itself looks compelling.  

But sophisticated reasoning lacks normative grip. There could be somebody who 

makes unsophisticated choices over the nodes of a tree; but we cannot persuade her that 

she is going wrong by her own lights.  

 For instance, suppose (in addition to the foregoing) that Alice’s choice function 𝐶 

has these properties: 

 

(i) 𝐶({𝐴, 𝐵 − 2, 𝐶 − 1, 𝐴 − 3}) = {𝐴, 𝐵 − 2, 𝐶 − 1} 

(ii) 𝐶({𝐵 − 2, 𝐶 − 1, 𝐴 − 3}) = {𝐵 − 2, 𝐶 − 1, 𝐴 − 3} 

 

‘Sophisticated’ choice demands that at 𝑅1 she prefers 𝑅2 to 𝑅3. But at 𝑅1 she may reason 

thus: ‘Looking at all possible outcomes, I’d be happy with any except 𝐴 − 3, by (i). If I go 

up now, I’m liable to end up with 𝐴 − 3 (because at 𝑅2 I’ll be indifferent between 𝑅4 and 

𝑅5, because of (ii)). If I go down now, I’ll certainly avoid it. So I’ll go down.’  
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This ‘holistic’ reasoning yields different outcomes from ‘sophisticated’ reasoning. 

But what makes sophistication better? If Alice, at 𝑅1, proposes to reason holistically, what 

can we say to persuade her out of it? Stability validates holistic and not sophisticated 

reasoning: holistic reasoning yields an acceptable outcome, whereas sophisticated 

reasoning does not.  

Sophisticated reasoning looks plausible because if going up yields an outcome that 

you binary prefer to what you get by going down, then it seems you should go up. But 

instead of comparing these two outcomes as if they were the only possibilities, you should 

instead ask whether either of them is choice-worthy given the full field of outcomes that 

remain possible at that point. Thus at 𝑅2, Alice should ask not whether she prefers 𝐴 − 3 

(which she will get if she now goes up) to 𝐵 − 2 (which she will get if she now goes down). 

She should ask which of those outcomes is choice-worthy from the whole set of outcomes 

available at 𝑅2 i.e. from {𝐴 − 3, 𝐵 − 2, 𝐶 − 1}.  

There is a reason it is hard to distinguish these questions. If Alice satisfies 𝛼 and 𝛽 

(see §3.2) then any outcome that is choice-worthy from the set of all outcomes available 

at 𝑅2 is also strictly preferred to any that is not. And any outcome that is strictly dis-

preferred to some other available outcome is not choice-worthy from the set of all 

available outcomes.30 So 𝛼 and 𝛽 make sophisticated reasoning effectively 

indistinguishable from holistic reasoning.  

But if (as here) Alice violates one, sophistication and holism come apart, and it 

isn’t clear why sophistication is more rational. From a stability perspective it isn’t, at least 

not here, because it yields the one outcome that everyone agrees is sub-optimal i.e. 𝐴 − 3.  

All this motivates another modification to the standard interpretation of money 

pumps. A money-pump establishes the irrationality of a choice function over nodes as well 

as outcomes, not its restriction to outcomes. If we add this modification to the first (that 
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the outcome of a money pump would not have been chosen from all available outcomes 

ex ante), what we get is equivalent to stability. Stability, and the associated definition of 

rational taste, could therefore be interpreted as improvements on the ‘money pump’ 

approach that retain its pragmatist spirit. What is surprising is that (as I argued at §3.2) 

when we define rational choice in this way, 𝛼 and 𝛽 no longer constrain it. 

 

 

4.4 Consequentialist rationality 

The fourth alternative is Hammond’s consequentialism. The idea is that the 

consequentialist cares only about outcomes, not her route to them. So for any tree 𝑇, the 

outcomes that a consequentialist choice function 𝐶 permits should depend only on the 

possible outcomes of 𝑇, not on its shape. The outcomes 𝐶 permits from 𝑇 should therefore 

be the same as it permits from any other tree with the same possible outcomes.  

We can state this as follows: 

 

𝐶 is a consequentialist-rational (or just ‘consequentialist’) choice function over 𝑍 

if and only if, for any 𝑇, 𝑆 ∈ ∆(𝑍), if 𝑇∗ = 𝑆∗ then 𝐶∗(𝑇) = 𝐶∗(𝑆).  

 

It will be convenient to use the following formulation, which is obviously equivalent:    

 

Consequentialist rationality: 𝐶 is a consequentialist choice function over 𝑍 if and 

only if for any 𝑇 ∈ Δ(𝑍), 𝐶∗(𝑇) = 𝐶(𝑇∗).31 

 

The difference between consequentialist rationality and stability is simple. On the 

stability definition, means-end rationality requires that in any tree your choice function 
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permits only the outcomes you might have taken in a straight choice from all available 

outcomes. Consequentialist rationality requires that your choice function permits all and 

only the outcomes that you might have taken in a straight choice from amongst all 

available outcomes. Formally, Hammond’s definition has 𝐶∗(𝑇) = 𝐶(𝑇∗) where mine has 

𝐶∗(𝑇) ⊆ 𝐶(𝑇∗). 

 Consequentialist rationality is not normatively gripping. There is no reason why 

anyone whose 𝐶 is stable, but not consequentialist in Hammond’s sense, should care that 

it’s not consequentialist in Hammond’s sense.  

 For instance, suppose let the set of possible outcomes be 𝑍 = {𝑎, 𝑏, 𝑐} and let 𝐶 be 

defined on Δ(𝑍) as follows:  

 

• 𝐶(𝑌) = 𝑌 if 𝑌 ⊆ 𝑍 

• Failing that, 𝐶(𝑌) = {𝑦 ∈ 𝑌 − {𝑐}|𝑐 ∉ 𝑦∗} if the latter is non-empty. 

• Failing that, 𝐶(𝑌) = {𝑦 ∈ 𝑌 − {𝑏}|𝑏 ∉ 𝑦∗} if the latter is non-empty.  

• Failing that, 𝐶(𝑌) = 𝑌  

 

This 𝐶 doesn’t care which of 𝑎, 𝑏 and 𝑐 is selected in a straight choice between them; but 

if it has at least one pre-terminal option then it will always take an option that eliminates 

the alphabetically last candidate that can be eliminated.  

To illustrate more concretely: suppose our Search Committee has just one aim: 

appoint a suitable candidate. There are three suitable candidates, but we can only appoint 

one. We could appoint at random; but the HR Department insists that selection proceeds 

by two stages of elimination. That is, it imposes the tree in Fig. 6. 
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Suppose we apply 𝐶 to this tree, call it 𝑇6. So first we eliminate the alphabetically 

last candidate, and then we choose at random. This means going down at the first node, 

then choosing 𝑎 or 𝑏. Since all three candidates were initially in the running, 𝑇6
∗ = {𝑎, 𝑏, 𝑐}. 

Since in a straight choice between them, we’d choose any candidate, 𝐶(𝑇6
∗) = {𝑎, 𝑏, 𝑐}. But 

since 𝐶 goes down at the start of 𝑇6, then allows either 𝑎 or 𝑏, 𝐶∗(𝑇6) = {𝑎, 𝑏}. So 𝐶∗(𝑇6) ≠

𝐶(𝑇6
∗). Therefore 𝐶 is not consequentialist rational.  

But 𝐶 does satisfy the stability definition of rationality. Since 𝐶(𝑌) = 𝑌 for any 𝑌 ⊆

𝑍, 𝐶∗(𝑇) ⊆ 𝐶(𝑇∗) = 𝑇∗ for any 𝑇 ∈ ∆(𝑍). Specifically, 𝐶∗(𝑇6) is a proper subset of 𝐶(𝑇6
∗). 

So if my definition of rationality is a normatively illegitimate weakening of 

consequentialism, then it ought to be possible to talk us out of 𝐶. 

How could anyone do that? You, or HR, might say that the procedure eliminates 𝑐 

unfairly. His being alphabetically last has got nothing to do with his suitability. – Maybe 

it is unfair. But all we cared about was appointing a suitable person, not doing so fairly. 

And we did that. Appeals to fairness cannot show that we are getting anything wrong by 

our own lights. 

Another complaint is that we are inconsistent. Initially we regarded 𝑐 as an 

optimal choice from these three candidates. But it is implicit in our procedure that he is 

not optimal, because that procedure prefers 𝑎 and 𝑏 to 𝑐. Is 𝑐 optimal or not? – Answer: 𝑐 

is optimal. But why should that stop us from eliminating 𝑐? What matters is that we 

eliminate every sub-optimal. It doesn’t matter if, having done that, we also eliminate a few 

optimal ones. 

 That point illustrates the most basic reason to prefer stability to consequentialism. 

Stability is more consequentialist than consequentialism itself! Stability lets 𝐶 care about 
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‘more’ than the consequences, in that 𝐶 needn’t always return the same outcomes from 

the same possible outcomes. But it prioritizes the consequences: any means-end rational 

𝐶 must subordinate any other principles by restricting them to operate only on what 

consequentialism allows i.e. on 𝐶(𝑇∗). In other words, the difference between stability 

and consequentialist rationality is that the former makes consequentialism a side-

constraint on choice, whereas the latter makes it the sole determinant of choice.      

 But a truly thoroughgoing consequentialism should regard itself as ‘merely’ a side-

constraint. For as the example shows, the consequences of treating consequentialism as a 

side-constraint are as acceptable as the consequences of admitting no other determinant 

of choice. Someone who ranks (say) welfare policy solely by the number of quality-

adjusted life years that it saves, cannot object to a policymaker who always maximizes 

this quantity, but in case of a tie always chooses e.g. to benefit the materially worst-off. 

Hence by treating consequentialism as more than a side-constraint, Hammond’s 

‘consequentialist’ rationality only imperfectly expresses consequentialism itself. When 

we correct for this, the upshot is stability.  

The situation therefore resembles that at the end of §4.3, where we saw the 

‘money-pump’ criterion of rationality as a flawed expression of the idea behind it; when 

we correct the flaws, the result is stability. It is interesting that both lines of thought – one 

starting from money pumps, the other from consequentialism – converge on stability. 

Perhaps it is an indirect argument for the stability definition. But my main argument for 

it is that it is the strongest condition that you cannot violate without going wrong by your 

own lights.32 
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5 Applications 

The obvious next steps are (a) to extend the definition to cover uncertainty; (b) to apply 

it. The appendix makes a start on (a). As for (b): a thorough treatment of any of these 

cases would double the length of this essay. Here I sketch three applications and mention 

a few others. 

 

 

5.1 Supererogation 

The first problem case is as follows. 

 

Suppose that two children are about to be crushed by a collapsing building. You 

have three options:  

 

[𝑎] do nothing 

[𝑏] save one child by allowing your arms to be crushed 

[𝑐] save both children by allowing your arms to be crushed. 

 

Here are two very plausible claims about this case: 

 

(1) It is morally permissible for you not to save the children. 

(2) It is morally wrong for you to save only one child.33   

 

The puzzle arises because: 
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(3) In a binary choice between doing nothing and saving one child, both options 

are morally permissible.  

 

A function 𝐶 that selects exactly the morally permissible options from any set of options 

will therefore satisfy: 

 

• 𝑎 ∈ 𝐶({𝑎, 𝑏, 𝑐}) 

• 𝑏 ∉ 𝐶({𝑎, 𝑏, 𝑐}) 

• 𝐶({𝑎, 𝑏}) = {𝑎, 𝑏} 

 

Any such choice function violates 𝛽 (see §3.2): it chooses 𝑎 and 𝑏 from a subset of a set 

from which it chooses 𝑎 but not 𝑏. So if rationality implies 𝛽 then we must either (i) revise 

our view about what is morally permissible, or (ii) admit that it would be irrational to be 

prepared to choose, in any situation, all and only the options that are morally permissible 

in that situation. 

 Our definitions of rational choice and rational taste get around the problem, 

because according to them 𝛽 is not a demand of rationality. There is a rational taste 

function that selects, from each 𝑋 ⊆ {𝑎, 𝑏, 𝑐}, the options that are intuitively permissible 

choices from 𝑋: in fact it is 𝐶2 in Table 1. The stability definition can therefore show that, 

and why, these choices are rational.  

There is obviously more to say from the perspective of moral permissibility. For 

instance, the argument only shows that the choices (1)-(3) are rationally permissible; but 

there may be other reasons to doubt they are morally permissible. Conversely, and more 

ambitiously, we might try to show that moral permissibility is structurally no more 

demanding than rational permissibility, so that the choice function that always selects 
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what is morally permissible will sometimes violate 𝛼, for instance by permitting cycles of 

strict preference.34 

 

 

5.2 The self-torturer 

The next case is fictitious but has wide applications, because ‘the safest road to hell is the 

gradual one’. It concerns a ‘self-torturer’ who, once a week for the next 100 weeks, has an 

option to accept an irreversible but indiscernible increment of pain in exchange for 

$10,000. After 100 weeks, having accepted the option on every week, he is a millionaire 

but in constant agony.35 What went wrong?  

The set of possible outcomes is 𝑍 = {𝑧𝑖|𝑖 = 0, … 100}, 𝑧𝑖 indicating pain level of 𝑖 

units and wealth level of $10,000𝑖. The terminal nodes – the choices he might face on the 

last week – can be labelled 𝑛𝑘
1 = {𝑧𝑘, 𝑧𝑘+1}, 𝑘 = 0,1 … 99. 𝑛𝑘

1  is the (level 1) node that the 

agent reaches in the final week iff he has accepted exactly 𝑘 increments in the previous 

99 weeks. We can inductively define 𝑛𝑘
𝑗+1 = {𝑛𝑘

𝑗 , 𝑛𝑘+1
𝑗 }, where 𝑘 = 0, … 100 − 𝑗, where 𝑛𝑘

𝑗  

is the level 𝑗 node that the self-torturer reaches after 100 − 𝑗 weeks if and only if he has 

already accepted exactly 𝑘 increments. At the outset he faces the tree 𝑇 = 𝑛0
100.  

We can argue that the outcome 𝑧100 is made both inevitable and disastrous by 

three facts about the self-torturer’s choice function 𝐶 on ∆(𝑍). 

 

(1) 0 ≤ 𝑖 ≤ 99 → 𝑧𝑖+1 ≻𝐶 𝑧𝑖 

(2) 0 ≤ 𝑗 ≤ 99 → 𝐶(𝑛𝑘
𝑗+1) = 𝐶({𝑛𝑘

𝑗 , 𝑛𝑘+1
𝑗 }) = {𝑛𝑘+1

𝑗 } 

(3) 𝑧100 ∉ 𝐶(𝑍) = 𝐶(𝑍) 
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(1) says that given a binary choice between (a) the outcome of some final level of wealth 

and of pain, and (b) the outcome of $10,000 more and indiscernibly more pain, the self-

torturer’s choice function 𝐶 (i.e. its taste function 𝐶) always strictly prefers (b). (2) says 

that at any week in the sequence, the self-torturer is always willing to accept an 

indiscernible increment of pain in exchange for another $10,000. (1) and (2) imply that 

that the self-torturer ends up at the maximal point 𝑧100 i.e. 𝐶∗(𝑇) = {𝑧100}. (3) says that 

the self-torturer would not have chosen this outcome from those available ex ante; that is 

why it is disastrous.36 

 On any standard view, (1) and (3) jointly imply that the self-torturer has irrational 

tastes, because they imply that 𝐶 violates 𝛼.37 On the other hand (2) looks very plausible 

given (1), because ‘sophisticated’ backwards inductive reasoning will convince the self-

torturer to accept each increment that he gets offered.38 So the standard view implies that 

he went wrong, not because his means ill-suit his ends, but because his ends or tastes, as 

specified in (1) and (3), are themselves irrational.39 But this is something of a paradox, 

since (1) and (3) are, as Quinn says, quite natural.40 

The stability theory preserves this intuition because it allows that (1) and (3) are 

rational. There is a rational taste function over 𝑍 (a choice function on ℘(𝑍)) that satisfies 

both (1) and (3).41 §3.2 implies that there is a means-end rational choice function 𝐷 over 

∆(𝑍) that agrees with 𝐶 over 𝑍 (i.e. such that 𝐶 = 𝐷). In fact there are many such 

functions. And any of them will specify a route through 𝑇 that is rationally defensible and 

does not terminate in the disastrous 𝑧100. Any of them therefore constitutes a rationally 

defensible way in which anyone with the self-torturer’s (natural) tastes can satisfy them. 

Of course none of those functions satisfies (2): there must always some point at 

which the rational self-torturer declines an increment. But only ‘sophisticated’ reasoning 



Rational choice 

45 
 

makes (2) seem rational. And §4.3 implies that rationality does not demand 

sophistication, not if rationality has normative force. 

 

  

5.3 Causal Decision Theory 

Here is a recent problem case for Causal Decision Theory.  

 

There are two opaque boxes, A and B, and an envelope. The agent can take A, B, or 

the envelope. The envelope contains $40. One of the boxes contains $100. Which 

one it is depends on the reliable prediction of a ‘Randomizing Frustrater’. If he 

predicted that the agent takes A, he put $100 in B. If he predicted that the agent 

takes B, he put $100 in A. If he predicted that the agent takes the envelope, he put 

$100 in A or B based on the toss of a coin.42 

 

Causal Decision Theory (CDT) always recommending taking a box, not the envelope. 

Letting the options be {𝑎, 𝑏, 𝑒}, the choice function 𝐶 associated with CDT has 𝑒 ∉

𝐶({𝑎, 𝑏, 𝑒}). This is counter-intuitive; but perhaps it is defensible.43 

 However, it can also be shown that CDT recommends pre-committing to taking the 

envelope if this option is available.44 That is: if 𝑇 is the tree {{𝑎, 𝑏, 𝑒}, 𝑒} then 𝐶(𝑇) = {𝑒}; 

so 𝐶∗(𝑇) = {𝑒}. Since 𝑇∗ = {𝑎, 𝑏, 𝑒} it follows that 𝐶∗(𝑇) ⊈ 𝐶(𝑇∗) i.e. 𝐶 is means-end 

irrational. So stability puts pressure on CDT from an unexpected direction. (Of course, it 

may matter that CDT concerns choice under uncertainty, whereas the stability definition 

applies only where no state of nature is both relevant and uncertain. So there is much 

more to say.)  
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5.4 Conclusion 

Stability may apply to other problems: Kamm’s intransitivity paradox for instance,45 or 

problems concerning preference aggregation in light of the results of Arrow46 and Sen.47 

But these are all speculative. I mention them only to encourage investigation into 

stability, for which the main advertisement remains this: it is the strongest condition that 

you cannot violate without going wrong by your own lights.  
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Appendix: Rational choice under uncertainty 

The definition of rationality in this essay covers what I called deterministic situations i.e. 

where there is no relevant ignorance d. I don’t think this makes it uninteresting. It’s 

obviously interesting e.g. that 𝛼 and 𝛽 are not, but 𝛾 is, a demand of rationality in this 

simple setting.  

Still, the obvious next question is whether uncertainty somehow brings other 

principles into the picture. It would be infeasible to answer that properly here, but I can 

sketch an extended definition of means-end rationality to cover that case. 

Extending the definition means expanding the set of outcomes and the set of trees 

that can be built upon them. To this end, Ω be a set of possible worlds (informally: those 

not ruled out at the outset). Let there be a set 𝑍 of prizes. Call any subset 𝐸 of Ω an event. 

Now we define terminal nodes, choice nodes, natural nodes and a height function that 

applies to all of them: 

 

(i) A terminal node is an ordered pair (𝑛, 𝐸) such that 𝐸 ⊆ Ω and 𝑛 ∈ 𝑍𝐸 . If 

(𝑛, 𝐸) is a terminal node then its height is 𝐻((𝑛, 𝐸)) = 0 

(ii) A choice node is an ordered pair (𝑛, 𝐸) s.t. 𝐸 ⊆ Ω and 𝑛 is a set of ordered 

pairs (𝑛′, 𝐸) of finite height. If (𝑛, 𝐸) is a choice node then its height is 

𝐻((𝑛, 𝐸)) = 1 + max{𝐻((𝑛′, 𝐸))|(𝑛′, 𝐸) ∈ 𝑛}. 

(iii) A natural node is an ordered pair (𝑛, 𝐸) s.t. 𝐸 ⊆ Ω and 𝑛 is a set of ordered 

pairs (𝑛′, 𝐸′) of finite height such that (a) {𝐸′|(𝑛′, 𝐸′) ∈ 𝑛} partitions 𝐸; (b) 

if (𝑛1, 𝐸′) ∈ 𝑛 and (𝑛2, 𝐸′) ∈ 𝑛 then 𝑛1 = 𝑛2. If (𝑛, 𝐸) is a natural node its 

height is 𝐻((𝑛, 𝐸)) = 1 + max{𝐻((𝑛′, 𝐸′))|(𝑛′, 𝐸′) ∈ 𝑛}. 

(iv) Nothing else is a node; nothing else has a height. 
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Intuitively, we think of (𝑛, 𝐸) as carrying two pieces of information: 𝑛 specifies where the 

agent is in a tree-like structure, and 𝐸 expresses her knowledge at that point: the set of 

worlds that might (for all she knows at that point) be actual.  

At a terminal node (𝑛, 𝐸), 𝑛 is a function from the set 𝐸 of still-possible worlds to 

the set 𝑍 of possible prizes: that is, it’s a gamble that returns prize 𝑛(𝑤) ∈ 𝑍 if the actual 

world is 𝑤 ∈ 𝐸. At a choice node (𝑛, 𝐸), the agent chooses between nodes (𝑛′, 𝐸) at which 

his information is still 𝐸. These nodes are analogues to non-terminal nodes in a 

deterministic tree. At a natural node (𝑛, 𝐸), nature chooses between nodes (𝑛′, 𝐸′) at 

which the agent learns that the actual world belongs to some cell 𝐸′ of some partition of 

𝐸. Natural nodes are not analogous to anything in a deterministic tree: they model the 

evolution of the agent’s knowledge over the decision process. A decision tree with 

uncertainty is a node of finite height of the form (𝑛, Ω).48   

 A choice function under uncertainty is any function taking any choice node (𝑛, 𝐸) 

to a non-empty subset of 𝑛. Because the prize that a choice function 𝐶 realizes in a tree 𝑇 

depends on which world is actual, the outcomes that 𝐶 permits in 𝑇 are not themselves 

prizes but gambles over prizes i.e. functions from Ω to 𝑍. We shall also consider partial 

gambles, that is, functions from 𝐸 to 𝑍 for arbitrary 𝐸 ⊆ Ω (these include all terminal 

nodes). We now recursively define 𝐶∗(𝑛, 𝐸): the outcomes that 𝐶 permits at an arbitrary 

node (𝑛, 𝐸): 

 

(i) If (𝑛, 𝐸) is a terminal node then 𝐶∗((𝑛, 𝐸)) = {𝑛} 

(ii) If (𝑛, 𝐸) is a choice node and 𝑔 ∈ 𝑍𝐸  then 𝑔 ∈ 𝐶∗((𝑛, 𝐸)) iff 𝑔 ∈ 𝐶∗((𝑛′, 𝐸)) 

for some (𝑛′, 𝐸) ∈ 𝐶(𝑛) 

(iii) If (𝑛, 𝐸) is a natural node and 𝑔 ∈ 𝑍𝐸  then 𝑔 ∈ 𝐶∗((𝑛, 𝐸)) iff: there are 

𝐸1 … 𝐸𝑘  that partition 𝐸 and 𝑛1 … 𝑛𝑘  s.t. 𝑛 = {(𝑛𝑖 , 𝐸𝑖)|1 ≤ 𝑖 ≤ 𝑘}, and 
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𝑔1 … 𝑔𝑘 s.t. for each 𝑖 = 1, … 𝑘, 𝑔𝑖 ∈ 𝑍𝐸𝑖  and 𝑔𝑖 ∈ 𝐶∗((𝑛𝑖 , 𝐸𝑖)), and for any 

world 𝑤 ∈ 𝐸, if 𝑤 ∈ 𝐸𝑖 then 𝑔(𝑤) = 𝑔𝑖(𝑤).    

(iv) If 𝑇 is a tree with uncertainty then the set of outcomes that 𝐶 permits at 𝑇 

is 𝐶∗(𝑇) ⊆ 𝑍Ω. 

 

Informally, the effect of this is that a choice function applied to a tree permits as outcomes 

a range of gambles over prizes, depending on which state of nature is actual. For example, 

consider Figure 7. 

In this diagram, boxes with arrows going out are choice nodes, circles are natural 

nodes, and boxes with no arrows going out are terminal nodes. The labelling of the nodes 

indicates that {𝐸1, 𝐸2} is a partition of Ω and that {𝐸21, 𝐸22} is a partition of 𝐸2. Let the 

choice function 𝐶 make the selections that I indicated in bold: so 𝐶((𝑛1, Ω)) =

{(𝑛2, Ω), (𝑛3, Ω)} etc. Then the outcomes 𝐶 permits at 𝑇 = (𝑛1, Ω) are the gambles 𝑔, ℎ 

defined as follows: 

 

• 𝑔(𝑤) = {
𝑛6(𝑤) if 𝑤 ∈ 𝐸1

𝑛8(𝑤) if 𝑤 ∈ 𝐸2
 

 

• ℎ(𝑤) = {

𝑛9(𝑤) if 𝑤 ∈ 𝐸1

𝑛10(𝑤) if 𝑤 ∈ 𝐸21

𝑛11(𝑤) if 𝑤 ∈ 𝐸22

 

 

(These definitions make sense because 𝑛6, 𝑛8, 𝑛9, 𝑛10 and 𝑛11 are all themselves gambles 

i.e. functions from possible worlds to prizes.) So in this example, 𝐶∗(𝑛1, Ω) = {𝑔, ℎ}.  

 Which outcomes of a tree are available? In contrast with the deterministic case, 

one cannot simply collect all terminal nodes, since which terminal nodes are available 
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depends on which possible world is actual. For instance, if the actual world does not 

belong to 𝐸1 in Fig. 7 then the terminal node (𝑛6, 𝐸1) cannot be reached through any 

sequence of choices.  

What is always available, whichever world is actual, is any gamble over all worlds 

that is available from some sequence of choices. This motivates the following recursive 

definition: 

 

(i) If (𝑛, 𝐸) is a terminal node then (𝑛, 𝐸)∗ = {𝑛} 

(ii) If (𝑛, 𝐸) is a choice node and 𝑔 ∈ 𝑍𝐸  then 𝑔 ∈ (𝑛, 𝐸)∗ iff 𝑔 ∈ (𝑛′, 𝐸)∗ for 

some (𝑛′, 𝐸) ∈ 𝑛 

(iii) If (𝑛, 𝐸) is a natural node and 𝑔 ∈ 𝑍𝐸  then 𝑔 ∈ (𝑛, 𝐸)∗ iff: there are 𝐸1 … 𝐸𝑘  

that partition 𝐸 and 𝑛1 … 𝑛𝑘 s.t. 𝑛 = {(𝑛𝑖 , 𝐸𝑖)|1 ≤ 𝑖 ≤ 𝑘}, and 𝑔1 … 𝑔𝑘  s.t. for 

each 𝑖 = 1, … 𝑘, 𝑔𝑖 ∈ 𝑍𝐸𝑖 and 𝑔𝑖 ∈ 𝐶∗((𝑛𝑖, 𝐸𝑖)), and for any world 𝑤 ∈ 𝐸, if 

𝑤 ∈ 𝐸𝑖 then 𝑔(𝑤) = 𝑔𝑖(𝑤).    

 

We now say: if 𝑇 is a tree with uncertainty then the set of outcomes available at 𝑇 is 𝑇∗ ⊆

𝑍Ω 

For instance, in Fig. 7, we see in addition to 𝑔 and ℎ there is available one other 

gamble, corresponding to the option of going straight along at (𝑛4, 𝐸1). This is the gamble:  

 

• 𝑓(𝑤) = {
𝑛7(𝑤) if 𝑤 ∈ 𝐸1

𝑛8(𝑤) if 𝑤 ∈ 𝐸2
 

 

So the set of gambles available at the tree 𝑇 = (𝑛1, Ω) is 𝑇∗ = {𝑓, 𝑔, ℎ}.   
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Figure 7 

 

 

 

 

 

 

(𝑛1, Ω) 

(𝑛2, Ω) 

(𝑛3, Ω)  

(𝑛4, 𝐸1) (𝑛7, 𝐸1) 

(𝑛6, 𝐸1) 

(𝑛8, 𝐸2) 

(𝑛9, 𝐸1) 

(𝑛5, 𝐸2) (𝑛10, 𝐸21) 

(𝑛11, 𝐸22) 
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We now define means-end rationality as in the deterministic case. A choice 

function is irrational iff there are trees from which it is liable to select gambles which it 

itself would not choose, in advance, from all available gambles. This can be written in the 

same way as before: 𝐶∗(𝑇) ⊆ 𝐶(𝑇∗) for any 𝑇. We can also apply the definition of rational 

tastes in terms of perfect covers, with tastes defined as preferences over outcomes in the 

sense of gambles i.e. functions from Ω to 𝑍.    

The obvious next step is to identify which ‘standard’ principles of choice under 

uncertainty are means-end rational. For instance, consider the following four gambles, 

where 𝐸1 ∪ 𝐸2 = Ω and 𝑧1, … 𝑧4 ∈ 𝑍 are possible prizes. 

 

 𝑬𝟏 𝑬𝟐 

𝒇 𝑧1 𝑧3 

𝒈 𝑧1 𝑧4 

𝒉 𝑧2 𝑧3 

𝒌 𝑧2 𝑧4 

Table 2 

 

Suppose some choice function 𝐶 satisfies 𝑓 ≻𝐶 𝑔 and 𝑘 ≻𝐶 ℎ, so that 𝐶 violates an 

‘independence’ principle close to Savage’s P2. Can we show that 𝐶 is irrational, on the 

present definition? 

Well, consider the trees in Figures 8A and 8B. Note that the choice node (𝑚3, 𝐸2) 

appears in both, so 𝐶 must permit the same options at that point in each case. The 

terminal nodes are labelled 𝑧1, … 𝑧4 to abbreviate gambles that return those prizes for 

certain, given what one knows at that point about the state of nature. 

 
 



Rational choice 

53 
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Fig. 8B 
 

 

 

 

 

 

 

 

 

 

 

(𝑚1, Ω) 

(𝑚2, 𝐸1)   

(𝑚3, 𝐸2) 
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𝑧3 

𝑧4 

(𝑛1, Ω) 

(𝑛2, 𝐸1)   

(𝑚3, 𝐸2) 

𝑧2 

𝑧3 

𝑧4 
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It is easy to see that (𝑚1, Ω)∗ = {𝑓, 𝑔} and (𝑛1, Ω)∗ = {ℎ, 𝑘}; so given 𝑓 ≻𝐶 𝑔 and 

𝑘 ≻𝐶 ℎ it follows that 𝐶((𝑚1, Ω)∗) = {𝑓} and 𝐶((𝑛1, Ω)∗) = {𝑘}. But (using our 

abbreviations) either 𝑧3 ∈ 𝐶((𝑛3, 𝐸2)) or 𝑧4 ∈ 𝐶((𝑛3, 𝐸2)). In the first case, ℎ ∈

𝐶∗((𝑛1, Ω)) so 𝐶∗((𝑛1, Ω)) ⊈ 𝐶((𝑛1, Ω)∗). In the second case 𝐶∗((𝑚1, Ω)) ⊈ 𝐶((𝑚1, Ω)∗). 

Either way, 𝐶 is means-end irrational. So it turns out that something like Savage’s P2 is a 

requirement of means-end rationality under conditions of uncertainty.49  

It is odd that on the stability definition something as non-obvious as P2 is a 

requirement of rational choice under uncertainty, whereas an ‘obvious’ principle like 

transitivity of preference is apparently not.50 But a systematic treatment of the subject 

must wait for another occasion. 
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1 This constraint is meaningless unless ‘intelligent enough’ mean something that does not 

already entail being a rational chooser. That it does, and what this is, will emerge in §§1-

2. See n. 5 below.     

2 Gilboa 2010: 5.  

3 Because I start with a choice-theoretic (‘revealed preference’) approach, the normative 

question is about why one should have or adopt certain patterns of behavioural 

dispositions. A different approach, more common in philosophy than in economics, 

identifies preferences with judgments (for instance, the judgment that apples are ‘all-

things-considered’ better for me than pears). From this perspective the normative 

question is about why one should affirm certain thoughts. That is a legitimate and 

interesting question, but not the one I am pursuing here. For more on these two 

approaches see Bradley 2017: 45-7.       

4 To illustrate the point of ‘additional resources’: your choices might stem from material 

error or ignorance. You might choose apples from a menu of apples and oranges because 

you think, wrongly, that apples have a higher concentration of vitamin C. We could argue 

you out of this choice by means of an additional resource, namely the information that 

oranges have a higher concentration of vitamin C. But this does not make your original 

choice irrational.   

5 Clearly one can (e.g. akratically) see in the intellectual sense that one will choose means 

that frustrate one’s ends, whilst still being disposed to make those choices. So there could 

be people on whom rationality in my sense exerts a normative pull: people who are 

disposed to make these choices but who have a reason to suppress or bypass those 

dispositions (see n. 1). 
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 It can also exert a stronger normative grip. Some people who are irrational in my 

sense not only have reason to change or bypass their own future choices but would do so 

given the opportunity. More precisely, they would if they are foresighted in the sense of 

§2.1 below; as I argue there, this condition does not entail rationality in the stability sense 

either. So there could be people who are irrational in my sense but who are still intelligent 

enough to see this and to do something about it given the opportunity. See n. 8 below.      

6 I understand ‘might’ subjunctively: the elements of 𝑇 that an agent might take are those 

that there would have been some chance of her taking if she were to face a choice from 𝑇. 

There may be more than one element of 𝑇 that the agent might take from 𝑇, so that 𝐶(𝑇) 

is not a singleton; but the agent will in fact take just one.  

7 On sophisticated choice see McClennen 1990: 11-14; on the difference between 

foresight and sophistication see n. 9 below and §4.3 below.  

8 Foresight does not entail means-end rationality. There may be nodes 𝑇 at which the only 

available nodes are ones that 𝐶 itself leads to outcomes that it would not have chosen 

from all available at 𝑇. In this case {𝑇′ ∈ 𝑇|𝐶∗(𝑇′) ⊆ 𝐶(𝑇∗)} is empty. This is consistent 

with foresightedness but not with means-end rationality in the stability sense; so the 

former does not entail the latter. For a choice function that is foresighted but irrational, 

see the next example in the main text. (Ulysses would also be an example.) 

 It matters that foresight does not entail rationality, because it leaves open the 

possibility of people on whom stability can exert motivational force. If an agent is not 

rational but is foresighted, then her facing a tree that witness the irrationality will 

motivate her to bind herself if she can.    

9 ‘Sophisticated choice’ implies that if 𝑧2 ≻ 𝑧1 ≻ 𝑧0 then {𝑧1, 𝑧2} ≻ {𝑧0, 𝑧1}: at the first 

node, you treat your choice from {{𝑧0, 𝑧1}, {𝑧1, 𝑧2}} as if it were between the things that 

your choice function selects from {𝑧0, 𝑧1} and {𝑧1, 𝑧2} respectively. Rationality on my 
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definition does not imply sophistication: any method of selection amongst nodes can be 

rational so long as it never yields an outcome that it would not have chosen at the outset. 

Nor does foresight imply sophistication, the difference being that a foresighted 𝐶 chooses 

at 𝑛 only those options that 𝐶 itself takes to outcomes that are optimal from amongst all 

those available at 𝑛, whereas a sophisticated choice function chooses those options that 

𝐶 takes to outcomes that are optimal from amongst all those that 𝐶 could reach from 𝑛. 

See further §4.3.   

10 Cf. Hammond’s definition of metastatic consistency (1977: 344). In present 

terminology, Hammond’s condition is that 𝐶 is metastatically consistent if: for any 𝑍′ ⊆ 𝑍 

and any perfect cover 𝐾 of 𝑍′, ∀𝑘 ∈ 𝐾 ( 𝑘 ∩ 𝐶(𝑍′) ≠ ∅ → 𝐶(𝑘) = 𝐶(𝑍′)). Metastatic 

consistency strengthens outcome-rationality in the same way that Hammond’s better-

known consequentialist consistency requirement strengthens means-end rationality. For 

further discussion see also n16 and §4.4. 

11 Let 𝐶 be an irrational taste function. Then there is a perfect cover 𝐾 of some 𝑍′ ⊆ 𝑍 such 

that ∀𝑘 ∈ 𝐾 (𝐶(𝑘) ⊈ 𝐶(𝑍′)). But 𝐾 is a tree of level 2 s.t. 𝐾∗ = 𝑍′, and for some 𝑘 ∈ 𝐾, 

𝐶(𝑘) ⊆ 𝐶∗(𝐾). Therefore 𝐶∗(𝐾) ⊈ 𝐶(𝑍′) = 𝐶(𝐾∗) so 𝐶 is not rational. (This formalizes 

the argument outlined at the start of this section.)  

Conversely let 𝐶 be a rational taste function. Define 𝐷 as follows. If 𝐿(𝑇) = 1, 

𝐷(𝑇) =def. 𝐶(𝑇) (so 𝐷(𝑇) = 𝐶(𝑇)). If 𝐿(𝑇) ≥ 2, 𝐷(𝑇) =def. {𝑆 ∈ 𝑇|𝐷∗(𝑆) ⊆ 𝐶(𝑇∗)}. Plainly 

for every tree 𝑇 we have 𝐷∗(𝑇) ⊆ 𝐶(𝑇∗) = 𝐷(𝑇∗). So if 𝐷(𝑇) is non-empty for every non-

empty tree 𝑇 then 𝐷 is a means-end rational choice function. It remains to show that for 

any (finite) tree 𝑇, if 𝑇 is non-empty then so is 𝐷(𝑇), which we prove by induction on 𝐿(𝑇). 

The base step is straightforward: if 𝐿(𝑇) = 1 then 𝐷(𝑇) = 𝐶(𝑇), which non-empty. 

Inductive step: suppose that if 𝐿(𝑇) < 𝑛 then if 𝑇 is non-empty then 𝐷(𝑇) is non-empty. 
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We must consider two cases: (i) the case where 𝑛 = 2 (ii) the case where 𝑛 > 2. (i) 

Suppose 𝐿(𝑇) = 2 and let 𝑇 = {𝑆1 … 𝑆𝑚}. So 𝑇 itself is a perfect cover of 𝑇∗ = ⋃ 𝑆𝑖
𝑚
𝑖=1 . By 

rationality of 𝐶, there is some 𝑆𝑗 ∈ 𝑇 s.t. 𝐶(𝑆𝑗) ⊆ 𝐶(𝑇∗). Since 𝐿(𝑆𝑗) = 1 it follows from 

the definition of the choice function 𝐷 that 𝐷(𝑆𝑗) = 𝐶(𝑆𝑗); and therefore 𝐷(𝑆𝑗) ⊆ 𝐶(𝑇∗) 

and trivially from this that 𝐷∗(𝑆𝑗) ⊆ 𝐶(𝑇∗). So 𝑆𝑗 ∈ 𝐷(𝑇) i.e. 𝐷(𝑇) is non-empty. (ii) Now 

suppose 𝐿(𝑇) = 𝑛 > 2 and let 𝑇 = {𝑆1 … 𝑆𝑚}. So {𝑆𝑖
∗}𝑖=1

𝑚  is a perfect cover of 𝑇∗. By 

rationality of 𝐶, there is some 𝑆𝑗 ∈ 𝑇 s.t. 𝐶(𝑆𝑗
∗) ⊆ 𝐶(𝑇∗). Moreover 𝐿(𝑆𝑗) < 𝑛 so by the 

inductive hypothesis 𝐷(𝑆𝑗) is non-empty i.e. 𝐷∗(𝑅) ⊆ 𝐶(𝑆𝑗
∗) for some 𝑅 ∈ 𝑆𝑗 and (by the 

definition of 𝐷) for all 𝑅 ∈ 𝐷(𝑆𝑗). Hence 𝐷∗(𝑆𝑗) ⊆ 𝐶(𝑆𝑗
∗). Therefore 𝐷∗(𝑆𝑗) ⊆ 𝐶(𝑇∗), so 

𝑆𝑗 ∈ 𝐷(𝑇) is non-empty. 

12 See Sen 1971.   

13 Suppose 𝐶 is an irrational taste function. So some cover 𝐾 of some set of outcomes 𝑍′ 

is such that for every 𝑘 ∈ 𝐾, 𝐶(𝑘) ⊈ 𝐶(𝑍′). So for every 𝑘 ∈ 𝐾, 𝑘 ⊈ 𝐶(𝑍′). But since 𝐾 is a 

perfect cover of 𝑍, there must be some 𝑘 ∈ 𝐾 such that 𝑘 ∩ 𝐶(𝑍′) is non-empty. Choose 

one: then either 𝐶(𝑘) ∩ 𝐶(𝑍′) is empty or it is not. If it is empty, then there is some 𝑎 ∈ 𝑘 

that is not chosen from 𝑘 but is chosen from 𝑍′; but 𝑘 ⊆ 𝑍′ so this violates 𝛼. On the other 

hand, if 𝑘 ∩ 𝐶(𝑍′) is non-empty then there is some 𝑎 ∈ 𝑘 that is chosen from 𝑘 and from 

𝑍′. But since 𝐶 is irrational there is some 𝑏 ∈ 𝑘 that is chosen from 𝑘 and is not chosen 

from 𝑍′. This violates 𝛽. So if 𝐶 is an irrational taste function, then it violates either 𝛼 or 

𝛽.  

14 Also given any singleton e.g. {𝑎} as input each choice function returns that same set as 

output.  
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15 If you think rational choice maximizes something, then violation of 𝛼 is obviously 

irrational. There is a tradition in economics that a rational chooser does maximize: she 

chooses what is in some sense best (Simon 1978: 2). But rationality does not demand 

maximization: there are ways of choosing (e.g. in accordance with 𝐶1) that (a) are not 

maximizing anything but (b) are normatively stable in the sense that failure to be talked 

out of them needn’t involve any intellectual deficiency (cf. Schwartz 1972). Note also that 

one might violate 𝛼 whilst being in some weak sense a ‘maximizer’ – see Sen 1993: 500f. 

16 𝐶1, 𝐶2 and 𝐶3 are all metastatically inconsistent in the sense of Hammond 1977 (see n. 

9 above). Since they are all rationally defensible – as I just argued – I believe that this 

shows metastatic consistency to be an excessively strong criterion of rationality. 

17 Suzumura 1983 ch. 2 discusses these and other principles of choice.  

18 Proof that rationality of taste entails 𝛾: suppose 𝐶 rational and that 𝑎 ∈ ⋂ 𝐶(𝑋𝑖)𝑖∈𝐼  for 

some collection {𝑋𝑖}𝑖∈𝐼 of subsets of 𝑍. Plainly {𝑋𝑖}𝑖∈𝐼  is a perfect cover of ⋃ 𝑋𝑖𝑖∈𝐼 . 

Therefore since 𝐶 is outcome rational, 𝐶(𝑋𝑗) ⊆ 𝐶(⋃ 𝑋𝑖𝑖∈𝐼 ) for some 𝑗 ∈ 𝐼. Since 𝑎 ∈

⋂ 𝐶(𝑋𝑖)𝑖∈𝐼 , also 𝑎 ∈ 𝐶(𝑋𝑗), therefore 𝑎 ∈ 𝐶(⋃ 𝑋𝑖𝑖∈𝐼 ). 

19 I should here mention two theories of rational choice that also violate at least one of 𝛼 

and 𝛽. The first is Suzumura-rationality (Suzumura 1976). Say that a relation 𝑅 

rationalizes a choice function 𝐶 if 𝐶(𝑆) = {𝑥 ∈ 𝑆|∀𝑦 ∈ 𝑆: 𝑅𝑥𝑦} for every 𝑆 in the domain 

of 𝐶. Say that a relation 𝑅 is Suzumura-consistent if ∀𝑥∀𝑦((𝑅∗𝑥𝑦. 𝑅𝑦𝑥) → 𝑅𝑥𝑦), where the 

quantifiers range over the field of 𝑅, and 𝑅∗ is the ancestral of 𝑅. A choice function 𝐶 is 

Suzumura-rational if it has a Suzumura-consistent rationalization. (Roughly, it has no 

weak-preference cycles of any size in which one or more of the preferences is also strict.) 

Suzumura-rationality is weaker than the standard notion: there are Suzumura-rational 

choice functions that violate 𝛽 and lack a transitive rationalization (see Bossert 2018: 28 

for an example). But Suzumura-rationality does entail 𝛼, because any rationalizable 
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choice function satisfies 𝛼. Suzumura-rationality therefore makes demands on 𝐶 that are 

unwarranted from the perspective of the stability theory. For instance, it rules out 𝐶1 in 

Table 1, even though it is possible (as I argued) to have choice dispositions that conform 

to 𝐶1 but are normatively irreproachable. 

 The second theory appears in a ground-breaking paper of Cantwell’s that 

attempts, like this one, to connect normative force and internal coherence (Cantwell 

2003). Cantwell identifies two principles: ‘strong coherence’, which is essentially 

equivalent to 𝛼, and ‘weak coherence’ which says (in my terms) that if 𝑋 is a non-empty 

subset of 𝑍, some 𝑎 ∈ 𝐶(𝑋) is such that 𝑎 ∈ 𝐶(𝑌) for every 𝑌 such that  𝑎 ∈ 𝑌 and 𝑌 ⊆ 𝑋. 

Neither condition entails or is entailed by rationality of taste. 𝐶1 is a rational taste function 

but neither strongly nor weakly coherent; 𝐶5 is an irrational taste function but both 

weakly and strongly coherent. Clearly there is something wrong with 𝐶5: when faced with 

the tree {{𝑎, 𝑏}, {𝑏, 𝑐}}, 𝐶5 is liable to eventuate in an outcome (𝑏) that it would not have 

chosen from those available at the outset.  

20 Egan 2007: 97. 

21 For other ‘intuitive’ approaches to normative questions, see e.g.: Savage’s discussion of 

the Allais paradox, which emphasizes internal ‘reflection’ over deductive reasoning 

(1972: 101-3); Lewis’s defence of Causal against Evidential Decision Theory, which just 

takes a stand on one side of a debate that he regards as deadlocked (1980: 309ff.); 

Suzumura’s endorsement of the Strong and Weak Congruence Axioms (1983: 25); 

Peterson’s endorsement of Egan’s judgment about the cases discussed in the main text 

(2017: 212). 

22 This illustration is from Street 2009 (284ff.), which discusses Future-Tuesday 

Indifference from a slightly different perspective. 
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23 Parfit 1984: 124. Similarly, Anscombe seems to think that one can only want things that 

there is some intelligible reason for wanting (2000: 70-1). Buchak appears to identify 

preferences that a reasonable person might have with those that have a consistent 

rationale (2013: 10).  

24 Although Parfit doesn’t say this, one might think that if on Tuesdays the Future-

Tuesday Indifferent cares about pains on that day, then he is open to exploitation, and 

explaining this might help to talk him out of his future-Tuesday indifference. Imagine that 

on Sunday the subject is facing 5 units of pain on Tuesday afternoon and 5 on Wednesday 

afternoon. We offer on Monday to exchange 1 unit of pain on Wednesday afternoon for 

an additional 1 + 2∆ on Tuesday afternoon, so that he is then facing 6 + 2∆ on Tuesday 

afternoon and 4 on Wednesday afternoon. And then on Tuesday morning we offer to 

exchange 1 + ∆ on Tuesday afternoon for an additional 1 + ∆ on Wednesday afternoon. 

He will accept both offers for a final schedule of 5 + ∆ on Tuesday afternoon and 5 + ∆ on 

Wednesday afternoon, which by his own lights on any day is an uncompensated loss.  

So Parfit’s character looks irrational on my definition. And pointing this out would 

persuade him both that something is wrong with his choice function and that it would be 

a good idea to bind it: or so it seems.  

But (a) what this ‘pain pump’ shows irrational (if anything) is not any one choice 

function but a combination of two. One, which he has now, prefers any good on any future 

non-Tuesday to the same good next Tuesday. The other, which he has next Tuesday, is 

indifferent between them. The pain pump does not reveal irrationality in the choice 

function that gives no weight to Tuesdays – what Street (2009: 285) calls Consistent 

Tuesday Indifference. If the subject adhered consistently to that function – if on all days, 

including Tuesdays themselves, he were indifferent about any Tuesday (including the 

present one) – there would be no pump. (b) Besides, this argument could not vindicate 
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Parfit’s idea that lack of reasons makes a choice function irrational, because the source of 

the exploitability is not any lack of reasons for future-Tuesday indifference but rather 

(what is quite different) the inconsistency between this and his concern for present 

Tuesdays. (I discuss the ‘money pump’ definition at §4.3 below.) 

25 Objectively worse: Cubitt and Sugden 2001. Binary dis-preferred: McClennen 1988: 89-

90; Bossert and Suzumura 2010: 38. 

26 See e.g. Davidson, McKinsey and Suppes 1955: 145-6.  There may be a problem with 

using money here because nobody (except Scrooge) treats money as an end: rather, 

people want more money because it expands their options. But one may not want a larger 

range of options. One will if one’s choice function is maximizing, but the rational force of 

maximization (which implies 𝛼) is among the things that money-pumps purport to 

establish.  Still, one could replace monetary losses with other goods (e.g. seconds of pain), 

avoidance of which is a plausible end.    

27 Rabinowicz 2000: 139f. 

28 Cf. Railton’s ‘Sensible Knave’ (1986: 167-8). This is no objection to the use of objective 

notions in Cubitt and Sugden’s paper, because their aim isn’t to establish a normative 

criterion of rationality, but to assess money pumps as predictive instruments when the 

objective good is something like evolutionary fitness.  

29 That would be inconsistent with 𝛼 (see §3.2); but saying that will seem question-

begging to Alice: she already violates 𝛼 by having cyclic strict preferences.   

30 Let 𝑅2
∗ be the set of all outcomes available at 𝑅2. Suppose 𝑥 ∈ 𝐶(𝑅2

∗) and 𝑦 ∉ 𝐶(𝑅2
∗). 

Then by 𝛽, 𝑦 ∉ 𝐶({𝑥, 𝑦}) i.e. 𝑥 ≻ 𝑦. Conversely, suppose that 𝑥, 𝑦 ∈ 𝑅2
∗  and 𝑥 ≻ 𝑦. Then by 

𝛼, 𝑦 ∉ 𝐶(𝑅2
∗).  

31 The equivalence of the definitions holds because (a) 𝑇 ∈ ∆(𝑍) → 𝑇∗ ∈ ∆(𝑍) (b) 𝑇∗∗ =

𝑇∗.  
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Here is Hammond’s formulation. Let 𝛽 be a norm on behaviour – that is, something 

that determines permissible choices at any point in a tree. Let the function Φ𝛽 specify the 

outcomes that 𝛽 allows: that is, for any tree 𝑇, Φ𝛽(𝑇) is the set of outcomes of tree 𝑇 that 

𝛽 permits. Also let 𝐹(𝑇) be the set of all possible outcomes of the tree 𝑇. The 

consequentialist thesis is that ‘whenever two decision trees 𝑇, 𝑇′ are consequentially 

equivalent in the sense that 𝐹(𝑇) = 𝐹(𝑇′), then behaviour in the two trees must also be 

consequentially equivalent, in the sense that Φ𝛽(𝑇) = Φ𝛽(𝑇′). Thus the structure of the 

decision tree must be irrelevant to the consequences of acceptable or recommended 

behaviour’ (1988: 38). Note that Hammond introduces parameters governing 

uncertainty about the state of nature and about the outcomes of chance processes, 

whereas I am dealing only with the simplest case of ‘deterministic’ choice.   

32 Hammond’s consequentialism imposes severe path-independence: the possible 

outcomes of a procedure for choosing from a set 𝑋 of outcomes ought to be the same, 

whatever the structure of the selection procedure. The stability definition is more 

relaxed: the possible outcomes of the procedure might vary, but they must always form a 

subset of the outcomes that would be possible in a direct choice from 𝑋. Chapman (2009) 

goes further in the same direction: different selection procedures might result in 

completely different outcomes, long as the outcomes of a direct choice from 𝑋 match the 

outcome of a selection procedure that suitably partitions the relevant issues. I cannot 

here do more justice to Chapman’s discussion. But note that his criterion of rationality is 

not consequentialist at all, since it has essentially procedural elements. It may be more 

suitably applied to legal decisions, e.g. a finding of guilt or the determination of a sentence, 

than to business, economic or political ones e.g. about whom to appoint, what to consume 

or how to vote. (Chapman himself makes similar points, see esp. pp. 343-4.)  

33 Horton 2017: 94; labels [a]-[c] added.  



Rational choice 

67 
 

 
34 Such arguments would support the main thesis of Temkin 2012. 

35 Quinn 1990. 

36 Quinn does not assert (3) but rather 𝑧0 ≻ 𝑧100; but we need (3) to expose the full force 

of the puzzle. See Tenenbaum and Raffman 2012: 96. 

37 Suppose 𝐶 satisfies 𝛼. Since 𝐶(𝑍) is non-empty 𝑧𝑖 ∈ 𝐶(𝑍) for some 𝑖 < 100 by (3). Since 

𝑖 < 100, {𝑧𝑖, 𝑧𝑖+1} ⊆ 𝑍, so by 𝛼, 𝑧𝑖 ∈ {𝑧𝑖, 𝑧𝑖+1} which contradicts (1).    

38 At the first stage the reasoning goes like this. ‘I know by (1) I’ll accept in week 99, 

whatever level of pain and wealth I have then reached. Knowing this at week 98, I know 

that accepting at that stage will change the outcome from 𝑧𝑖 to 𝑧𝑖+1, for some 𝑖 that is then 

known. So at week 98 I’ll accept, again by (1). Knowing this at week 97… So I know now, 

at the outset, that I will accept in all future weeks. So accepting now will only change the 

outcome from 𝑧99 to 𝑧100. So I’ll accept now’. Increasingly truncated versions of this 

reasoning apply at each subsequent stage.  

39 See e.g. Voorhoeve and Binmore 2006: 103. 

40 Quinn 1990: 80. However, Elson 2016 offers an interesting argument that (1) fails 

because the marginal disutility of pain increases faster than the marginal utility of money. 

41 For instance, suppose that in addition to (1) and (3) 𝐶 satisfies these constraints: (4) 

𝑍𝑖 ≻𝐶 𝑍𝑖+𝑘  if 𝑘 > 1, and (5) If 𝑌 ⊆ 𝑍 and |𝑌| > 2 then 𝐶(𝑌) = 𝑌 − {𝑧𝑛}, where 𝑛 = max 

{𝑖|𝑧𝑖 ∈ 𝑌}. That is: the self-torturer always chooses the lower of two settings that are at 

least two increments apart; and given a choice from more than two settings, he chooses 

any other than the highest. It can easily be shown that 𝐶 is a rational taste function. 

42 Modified from Spencer and Wells 2019: 34; cf. Ahmed 2014. 

43 Joyce 2018: 155-9 defends this choice in the analogous version of the case in Ahmed 

2014.  
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44 See Joyce 2018: 157 for an explanation of why this holds in an analogous version of 

the case.  

45 Kamm 1985. Muñoz 2020 gives a unified treatment of this paradox and of Horton’s 

puzzle of supererogation according to which violations of 𝛽, which they both involve, are 

harmless. The stability definition agrees. But I disagree with Muñoz over why they are 

harmless; and this affects other cases. For instance, Muñoz’s explanation does nothing to 

disturb 𝛼 (2020: 13), whereas as we saw in §3.2, the stability analysis tends to undermine 

it. 

46 Although no method of preference aggregation satisfies the Arrow conditions, there 

may be ways to aggregate rational taste functions 𝐶1, 𝐶2,…𝐶𝑛, which need not be rankings, 

to give a rational social taste function 𝐶, which also need not be a ranking, that is defined 

on the same domain  𝑍 and which satisfies analogues of the Arrow conditions that are 

appropriate for choice functions that needn’t be rankings. For instance, in this context 

Arrow’s independence condition (‘Condition 3’) would be that for 𝑆 ⊆ 𝑍, if 𝐶1, … 𝐶𝑛 and 

𝐶1
′, … , 𝐶𝑛

′  are two sets of individual choice functions and 𝐶 and 𝐶′ the corresponding social 

choice functions, and if 𝐶𝑖(𝑆) = 𝐶𝑖
′(𝑆) for each 𝑖, then 𝐶(𝑆) = 𝐶′(𝑆)  (cf. Arrow 1951: 27).     

47 Roughly: given individual rankings ≿𝑖  of a set 𝑍 of outcomes, and an assignment 𝐴 of 

rights to each individual 𝑖, we might want a social choice function 𝐶 to satisfy both (i) the 

Pareto condition that if everyone prefers 𝑎 to 𝑏 then the social choice function prefers 𝑎 

to 𝑏 and (ii) the libertarian condition that if some assignment 𝐴 of rights gives individual 

𝑖 the right to dispose between 𝑎 and 𝑏, then 𝐶 agrees with 𝑖 over the choice between them. 

It seems that no method of aggregation satisfies (i) and (ii) for arbitrary 𝐴 and 𝑍 (Sen 

1970). However, there may be a way to aggregate rational taste functions 𝐶𝑖 over 

outcomes to give a social taste function 𝐶 that satisfies analogues of (i) and (ii) that are 

appropriate for choice functions that needn’t be rankings. For instance, in this context the 
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Pareto condition would be that if there are some elements of a set 𝑋 ⊆ 𝑍 that everyone 

chooses from 𝑋, then the aggregate choice function selects only such elements from 𝑋.  

48 This definition of the relevant class of trees is somewhat simpler than Hammond’s 

(1988: 31-2), which also includes chance nodes. In Hammond’s model the agent’s choice 

function ranges over objective gambles over subjective gambles in the manner of 

Anscombe and Aumann 1963, whereas here all gambles are subjective in the manner of 

Savage 1972. This affects the construction of a utility function given a choice function that 

is consequentialist in Hammond’s sense, but not (as far as I can see) the prior issue of 

what principles of choice are normatively compelling.    

49 Savage 1972: 23. Cf. the proof of Samuelson’s ‘Independence’ principle at Hammond 

1988: 42-4. 

50 To establish the latter I’d need to apply the argument of §3.2 to the present, extended 

definition of rationality. Intuitively that does not seem too hard, but there may be 

unforeseen difficulties here.   


