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ABSTRACT. We develop a functional abstraction principle for the type-free
algorithmic logic introduced in our earlier work. Our approach is based on
the standard combinators but is supplemented by the novel use of evaluation
trees. Then we show that the abstraction principle leads to a Curry fixed
point, a statement C that asserts C ) A where A is any given statement.

When A is false, such a C yields a paradoxical situation. As discussed in

our earlier work, this situation leaves one no choice but to restrict the use

of a certain class of implicational rules including modus ponens.
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1. INTRODUCTION

In [2] we introduced and developed an algorithmic logic that is type-free

with natural self-application. This logic was suggested by our earlier work

on the Curry paradox ([1]). In light of this paradox, one expects some

limitations to the accepted rules of classical logic in a system this

expressive. A main aim of [2] was to investigate such limitations in

algorithmic logic, but also to describe some strengths. However, the status

of the abstraction principle, an important desideratum of type-free

systems, was not addressed.

In this paper we formulate an internal functional abstraction principle

and show it holds in algorithmic logic. We then show how any internal

implication powerful enough to implement certain rules concerning

evaluation will be able to implement this internal functional abstraction

principle. Finally, building on [2], we show that the price of using such

implications is the restriction of certain rules of classical logic; even

modus ponens must be limited. In particular, the logic that emerges is more

restrictive with respect to rules of implication than even intuitionist logic.1

Before developing the internal functional abstraction principle for

algorithmic logic, we begin with two expository sections. Section 2

describes algorithmic logic. Section 3 explains what we mean by an

internal functional abstraction principle, not just for algorithmic logic, but

more generally.
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2. ALGORITHMIC LOGIC

Algorithmic logic is the logic of algorithmic statements. An algorithmic

statement is a statement of the form "When algorithm a is applied to input

b, the output is c^. To be specific about what one means by algorithm,

input, and output one needs to fix an underlying theory of computation. We

assume such an underlying theory has been chosen.2 We use the term

datum, plural data, to refer to any object that the underlying theory admits

as a possible input or output for an algorithm. We suppose that the

underlying theory of computation allows one to express, or code, any algo-

rithm as a datum, so algorithms can take as input algorithms, and a, b, and c

above are data. Finally, we assume that the underlying theory allows as a

datum any finite list of data. Then algorithmic statements can be regarded

as data: the list ½a; b; c� expresses the algorithmic statement quoted above.3

A major concern of algorithmic logic is logical connectives which

combine algorithmic statements into algorithmic statements. For exam-

ple, if A and B are algorithmic statements, both A ^ B and A _ B can be

expressed as algorithmic statements.4

In earlier work ([1] and [2]) we also introduced a more subtle logical

connective: a rule-based form of implication
�) where � is a library of

algorithmically implemented deduction rules. The algorithmic state-

ment A
�)B asserts that the algorithmic statement B can be derived from

the algorithmic statement A by means of the rules contained in the

library �. Thus the connective
�) can be regarded as an algorithmic

implementation of both a conditional and a provability predicate.

A theme of [1] and [2] is that certain expected rules, including the
�)-version of modus ponens, cannot be implemented in a sufficiently strong

library � without making � invalid. The
�)-version of modus ponens is in

fact a valid rule of algorithmic logic (given that � is valid); it just cannot

be in the valid library �. The present paper will show how weak a library

� can be and still be strong enough to restrict modus ponens.

In [1] we constructed an algorithmic version of the Curry paradox using

the connective
�) and a specially designed algorithm which we called

CURRY. We put an ad hoc, but valid, rule in the library � relating to the

obvious behavior of CURRY, and showed that the
�)-version of modus

ponens could not possibly be in �. We interpreted this as a failure of modus

ponens, not as a failure of the ad hoc rule. In other words, we advocated

that given a choice for inclusion in the library � between the rule modus

ponens or rules similar to the ad hoc rule, that preference be given to the

latter. Indeed, in our second paper [2], we showed that rules like the ad hoc

rule for CURRY have a stability property that is lacking in rules such as

modus ponens.

WAYNE AITKEN AND JEFFREY A. BARRETT24



Moreover, there is a sense in which the ad hoc rule for CURRY is just an

instance of a general functional abstraction principle. Functional abstraction

principles, like comprehension principles, are usually considered to be

much more suspect than modus ponens, but in the present paper we show

that a functional abstraction principle does indeed hold.5 We show also that

if � contains a small collection of simple, uncontentious rules concerning

obvious properties of algorithmic evaluation, the Evaluation Rules, then the

seemingly ad hoc rule for CURRY is a actually a consequence of the func-

tional abstraction principle. Indeed, it can be argued that rules such as the ad

hoc rule for CURRY would be a (possibly unintended) consequence of any

sufficiently complete library � designed to prove results concerning algor-

ithms. So the only safe library � is one that does not include
�)-modus ponens.

Building on [2], this paper completes the development of algorithmic

logic as a natural exemplar or model for type-free propositional logic.6 This

logic has an internal truth predicate and an internal functional abstraction

principle, and allows the use of a rich collection of inferential rules. There

are no concerns about consistency since the logic is built around a model.

Although this logic restricts rules such as modus ponens, by varying the

library � one can avoid many of the limitations engendered by the

restriction. In addition, in many situations the algorithmic version of the law

of the excluded middle will hold and
�) will be essentially equivalent to the

material conditional. In these situations, the restrictions on the use of rules

of classical logic can be removed by using the material conditional.

3. FUNCTIONAL ABSTRACTION

In this section we discuss, in a general setting, functional abstraction prin-

ciples and comprehension principles. We explain what we mean when we say

such a principle is internal. Then, in the following sections, we consider the

functional abstraction principle in the particular setting of algorithmic logic.

A functional abstraction principle asserts that every description of a

function determines an object that instantiates that description. More

specifically, given a term �ðxÞ in a formal language with free variable x, it

asserts the existence of a function f that corresponds to the rule x 7! �ðxÞ.
In a type-free setting, the function f and the possible values of the variable

x belong to the same domain. A functional abstraction principle can be

viewed as a bridge between the syntax (the term with free variable) and

the semantics (the function in the domain that instantiates the term).

To make this more precise, assume for simplicity a type-free system

whose semantics is represented by a fixed domain, and whose formal syntax

is as economical as possible for the formulation of the principle.
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We begin with the semantics. Imagine a domain D where some of the

members of D are functions. If f is a function in D and if b 2 D is in the

domain of f , then we define f �b to the image of f applied to b. As usual,

one can write fb or f ðbÞ for f �b. We call � the application operator of D.

There is no requirement that every object in D be a function, nor that

every function have domain equal to all of D. Consequently, we allow

the application operation to be partial: we do not assume a�b is defined

for all a; b 2 D. The application operator defines a partial function from

D�D to D. In this general setting, we do not require that coextensive

functions be equal.

The formal syntax requires variables, constants, and a binary

application symbol ‘�’ or equivalent for term formation.7 For the

purposes of a functional abstraction principle, the formal syntax requires

terms, but not formulas.

A valuation is an assignment of an object of D to each of the formal

variables. Given a valuation � and a term � , we define k�k�, the value of

� under �, in the usual way. The result, when it is defined, is an object of

D. Since � can be partial, we allow for the possibility that k�k� is

undefined for some terms � .

Let T be the set of all terms. A functional abstraction principle

asserts the existence of operators �x : T ! T , one for each variable x,

sending a term � to a term �x� denoting the function defined by the rule

x 7! � . To be more precise, for every term � and valuation �,

(a) �x� does not contain x as a free variable,

(b) k�x�k� is defined,

(c) k�x��xk� is defined if and only if k�k� is defined, and

(d) if k�k� is defined, then

k�x��xk� ¼ k�k�:

Note that �x is not assumed to be a symbol in the formal syntax, but

rather a function T ! T . It is a classical result of combinatory logic that if

the domain D has objects corresponding to the traditional K and S

combinators, and if the formal syntax has constants assigned to K and S,

then �x can be defined in a uniform manner such that the above principle

holds. The best known case is where application � is total (see [4]), but the

partial case holds as well (see Chapter VI of [3]).

A functional abstraction principle yields a corresponding principle, often

called a comprehension principle, for properties. For this, fix two objects

of D to represent truth and falsity. Functions on D whose values are in the

set containing these two objects are Boolean functions. The comprehen-
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sion principle states that certain formal descriptions of properties

determine Boolean functions that instantiates the descriptions.

Properties represented by Boolean functions inD are internal properties.

The more internal properties that D possesses, the more expressive the type-

free system. In algorithmic logic, for instance, implication and other logical

connectives can be formulated in terms of internal properties.

One might also want to express a functional abstraction principles

itself in terms of internal properties. Such a functional abstraction

principle will be said to be internal.

A main obstacle for the existence of an internal functional abstraction

principle is that the functional abstraction principle makes use of

k�x��xk� and k�k�, expressions that are not always defined; they do

not always denote objects in the semantics D. In the present paper we

replace these expressions with terms that uniformly denote objects in D.

We do so by employing application trees.

Application trees make possible, for each valuation �, an interpreta-

tion of all terms � , even when the application operator is partial. For

example, kx�yk� is usually defined as the result of applying kxk� to kyk�.

When the application operation is partial, expression such as kx�yk�
might be undefined. With trees, however, we will interpret jx�yj� not as

the result of applying jxj� to jyj�, but instead as a tree with nodes jxj� and

jyj�. When that tree is evaluated, we recover kx�yk�, assuming the tree

successfully evaluates.

Note that we use double bars, as in k�k�, for the traditional interpretation,

and we use single bars, as in �j j�, for the tree interpretation. To be able to

define such a tree interpretation, our domain D must have objects

instantiating trees. This can be done in algorithmic logic using lists.

An internal abstraction principle formulated in terms of trees requires

a notion of tree equivalence � such that if T1 � T2, where T1 and T2 are

trees in D, then (a) T1 evaluates if and only if T2 evaluates, and (b) if

they evaluate then they evaluate to the same object of D. Of course, the

tree equivalence � needs to be definable in terms of internal properties.

In this setting, an internal functional abstraction principle asserts that

�
��x��x��� � �j j�

for all valuations � and all terms � .

4. EVALUATION TREES

For the remainder of the paper, we will adopt the notations and

conventions above and of [2].
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Let a; b, and c be three pieces of data where a and b are algorithms.

Suppose one applies the algorithm b to the input c, then applies a to the

resulting output. A natural way to describe this sequence of evaluations

is with a tree:

Such an evaluation tree can be thought of as a description of how to

organize the evaluation of data.

Evaluation trees themselves can be thought of as a type of datum in

algorithmic logic. This can be accomplished by representing a node of a

tree as a list of length two, and a terminus as a singleton list.

DEFINITION 4.1. An evaluation tree is defined recursively as follows.

(a) A singleton list ½c� is an evaluation tree. This type of tree is called a

simple tree.

(b) If T1 and T2 are evaluation trees, then so is ½T1; T2�.

CONVENTION 4.2. The simple tree ½c� is usually written TreeðcÞ. If T1

and T2 are trees, we usually write T1�T2 for the tree ½T1;T2�.

CONVENTION 4.3. We abbreviate T�TreeðcÞ as T�c, and TreeðcÞ�T as

c�T , when context allows.8

For example, the above evaluation tree is formally the nested list

h

½a�;
�

½b�; ½c�
�i

;

but is more conveniently represented by a�ðb�cÞ.
For a more complex example,

�h

½a�; ½b�
i

;
h

½a�;
�

½c�; ½b�
�i
�

is the datum corresponding to the tree
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which can also be written as ða�bÞ��a�ðc�bÞ�.
DEFINITION 4.4. Given an evaluation tree T , the evaluation of T is

recursively defined as follows:

(a) The simple tree TreeðcÞ evaluates to c.

(b) If T1 and T2 are evaluation trees, then T1�T2 evaluates if and only if

(1) T1 evaluates to some datum, say a1,

(2) T2 evaluates to some datum, say a2, and

(3) a1 halts when applied to input a2.

And, if these conditions hold, then T1�T2 evaluates to the output

resulting from applying a1 to the input a2.

DEFINITION 4.5. Fix an evaluation algorithm EVAL that does the

following. EVAL expects as input a tree T . If T evaluates to c then EVAL

outputs c. If T does not evaluate, then EVAL does not halt. The

algorithmic statement ½EVAL; T ; c� is written T 7!c.

In this notion, the algorithmic statement TreeðcÞ7!c is true for all data c.

Suppose ½a; b; c� is a true algorithmic statement, T1 7!a, and T2 7!b. Then

T1�T2 7! c.

5. THE BASIC COMBINATORS

In this section we define algorithmic versions of the traditional

combinators K and S. In addition, we define a tree corresponding to

the standard identity combinator I .

DEFINITION 5.1. Let a be a datum. An a-constant algorithm is one

that, when applied to any datum, halts with output a.

Let k be an algorithm that, when applied to an input a, halts with an a-

constant algorithm as the output. In other words, for all data a and b,

ðk�aÞ�b 7! a:

DEFINITION 5.2. Let a and b be data. An sa;b-algorithm is an

algorithm that, when applied to input c, halts with output d if and only

if ða�cÞ�ðb�cÞ 7! d.

Let a be a datum. An sa-algorithm is an algorithm that, when applied

to input b, halts with output an sa;b-algorithm.
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Let s be an algorithm that, when applied to input a, halts with output

an sa-algorithm.

In summary, consider the trees
�

ðs�aÞ�b��c and ða�cÞ�ðb�cÞ:

These trees have the property that if one tree evaluates, then both do; and

if they evaluate, then they evaluate to the same datum.

DEFINITION 5.3. The evaluation tree I is defined to be ðs�kÞ�k:

PROPOSITION 5.4. The statement I�c 7! c holds for all data c.

Proof. The evaluation tree I�c is
�

ðs�kÞ�k��c. This tree evaluates if and

only if ðk�cÞ�ðk�cÞ evaluates, and if they evaluate, they evaluate to the

same datum. By definition of k, the tree k�c always evaluates to some b

that is a c-constant algorithm. By the definition of k again, ðk�cÞ�b 7! c.

Thus I�c 7! c. Ì

6. STRUCTURAL EQUIVALENCE BETWEEN EVALUATION TREES

DEFINITION 6.1. The relation � between evaluation trees is defined to

be the equivalence relation generated by the following rules:

(a) ðk�TÞ�c � T .

(b)
��

s�T1

��T2

��T3 � ðT1�T3Þ�ðT2�T3Þ.
(c) If T1 � T2 then T�T1 � T�T2.

(d) If T1 � T2 then T1�T � T2�T .

(e) If T 7!c then T � TreeðcÞ.
In the above rules, T ;T1; T2; and T3 are evaluation trees, and c is a

datum.

PROPOSITION 6.2. Suppose that T1 � T2, where T1 and T2 are

evaluation trees. Then T1 evaluates if and only if T2 evaluates; and if

they evaluate, they evaluate to the same datum.
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Proof. This follows directly from the definitions of Sections 4 and 5. Ì

PROPOSITION 6.3. The equivalence I�c � TreeðcÞ holds for all data c.

Proof. This follows from Proposition 5.4 and Definition 6.1(e). Ì

7. A FORMAL LANGUAGE FOR ALGORITHMIC LOGIC

The language of pure combinatory logic is strikingly simple, yet

expressive enough to formulate an internal abstraction principle. As

mentioned above, we do not need formulas in our language, so we use

only the terms of pure combinatory logic.

DEFINITION 7.1. A pure CL-term9, or CL-term for short, is recursively

defined to be an expression of either of the following types.

(a) An atom which is any of a countable number of variable symbols or

the constant symbols K or S.

(b) An application term which is a term of the form ð�1�2Þ where �1

and �2 are pure CL-terms.

Since there are no quantifiers in this language, all variables are free.

DEFINITION 7.2. A valuation � is an assignment of data to each

variable (or at least to each variable occurring in the CL-terms under

consideration). Given a CL-term � the associated evaluation tree �j j� is

defined as follows.

(a) Kj j� is TreeðkÞ and Sj j� is TreeðsÞ.
(b) If x is a variable, then xj j� is TreeðcÞ where c is the datum assigned

to x by �.

(c) For CL-terms �1 and �2, ð�1�2Þj j� is �1j j�� �2j j�.

DEFINITION 7.3. Let � be a valuation, and � a CL-term. If the tree �j j�
evaluates to c, then �k k� is defined to be the datum c:

�j j� 7! �k k�:

If the tree �j j� does not evaluate, then �k k� is undefined.

DEFINITION 7.4. Let I be the CL-term ððSKÞKÞ. (Context will

distinguish between the term I and the tree I .)
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The following is a direct consequence of the above definitions.

LEMMA 7.5. The equation Ij j�¼ I holds for all valuations �. (On the

left hand side I is a CL-term, and on the right hand side I is a tree.)

8. THE LAMBDA OPERATOR

There are several ways to define the lambda operator, each with its own

advantages.10 We choose the simplest for our purposes.

DEFINITION 8.1. Let x be a variable. The lambda operator �x

associated with x is a map from the set of CL-terms to the set of CL-

terms. The definition is recursive:

(a) �xx is I .

(b) If � is an atom not equal to x, then �x� is ðK�Þ.
(c) �xð�1�2Þ is

�

ðS �x�1Þ�x�2

�

.

The lambda operator is also called the abstraction operator.

PROPOSITION 8.2. Let � be a CL-term. The variable x is not a

variable of �x� . If y is a variable distinct from x, then y is a variable of

�x� if and only if it is a variable of � .

Proof. This follows directly from the definition. Ì

PROPOSITION 8.3. Let � be a CL-term and � an valuation. Then the

tree �x�j j� evaluates. In other words, �x�k k� is defined.

Proof. We prove this by induction on the length of � .

CASE 1: � is x. By Definition 8.1(a), �x� is the term I . By Lemma 7.5,

�x�j j� is the tree I which is just ðs�kÞ�k. By definition of s, this

tree evaluates to an sk;k-algorithm.

CASE 2: � is an atom not equal to x. By Definition 8.1(b), �x�j j� is

ðK�Þj j� which, by Definition 7.2, is k� �j j�. In this case �j j� is

of the form TreeðcÞ for some datum c. Thus �x�j j� is k�c
(using Convention 4.3). By the definition of k, the tree k�c
evaluates to a c-constant algorithm.

CASE 3: � is ð�1�2Þ where �1 and �2 are two CL-terms for which the

proposition holds. By assumption, �x�ik k� is defined and equal to

some ai. So, with ¼ referring to equality of trees treated as data,

�x�j j�¼ �xð�1�2Þj j�
¼
�

ðS �x�1Þ�x�2

��
�

�
�
�

by Definition 8.1(c)

¼
�

s� �x�1j j�
�� �x�2j j� by Definition 7.2:

WAYNE AITKEN AND JEFFREY A. BARRETT32



By definition of s, the tree
�

s� �x�1j j�
�� �x�2j j� evaluates to an

sa1;a2
-algorithm. Ì

9. THE INTERNAL ABSTRACTION PRINCIPLE

Now that we have the appropriate definitions and conventions, the

internal abstraction principle follows straightforwardly.

THEOREM 9.1. (Internal Abstraction Principle) For all CL-terms � ,

variables x, and valuations �,

ðð�x�ÞxÞj j�� �j j�:

Proof. The proof is by induction on the length of � . Throughout suppose

that the valuation � assigns the datum c to the variable x. In other words,

that xj j� is TreeðcÞ and xk k� is c. Below, the symbol ¼ represents

equality of data.

CASE 1: � is x. By Definition 8.1(a), �x� is the term I . By Lemma 7.5,

�x�j j� is the tree I . So

ðð�x�ÞxÞj j�¼ �x�j j�� xj j� by Definition 7.2(c)

¼I�TreeðcÞ
¼I�c using Convention 4.3.

But I�c � TreeðcÞ by Proposition 6.3, and TreeðcÞ is �j j� in this case.

CASE 2: � is an atom not equal to x. So �x� is ðK�Þ by Definition

8.1(b).

ðð�x�ÞxÞj j�¼ ððK�ÞxÞj j�
¼
�

k� �j j�
�� xj j� by Definition 7.2

¼
�

k� �j j�
��TreeðcÞ

¼
�

k� �j j�
��c using Convention 4.3.

However,
�

k� �j j�
��c � �j j� by Definition 6.1(a).

CASE 3: � is ð�1�2Þ where �1 and �2 are two CL-terms for which the

proposition holds. Then

ðð�x�ÞxÞj j�¼
��

ðS �x�1Þ�x�2

�

x
	�

�
�

�
�
�
�

by Definition 8.1(c)

¼
��

s� �x�1j j�
�� �x�2j j�

	

� xj j� by Definition 7.2.
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But, by Definition 6.1(b),

��

s� �x�1j j�
�� �x�2j j�

	

� xj j��
�

�x�1j j�� xj j�
��� �x�2j j�� xj j�

�

:

Now, by Definition 7.2(c),

�x�1j j�� xj j�¼ ðð�x�1ÞxÞj j� and �x�2j j�� xj j�¼ ðð�x�2ÞxÞj j�;

and, by the inductive hypothesis,

ðð�x�1ÞxÞj j�� �1j j� and ðð�x�2ÞxÞj j�� �2j j�:

Therefore,

ðð�x�ÞxÞj j� � ðð�x�1ÞxÞj j�� ðð�x�2ÞxÞj j�
� �1j j�� ðð�x�2ÞxÞj j� by Definition 6.1(d)

� �1j j�� �2j j� by Definition 6.1(c).

By Definition 7.2(c), �1j j�� �2j j� is just ð�1�2Þj j�, and, in the current case,

ð�1�2Þj j� is �j j�. Ì

In order to justify the claim that the above theorem is an internal

abstraction principle, we need to verify that statements of the form

T1 � T2 are algorithmic statements, where T1 and T2 are evaluation trees.

LEMMA 9.2. There is an algorithm TEQUIV which, when applied to an

input of the form ½T1; T2� with T1 and T2 evaluation trees, halts with

output 1 if T1 � T2, and does not halt otherwise. In other words, for trees

T1;T2, the algorithmic statement [TEQUIV; ½T1; T2�; 1] is true if and only if

T1 � T2.

Proof. For any positive integer n, define �n to be the weakest

equivalence relation among trees with data size less than n such that

(a) ðk�TÞ�c �n T .

(b) ððs�T 1Þ�T 2Þ�T 3 �n ðT 1�T 3Þ�ðT 2�T 1Þ.
(c) If T1 �n T2 then T�T1 �n T�T2.

(d) If T1 �n T2 then T1�T �n T2�T .

(e) If T 7!c with a process of runtime less than n, then T �n TreeðcÞ,
where all trees in the above rules are required to have data size less than n.
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The first step is to observe that T1 �n T2 is effectively decidable for

all trees T1 and T2 of data size less than n. The second step is to observe

that T1 � T2 holds if and only if T1 �n T2 holds for some n.11 Ì

So T1 � T2 can be regarded as the algorithmic statement

½TEQUIV; ½T1; T2�; 1
�

.

THEOREM 9.3. (Simplified Internal Abstraction Principle) Let � be a

CL-term, x a variable, and � a valuation. Then

ðð�x�ÞxÞj j�� �x�k k�� xk k�;

so

�x�k k�� xk k�� �j j�:

Proof. First note that �x�k k� is defined by Proposition 8.3. In other words,

�x�j j� 7! �x�k k�:

So, by Definition 6.1(e),

�x�j j�� Tree
�

�x�k k�
	

:

By Definition 6.1(d) (and Convention 4.3),

�x�j j�� xk k�� �x�k k�� xk k�:

By Definition 7.2(c) (and Convention 4.3 again),

ðð�x�ÞxÞj j�¼ �x�j j�� xj j�¼ �x�j j��Tree
�

xk k�
	

¼ �x�j j�� xk k�:

Therefore, ðð�x�ÞxÞj j�� �x�k k�� xk k�. The full statement now follows

from the Internal Abstraction Principle (Theorem 9.1). Ì

The following are weaker internal abstraction principles in the sense

that they only yield algorithmic statements in the case where �k k� is defined.

COROLLARY 9.4. Let � be a CL-term, x a variable, and � a valuation

such that �k k� is defined. Then

�x�k k�� xk k� 7! �k k� and
�

�x�k k�; xk k�; �k k�
�

:

are true algorithmic statements.
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Proof. First observe that the algorithmic statements in question are

indeed well-defined since �x�k k� is defined by Proposition 8.3, xk k� is

defined for all valuations �, and �k k� is defined by assumption.

By the Simplified Internal Abstraction Principle (Theorem 9.3),

�x�k k�� xk k�� �j j�:

By assumption, �j j� 7! �k k�. So, by Proposition 6.2,

�x�k k�� xk k� 7! �k k�:

Finally, by the definition of evaluation (Definition 4.4), the algorithmic

statement
�

�x�k k�; xk k�; �k k�
�

holds. Ì

10. THE EVALUATION RULES

In order to make use of the internal abstraction principle, the inference

library � needs valid rules concerning the evaluation of trees. We define

three such rules using the conventions for rules and rules diagrams from

[2]. These three rules together will be called the Evaluation Rules.

RULE 1. The Tree Equivalence Rule is an algorithm that implements

the following rule diagram:

T1 � T2

T1 7! a

T2 7! a:

PROPOSITION 10.1. The Tree Equivalence Rule is �-valid for all

libraries �.

Proof. This follows from Proposition 6.2 (see also Definition 4.5). Ì

RULE 2. The Tree Translation Rule is an algorithm that simultaneously

implements the following two diagrams:

½a; b; c�
a�b 7! c

a�b 7! c

½a; b; c� :

PROPOSITION 10.2. The Tree Translation Rule is �-valid for all

libraries �.
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Proof. Recall that ½a; b; c� is true if and only if a applied to b yields c.

So, by the definition of evaluation (Definition 4.4), ½a; b; c� is true if and

only if a�b 7! c is true. Ì
A brute-force method of proving results about algorithms is to

emulate the algorithm and see what happens. In particular, if a tree T

evaluates, one can, by brute-force emulation if necessary, prove that T

evaluates. This technique is implemented in the following:

RULE 3. The Direct Evaluation Rule is an algorithm generating the

sentence T 7!c whenever T is a tree that evaluates to c.

As with all rules (as defined in [2]), it expects an input of the form

½H ; �;m� where H is a list of algorithmic statements, � is expected (but

not required) to be a library of rules, and m is a natural number. The

Direct Evaluation Rule ignores � and all the statements on H , but uses m

to bound its calculations. Its main task is to systematically searches for

trees that evaluate. A full search would take an infinite number of steps

(or, in the terminology of [2], an infinite runtime), but rules are required

to halt. So the Direct Evaluation Rule stops its search after runtime m.

Then, for every evaluating tree T that was detected, it adds the statement

T 7!c to H where c is the value of the evaluation of T . Finally it outputs

this extended list H .

Since trees that evaluate form a recursively enumerable set, we

conclude that for all true statements of the form T 7!c there will be an m

such that T 7!c will be added to the output list.

PROPOSITION 10.3. The Direct Evaluation Rule is �-valid for all

libraries �. Suppose � contains this rule, and suppose that T is a tree

that evaluates to c. Then

‘� T 7!c:

Proof. The rule only appends true statements to the input list, so it is

�-valid. If � contains the rule, then the deduction algorithm (DEDUCE,

described in [2]) will eventually invoke the rule with a runtime m

sufficient to generate T 7!c. Ì

Remark. The Direct Evaluation Rule is similar to the Universal Rule

of [2]. In fact, the following shows that if an algorithmic statement is

true, then the Evaluation Rules will prove it true.

PROPOSITION 10.4. If � contains the Evaluation Rules and if A is a

true algorithmic statement, then ‘� A.
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Proof. Write A ¼ ½a; b; c�. Since A is true, a�b 7! c. By Proposition 10.3,

‘� a�b 7! c. Since � contains the Tree Translation Rule, ‘� ½a; b; c�. Ì

This proposition allows us to strengthen the Internal Abstraction

Principle whenever � contains the three Evaluation Rules. In this case

the Internal Abstraction Principle is not merely true, but it is �-provable.

THEOREM 10.5. Let � be a CL-term, x a variable, and � a valuation. If

the library � contains the Evaluation Rules then

‘�
�

ð�x�Þx
��

�
�
�
�
� �j j�:

Proof. The result follows by Proposition 10.4 and the Internal

Abstraction Principle (Theorem 9.1). Ì

11. APPLICATIONS TO FIXED POINTS

11.1. DEFINITION OF THE CURRY ALGORITHM

A Curry fixed point with respect to a statement A is a statement Q� such

that Q�

�() ðQ�
�)AÞ is true: it is a logical fixed point of the

transformation that sends B to B
�)A. In classical or intuitionistic logic

such a fixed point would lead to a contradiction if A is false; in

algorithmic logic, however, such fixed points do not necessarily lead to

contradictions.

We consider the case where A is F , the canonical false sentence in

algorithmic logic. Since
�:Q� is defined to be Q�

�)F , a Curry fixed point

for F has the property that Q�
�() �:Q�.

In [2], the algorithm CURRY was used to define a Curry fixed point

which was then used in several of the theorems in Section 14 of [2]. We

now show that CURRY can be defined using the lambda operator.

The definition of CURRY uses algorithmic statements of the form
�

�; ½�; ��; 1
�

, which, for convenience, we write as @�;�. Let � be an

algorithm that, when applied to the input ½�; ��, outputs
�

½@�;��; �;F
�

. In

other words,

��½�; ��7!�½@�;��; �;F �:
Here � is expected, but not required, to be a library and � is expected,

but not required, to be an algorithm.
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Informally, CURRY can be described as an algorithm that, when applied

to input ½�; �� with � an algorithm and � a library, attempts to disprove

the algorithmic statement @�;� ¼
�

�; ½�; ��; 1
�

using the library �. More

specifically, when applied to ½�; ��, the algorithm CURRY runs the process

DEDUCE applied to
�

½@�;��; �;F
�

, and the output of this process, if any,

becomes the output of CURRY.12 So
�

CURRY; ½�;��; 1
i

asserts that
�

�; ½�; ��; 1
�

is false.

Using the lambda operator, and �, we can express the definition of

CURRY more succinctly as �xðDEDUCEð�xÞÞ. Of course, this is not a pure

CL-term since DEDUCE and � are not constants of the formal language. We

get around this expressive limitiation by using a suitable valuation �.

DEFINITION 11.1. Define CURRY to be �xðzðyxÞÞk k� where x, y, and z

are distinct variables, and where � is a valuation assigning the algorithm

� to y, and the algorithm DEDUCE to z. Observe that �xðzðyxÞÞk k� is well-

defined by Proposition 8.3.

LEMMA 11.2. For all data � and �,

CURRY�½�; �� � DEDUCE��½@�;��; �;F �:

Proof. Let � be a valuation which assigns the datum ½�; �� to x, the

algorithm � to y, and the algorithm DEDUCE to z.

By the Simplified Internal Abstraction Principle (Theorem 9.3),

�xðzðyxÞÞk k�� xk k�� ðzðyxÞÞj j�:

In other words,

CURRY�½�; �� � ðzðyxÞÞj j�:

By Definition 7.2 and Convention 4.3,

ðzðyxÞÞj j�¼ zj j�� ðyxÞj j�¼ zj j��
�

yj j�� xj j�
�

¼ DEDUCE����½a; ���:

So

CURRY�½�; �� � DEDUCE�ð��½�; ��Þ:
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Since ��½�; ��7!�½@�;��; �;F �; Definition 6.1(e) gives

��½�; �� � Tree
��

½@�;��; �;F
�	

:

Finally, Definition 6.1(c) and Convention 4.3 give

DEDUCE����½�; ��� � DEDUCE��½@�;��; �;F �:
Ì

THEOREM 11.3. Let � be a library containing the Evaluation Rules.

Then, for any datum �,

�

CURRY; ½�; ��; 1
� �() �:

�

�; ½�; ��; 1
�

:

Proof. Let W be the �-deductive closure of
�

CURRY; ½�; ��; 1
�

(in the

sense of [2]). By the Tree Translation Rule, CURRY�½�; ��7!1 is in W . By

the above lemma and Proposition 10.4,

CURRY�½�; �� � DEDUCE��½@�;��; �;F �:
is in W . So by the Tree Equivalence Rule,

DEDUCE��½@�;��; �;F �7!1

is in W . By the Tree Translation Rule,

h

DEDUCE;
�

½@�;��; �;F
�

; 1
i

is in W . Now, by the definitions and notation of [2], the statement
�:@�;�

is exactly
�

DEDUCE;
�

½@�;��; �;F
�

; 1
i

. Thus :� @�;� is in W . Therefore,

½CURRY; ½�; ��; 1
�

‘� :� @�;�:

A similar argument gives

:� @�;� ‘�
�

CURRY; ½�; ��; 1
�

: Ì

Remark. The argument of paper [1] was based on the presence in the

inference library of a valid but ad hoc rule describing the behavior of

CURRY. The above theorem shows that if the library � contains the (non-

ad hoc) Evaluation Rules, then the argument of [1] applies without an ad

hoc rule in �.
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11.2. DEFINITION OF THE CURRY FIXED POINT

DEFINITION 11.4. Let � be a library. Then Q� is defined to be the

algorithmic statement
�

CURRY,
�

CURRY ��; 1
�

.

THEOREM 11.5. If � is a library containing the Evaluation Rules, then

Q�

�() �:Q�:

Proof. By Theorem 11.3,

�

CURRY; ½CURRY; ��; 1
� �() �:

�

CURRY; ½CURRY; ��; 1
�

:
Ì

12. CONSEQUENCE OF THE CURRY FIXED POINT

Several of the results of Chapter 14 of [2] can now be strengthened for

libraries � containing the Evaluation Rules.

THEOREM 12.1. Let � be a valid library containing the Evaluation

Rules. Then Q�;
�: Q� ‘� F is false. Thus the law A;

�: A ‘� F fails.

Proof. Assume otherwise. So, using the terminology of [2], the statement

F is in any �-deductively closed set containing both Q� and
�: Q�. By

Theorem 11.5, Q�

�() �: Q�. In other words, the statement Q� is in a �-

deductively closed set if and only if
�: Q� is. Also, by the validity of �, the

statement Q� holds if and only if its negation
�: Q� holds.

Let W be the �-deductive closure of Q�. Then, as mentioned above,
�: Q� is in W , so W must contain F . This shows Q�

�) F holds; that is,
�: Q� is true. As mentioned above, this implies that Q� is true. Since

Q�;
�: Q� ‘� F and since � is valid, F is true. Ì

COROLLARY 12.2. Let � be a valid library containing the Evaluation

Rules. Then the following law fails:

* ‘� A
�)B implies *;A ‘� B

Proof. Consider the case where A is Q� and B is F . So
�:Q� ‘� Q�

�
)F

since
�:Q� ‘�

�:Q�. However,
�:Q�;Q� ‘� F is false by Theorem 12.1. Ì

COROLLARY 12.3. Let � be a valid library containing the Evaluation

Rules. Then Q�

�
)F ;Q� ‘� F is false. In particular, the modus ponens

law A
�
)B;A ‘� B fails.

Proof. As above,
�:Q�;Q� ‘� F is false, and

�:Q� is just Q�

�
)F . Ì
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Remark. The above shows that any valid library containing the

Evaluation Rules cannot contain either of the following rules

A
�
)B

A

B

A
�: A

F
:

Recall from [2] that each of these rules is in fact valid if � is a valid

library (the second is a special case of the first).
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NOTES

1 Some have argued that such restrictions on rules of classical logic undermines the

usefulness of type-free logics. We believe, to the contrary, that the expressive power of a

suitable type-free logic, much of which comes from the abstraction principle, will

compensate for any loss of classical rules of logic, and that such classical rules will be

demonstratively valid in most situations where one needs them.

It has been clear since the era of Church and Curry that any type-free logic will require

some limitations. What is not so clear is exactly what limitations to make. Different type-free

systems have been proposed, each with different limitations. We view the role of algorithmic

logic as a guide to help in sorting which limitations to classical logical rules are necessary,

and which are not, and to suggest how to work around the limitations that emerge.
2 In [2] we discuss specific constraints on the selection of a background theory of

computation. We use the same assumptions throughout the present paper.
3 The data set is assumed to be countable. In fact, one can follow a standard practice and

take the data set to be N. One then codes all data as natural numbers, including algorithms,

lists of natural numbers, strings, etc. For example, one can fix an effective enumeration of all

algorithms, and use e 2 N to code for the e th algorithm under this enumeration. From this

point of view an algorithmic statement is a natural number coding a triple ½e; a; b� of natural

numbers. Such an algorithmic statement is assigned the value Btrue[ if and only if

fegðaÞ ¼ b where, following Kleene, feg denotes the partial function on N defined by

the e th algorithm. We do not set up such codings in this paper, but instead use more informal

language.
4 See [2] for details.
5 From one point of view this might be expected since the set of data forms a partial com-

binatory algebra (the Kleene model), and all partial combinatory algebras satisfy an abstraction

principle involving a suitable �-operator (see [3] Chapter VI). In this paper, however, we not

only show that the abstraction principle holds, but that it can be expressed internally. The

main technical innovation to the usual development of the abstraction operator is the use of

trees to make the pairing total and to preserve in the semantics the structure of a computation.
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refer to termini. To see why care is required, suppose, for instance, that � is the
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�
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h

½��; ½��
i

¼
h��

½a�; ½a�
��

;
��

½a�; ½a�
��i

or to

which is

h�

½a�; ½a�
�

;
�

½a�; ½a�
�i

.
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