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Combining Algebraizable Logics

A. JANOSSY,A. KURUCZ, andA. E. EIBEN

Abstract The general methodology of “algebraizing” logics is used here for
combining different logics. The combination of logics is represented as taking
the colimit of the constituent logics in the category of algebraizable logics. The
cocompleteness of this category as well as its isomorphism to the corresponding
category of certain first-order theories are proved.

1 Introduction In this paper we translate the “combining logics” problem to the
problem of “combining” certain theories of usual first-order logic. We prove that the
category of a special class of logics, calltdebraizable logical systems (see Defi-

nition 2.1 below), is isomorphic to the category of the corresponding first-order the-
ories. We also show that these categories are cocomplete. Some directions in which
the approach chosen can perhaps be generalized are pointed out in the last section.

2 Preliminaries As a set theoretic framework we presume any set theory which is
suitable for the foundation of category theory. For basic category theoretical notions
such as category, object, morphism, small diagram, cocone, coproduct, colimit, co-
equalizer, etc., we follow the usage of MacLane [8].

Our terminology follows the usual standards concerning classical first-order
logic and basics of universal algebra. For notions not defined but used here, see
Monk [9], and Burris and Sankappanavar [6].

o denotes the set of natural numbers. @gebraic similarity type is a function
t mapping some nonempty set into An elementf of the domairdom(t) of t with
t(f) = k is called ak-ary function symbol of type t. t-type algebras are structures
(in the usual sense) of the algebraic similarity tgpdhroughout the paper we fix
an infinite setX = {xg, X1, X2, . . .} of variables.x, y will always denote one of these
variables. The setsrm; of t-type terms, and Fmla; of t-type (first-order)formulas,
having variables fronX, are defined as usual. Rrary termis a term containing at
mostk-many distinct variablesc(x;,, . . ., X, ) denotes that the variables occurring in
T are among;,, . .., X,. Substitutions are functions: X — Trm as usual, which
extend to maps from terms to terms the natural way. For any substituiod term
(Xiy, - - -, %), o(7) will also be denoted by(x;, /o (X,), ..., X, /o(Xi,)). A binary
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termA(x, y) will also be written axAy. Trm, denotes thé-type world-algebra (ab-
solutely free algebra) generated by Xet

We will use symbol ‘=" for both validity (in models) and (semantical) conse-
guence relation of standard first-order logic. For anyiset Fmla;,

Mod;(I') =gt {A: Alis at-type algebra andvp € I') A = ¢}.

A t-type quasi-equation is at-type formula of form(ry =ty A - Aty =1, > 0 =
75), Wherer, 7, . . ., T, 7 € Trm. At-typequasi-variety is a clasK of t-type alge-
bras such thak = Mod; (I'") for some sef” of t-type quasi-equations. For any class
K of t-type algebrasQuar (K) denotes thgenerated quasi-variety i.e., the smallest
quasi-variety includingK.

Algebraizable logical systems defined below are the same as “algebraizable de-
ductive systems” of Blok and Pigozzi [4], or “algebraizable 1-deductive systems” of
Blok and Pigozzi [5], or the semantical consequence relation of “consequence com-
pact strongly nice general logics” of Areglka et al. [2].

Definition 2.1 A pair L = (Cn(L), » ) is called aralgebraizablelogical system

iff Cn(L) is an algebraic similarity type and-, is a binary relation between sets
of Cn(L)-type terms an€n(L)-type terms, satisfying conditions (1-6) below. Ele-
ments of the domain a@n( L) are called théogical connectives of L. The elements
of set X (of variables) are called in this conteattomic formulas (or propositional
variables) of L. Similarly, if ¢ is a k-ary) term of typeCn( L) theng is also called a
(k-ary)formulaof £, and the seTrmen ) is also called aEm(L) when itis regarded
as theset of all formulas of L. =~ is called theconsequence relation of L.

1. Voe FML))YNYT C Fm(L)p e T = Do,

2. Vope FML)(VILAC FM(L)T C A andTTr o = AR ro.

NMpe FML)NI,ACFML)T wypand(Vy e D)AR Y = Are .

Vo € FM(L)(VT' € FM(L))T =y o = AfiniteI” C DIV~ 0.

Vo € Fm(L))(YI" € Fm(L)) (Y substitutiono) '~ ¢ =

o) ¢y elrio(p).

6. There are somm, n € w, unary formulas,, ..., em_1 anddg, ..., dm_1, and
binary formulasAg. .., An_; of £ such that properties (a—e) below hold for

anye, o1, ..., ¢k, ¥, V1, ..., Y, x € FM(L), andfor anyi < n:
(@) ®rpAip,
(b) {pAjy 1| <nfmcyAie,
(©) {pAjy, YyAjx 1 | < np=ceAix,
(d) (V¥ k-aryc € dom(Cn(L))),
{@1A Y1, .., oAU | < Ny cC(en, .. @) AIC(YL, - . ., i),
(e) (Vs < m{p}res(p)Aids(p) and
{es(@)Ajds(p) :s<m, ] < nj,p.

A sequencésy, ..., Em-1, 60, ..., 0m-1, Ag, ..., Ap_1) Satisfying (6)(a—e) is
called analgebraizator for L.

ok w
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Some simple examples of algebraizable logical systems are inconsistent logics
(whereT'»= ¢ holds for anyT", ¢), and usual propositional logic (with algebraiza-

tor eg(@) = (¢ — @), So(@) = ¢ andpAgy = (¢ < ¥)). Other examples (also for
nonalgebraizable logical systems) can be found, e.g., in [4], [2], @«adet al. [3],

and Nemeti and Andeka [12].

Notation 2.2 Foranyl’, A € Fm(L), if A # @ then
P A g (VP € A) Ty

We shall use (s,8,A) as an abbreviation for(eo, ..., em-1,30, ... Sm_1,
Ao, ..., An_1). Similarly, .9.2(¢)AS(y) abbreviates the séti(p)Aj8i(V) @i <
m, j < n}of formulas. Or, on the first-order logic side, we write &x) = §(X) —
g(y) = 8(y) instead of the set

(A &0 =800 ¢ej(y)=85(y) : j<m)

i<m
of quasi-equations. Related abbreviations will also be used without further explana-
tion.

Definition 2.3  Let £ be an algebraizable logical system and(ie#, A) be an al-
gebraizator forL. For anyl" U {¢, ¥} € Fm(L), let

p=rvy < oAV
Then, by (6)(a—d) of Definition 2.1 is a congruence relation dirmg,, . Let

Alg(L) =g Quar({Trmey )/ =r: T' S FM(L)}).

Thatis,Alg(L) is a class of algebras (set of sentences) of §peL). The definition
of Alg(L) does not depend on the choice of the algebraizaid, A) as the follow-
ing proposition shows.

Proposition 2.4 (cf. [4], Theorem 2.15) Let £ be an algebraizable logical system
and let both (z, 8, A) and (¢/, 8’, A’) be algebraizatorsfor £. Then for any formulas
@, ¥ of L,

oAy oAy and pA' YL pAY.

Thus, for any algebraizable logical systeirthere is a uniquely determined quasi-
variety Alg(L). In the other direction, there are different algebraizable logical sys-
tems with the same “corresponding” quasi-variety, see e.g. [4], Chapter 5.2.4 for an
example.

The following “back and forth” theorem establishes the basic connection be-
tween a logicL and its algebraic (i.e., usual first-order) “translatié§(L).

Theorem 2.5 (cf. [4] Thms.2.4,4.7, 4.10 and [2] Thm.3.2.1) Let £ be an alge-
braizable logical system, and let (g, §, A) be an algebraizator for £. Then

1. for any formulas ¢g, ¢1, ..., ¢k Of L,

(o1, . o g0 <= AlG(L) = /\ E(ps) = 8(ps) — E(90) = 3(¢0);

1<s<k
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2. for any formulas 7o, 71, . .., T, 7> 77, - - -, T, OF £,

AgL) En=tA - Ax=1 — To=T1, <+
{rlﬁr/l, ce Tk&f/k}Z’&’L‘foA‘L’/o.

3 The category of algebraizable logical systems
Definition 3.1

1. Let 4, £, be algebraizable logical systems. A functibndom(Cn(£;)) —
Fm(L,) is called dogic-translation of £, into L, iff for any k-ary connective
c € dom(Cn(Ly)), 1(c) is ak-ary formula of £,. A logic-translation always
induces a function : Fm(£;) — Fm(Lp) in the following natural way:

(a) for any propositional variabbe [ (X) =g X;
(b) if cis ak-ary connective andy, . .., ¢x_1 are formulas of£, then

[(c(@o, ..., ok_1)) =der 1(C)(X0/T(90), ..., X1/ (px_1)).

I can be extended to any sebf formulas of£; by taking [ (I') =g« {1 (¢) :
pel}.
2. Alogic-translationl is called an(£;, Lp)-interpretation iff

(@) foranyl’ U {g} € Fm(Ly),
T, = [(D)wg,l(9);

(b) if (8,8, A) is an algebraizator for, then (i (z), I(8), [ (A)) is an alge-
braizator forLp.

3. We define an equivalence relation @i, £,)-interpretations as follows.
|~ = (Yo FM(L) w5,i(0)A23(0).

(Here (&, 82, Ay) is an arbitrary algebraizator faf,. By Proposition 2.4 and
Definition 2.1.3, the definition of does not depend on the choice of the alge-
braizator.) Let [] denote the~-equivalence class df

4. For any algebraizable logical systefnletid, be the logic-translation of
into L defined byid;(C) =g« C(Xo, ..., Xk_1), for eachk-ary connectivec €
dom(Cn(L)).

Lemma 3.2

1. Let Ly, L, L3 bealgebraizable logical systems, let |, | be (L, L,)-interpre-
tations and let J, J’ be (L, Lg)-interpretationssuchthat | ~ 1"and J ~ J'
hold. Then Jo I and J' o I’ are (£, Lg)-interpretations, and Jo | ~ J' o I’
(where o isthe usual composition of functions).

2. For any algebraizable logical system £, id, isan (£, £)-interpretation and
for any (L, £')-interpretation I,  oid, ~ | ~id ol.
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Proof:  Since(Jo 1)"= Jo T, itiseasy to check thalo | is an (L, Lg)-interpre-
tation. To prove (1), letz;, 8;, A;) be an algebraizator fof; (i=1,2,3), and letp be
an arbitrary formula ofZ;. Then, by | ~ I,
wr,l(p)Asl"(9) = (Jis an interpretation)
w~d((0)AM (9)
wr,(Jo (@A) (Jol’)(¢) = (Proposition 2.4 and Definition 2.1.3)
w(Jo N(@)As(Jo)(g).

On the other hand, by ~ J/,
w3 (@) 833 (1)) = wr,(Jo 1N (@) As(I 0 ") ().
Thus, by Definition 2.1.3 and 2.1.66y,(J o ) (¢) Az(J o I")(¢) follows.
The proof of (2) is obvious. O
Definition 3.3 Thecategory ALOG of algebraizable logical systemsis defined as

follows.

Objatoc =de {L: Lisan algebraizable logical syst¢m
MoraLoc (L1, £2) =g {[1]: ! is an(Ly, Lp)-interpretatiomn,

forany £y, £, € ObjaLoc
ID, =get [idz], forany L € Objaioc

[J[1] =aet [Jol], forany Ly, L, Lz € ObjaLog,
[1] € MoraLog (L1, £2), [J] € MoraLoc (L2, L3).

Then, by Lemma 3.2ALOG is indeed a category.

Now we proceed with making preparations to formulate the “algebraic” counterpart
of categoryALOG.

Definition 3.4

1. Lett be an algebraic similarity type and I&tbe at-type quasi-variety. Let
€05 v+r Em=1100s -+ Om_1 b_e unary and\g..., An_1 be binaryt-type terms
for somem, n € w. Then(g, §, A) is called adeductivizator of K iff

K = 8(XAY) = 8(XAY) <> X =Y

holds.
2. We define an equivalence relation on deductivizatots a$ follows:

(8,8, A) ~k (8,8, A') =g KEEX =8X) < &(x) =75 (X).

Let [z, 5, Alk denote thexk -equivalence class dE, §, A).

Proposition 35 Let L be an algebraizable logical system and let (z,3, A),
(g/,8, A’) betwo algebraizators for L. Then

1. (¢,8,A)and (¢, 8, A') are both deductivizators of Alg(L);
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2. (cf. [4], Theorem 2.15)
(55 8’ A) :Alg(L) <§/’ 5/7 A/>
Proof:
1. By Definition 2.1.6e,

XAy E(XAY)AS(XAY) and  E(XAY)AS(XAY) = XAY.

Thus, by Theorem 2.5.3lg(£) = £(XAY) = §(XAY) <> X =Y.
2. By Definition 2.1.2 and 2.1.6e,

E)AS(X) 8 (XA (x) and & (X)A'S (X) & 8(X)AS(X).
Thus, by Definition 2.1.3 and Proposition 2.4,
FEX)ASX) 8 (X)AS (X) and & (X)A8 (X)r8(X)AS(X).

Therefore, by Theorem 2.5.2)g(L) = £(X) = §(X) <> &' (X) = §'(X). O

O

Definition 3.6  Lett;, t, be algebraic similarity types. A functian. dom(t;) —
Trm, is called aerm-tranglation of t; intot, iff for any k-aryt;-type function symbol
f,1(f) is ak-ary term of typet,. A term-translation always induces a functibn
Trm, — Trm, and a functiori : Fmla;, — Fmlay, as follows:

e for any variablex € X, 1(X) =gg X;
o if fisak-ary function symbol of typé; andry, ..., tx_1 € Trmy, then

T(f(ro, ..., 1)) =def 1(F)(X0/T(70), ..., X—1/T(Tk=1));

e foranyrg, vy € Trmy, 1(to = 1) =de (1(70) =1(11));
o foranyg, ¥ € Fmlay,,

(=) =det ~1(9), T(@VY) =get T(@) VI(¥), T3AXQ) =ger IXT(@).

Similarly, the functions andi can be extended to sets of terms and formulas, respec-
tively, by stipulating that fo € Trmy,, i(7) =q¢ {i(7) : T € 7}, and forl' € Fmla,,

I(I") =gt {T(9) 1 €T}

Remark 3.7 A logic-translationl of some logic(Cn(Ly), »,) into some logic
(Cn(Lp), »p,) is in fact a term-translation of similarity typ@n(£;) into Cn(Lp).
Moreover, since formulas of; (i = 1, 2) can be considered &n(L)-type terms,

the functioni induced byl as a logic-translation is the samelamduced byl as a
term-translation.

Lemma3.8 Ifiisatermtransation of t; into tp thenfor any I' U {¢} € Fmlay,,
I'Ee=1T) =1(p).

Proof: Itis easy to check that‘preserves” the axioms and rules of any calculus for
first-order logic. O



372 A. ANOSSY,A. KURUCZ, andA. E. EIBEN

Definition 3.9

1. Forn = 1,2, lett, be an algebraic similarity type, l&, be at,-type quasi-
variety and let(en, 8n, An) be a deductivizator d,. Let

An =des (tn. Kn, [En, 8n, Ank,) (N =1,2).
A term-translation fromt, into t, is called an(4;, Ay)-interpretation iff
(@) foranyp € Fmlay,, Ki ¢ = Ky ET1(p);
(b) (1(21), 1(81), (A1) =k, (B2, 82, A2).

We note that this definition is sensible because, by (@8J;), 1(51), T(A1)) is
adeductivizator oK,.

2. We define an equivalence relation Oy, A, )-interpretations as follows:
| 7 j<=qe fOranyre Trmy, Ko kEi(r) =7(1).

Let [[1]] denote thex~-equivalence class of
3. Let4 =4« (t,K,[&, 8, Alx) as above. Leidg be the term-translation ¢fnto

tdefined byidg (f) =g f(Xo, ..., Xk_1), for eachk-ary function symbolf
dom(t).

We note that the functiohinduced by a4, 4,)-interpretation is a special case of
the well-investigated notion of “interpretation between first-order theories,” cf. [9],
Andréka et al. [1], van Benthem and Pearce [13], Gergely [7], aBché&ti [10]
and [11].
The following lemma is an easy consequence of basic properties of equational
logic.
Lemma 3.10
1. Let 1,1’ be (41, A)-interpretations and let j, j/ be (A, A3)-interpretations
suchthat1 ~1"and j~ ; hold. Thenjo1and} oI’ are (4;, As)-interpreta-
tions,and joi1~ j ol'.
2. idg i:san (4, A)-interpretation, and for any (4, A")-interpretation, Toidg ~
I ~idg ol.

Definition 3.11  Thecategory QVAR of logic-generated quasi-varietiesis defined
as follows.
Objovar =daer {4 : A= (t,K,[& 38, Alk), tis an algebraic
similarity type,K is at-type quasi-variety, and
(8,8, A) is a deductivizator oK}
Morouar (A1, A2) =det  {[[1]] : 1is an(Ay, Ap)-interpretation,
for any 4y, 4, € Objgvar
IDa =g [[ida]], foranyA e Objquar
[ =g [[J01]], forany A, Ay, Az € Objquar,
[[1]] € Morguar (A1, A2), [[J]] € Morguar(A2, A3).

Then, by Lemma 3.10QVAR is indeed a category.
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4 1somorphism
Theorem 4.1 ALOG and QVAR areisomorphic categories.
Proof: To prove the theorem, we define functdfs: ALOG — QVAR andF; :
QVAR — ALOG, and prove that (1-4) below hold.
1. for anyL S ObjALOG- Fz(Fl(L)) =L
2. foranyA e Objgyar, F1(F2(A)) = 4,
3. forany Ly, £, € Objaiog, [I] € MoraLoc (L1, £2), Fo(Fu([1]D) =[1];
4. foranyA;, A, € Objgvar, [[1]] € Morguar (A1, A2), Fi(F2([[1]])) = [[1]]-

Sep 1. The definition of functord=;, F, on objects. o
First, let L be an algebraizable logical system andiets, A) be an algebraiza-
tor for L. Then let

FL(£) =der (CN(L), Alg(L), [E, 8, Alaigiz))-
Note that this definition is sensible by Proposition 3.5. o
Second, to define functdf,, let 4 € Objgyar, A = (1, K, [, 8, A]k). Then
Fo(A) =get (t, ®R,2)),
where for anyi" U {¢} C Trm,

I~p,map < thereis some finit€’ C I' such that
K= /\ 8@ =50 — &) =3(¢).

yel”

By Definition 3.4.2, this definition is independent from the choice of representative
(g, 8, A) from the class{, §, Alk.
We show thatF,(A4) is an algebraizable logical system, and

(,8, A) is an algebraizator foF,(4). (1)

Indeed, conditions (1-5) of Definition 2.1 hold f&§(-1) by some basic properties
of first-order logic. Sincdé, 3, A) is a deductivizator oK, condition (6) of Defini-
tion 2.1 holds for~(A4) and(e, §, A) because of basic properties of equational logic.

Sep 2. The proofs of statements (1-2).
For (1): We show that for any algebraizable logical system (Cn(L), = ),
F(F1(£)) = L holds. Let(e, §, A) be an algebraizator fof, and let

F2(F1(£)) =ger (CN(L), &).
Then for anyl" U {¢} € Fm(L),

I'~'¢ <= (by definition of Fy, F,)

@Ar' T, Iisfinite) Alg(L) = [\ 8(¥) =8(¥) > &(p) = d(p)=
yel”

(by Theorem 2.5.1)
Ar’ cr, r’isfinite) I = <= (by Definition 2.1.2, 2.1.4)
'~ re.
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For (2): Let4 = (t,K, [, 6, Alk). We show thatF;(F.(A4)) = 4. By (1)
above, it is enough to show thidt= Alg(F»(A4)) holds. To this end, leq be an ar-
bitrary t-type quasi-equation of formy = 7; A--- A = 1, — 710 = 7. Then, by
Theorem 2.5.2,

Alg(F(A) E q <= {11AT), ..., AT &Ry ) ToAT)
def. of o _ o L
e<:0> K= /\ E(TiAT) = 8(TiAT)) > E(T0ATH) = 8(T0ATp)
1<i<k

—KEq

since(z, 8, A) is a deductivizator oK.

Sep 3. The definition of functord=;, F, on morphisms.
First, for any( L, Lp)-interpretationl, let Fy ([1]) =g [[1]]. We have to show
that this definition is sensible, that is,

(a) if lisan(Ly, Ly)-interpretation them is also an(F, (L), F1(Lp))-interpre-

tation;

(b) for any(Ly, Lp)-interpretationd, J, if | ~ Jthen alsol ~ J.

Let (¢, 8}, Aj) be an algebraizator fof; (j = 1, 2).

For (a): First, we have to show that for apye Fmlacy,), “Alg(L) = ¢ =
Alg(Lp) = (¢)” holds. By Lemma 3.8, itis enough to prove this statement for quasi-
equations, sincAlg(L1) = ¢ implies that there is some Sebf quasi-equations such
thatAlg(£L;) =T andr |= ¢ hold. Thus, assume thalg(Ly) = (i1 =17 A - A
v« = T, — To = Tp). Then, by Theorem 2.5.2,

(t1A17), ..., A1y ™ oAy, =
{(I(t1A17)), ..., (A1)}, [ (ToA1T)
{1t (AT (7)), ..., l(w) (AD ()}, | (o) [ (A1) (1) —
(by Proposition 2.4)
(It A2l (), ..., (@) Aal (g} e, [ (10) Agl (1)) =
(by Theorem 2.5.2)
Ag(Ly) El(t=t A ATx =1 — T0=T0).

Second, by Definition 3.1.21[ (51), I (31), [ (A1)) is an algebraizator faf,. There-
fore, by Proposition 3.5,

(1(81), T(81), [(A1)) ~aig(s,) (B2, 82, A2)

holds, as needed.

For (b): Assume ~ J; thenw, [ (1) A, J(¢) foranyt € Fm(Ly) = Trmen z,)-
Then, by Theorem 2.5.23lg(£,) k= [ (z) = J() holds, provingl ~ J.

Next, Ietﬂl, A, € OijVAR’ A = (t, Ky, [E‘k, Sk, Ak]Kk) (k =1, 2) For any
(A1, Ao)-interpretation, let Fo([[1]]) =qer [1]-

We have to show that this definition is sensible, that is,

(c) if risan(A41, Ao)-interpretation themis also an(F» (A1), F2(A4y))-interpre-
tation;
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(d) forany(A4., Ay)-interpretations, j, if 1 = j then alsa ~ ;.

For (c): First, by Remark 3.7, we must show that for any{¢} € Fm(F,(4,))
= Trmy, T'~E,a)¢ = 1(T) &k, (@) holds. Now assume thdt~r,a,)¢.
Then, by definition, there is some finifé C I" such that

Kile /\ @1) =81() — E1(p) = b1(p)

el

Ko =T(\ B1() = 81(¥) — E1(p) = 81(9))

yel”

Kel= /\ TEL(¥) =161(¥) — 1(E1(9)) =1(1(9))

yel”

Kzl= /\ TEDAW)) =160 AW)) — 1EDA(9) =161 ((9))

el

Kz = /\ 2200) = 8(1(1)) — 22(i(9)) = 82(1(¢))
el

() &F,a,)1(9).

[ A

Second, letg, §, A) be an arbitrary algebraizator fé%(4;). We have to show that
(1(8),1(8),1(A)) is an algebraizator foF,(4,). By (1) above,&1, 81, A1) is also an

algebraizator foF,(4;), thus, by Proposition 3.3z, §, A) and(z1, 81, A1) are both

deductivizators oAlg(F,(A;)) with

(8,8, A) ~pig(Fp(ay)) (1, 81, A1).

By statement (2) abovellg(F2(A1)) = Ky, thus (g, 8, A) ~, (1,61, A1) holds.
Sincel is an (4;, 4,)-interpretation, this implies that (), 1(8), T(A)) and (i(£1),
1(81), 7(A1)) are both deductivizators ok, and (1(2),1(8), 1(A)) ~k, (I(£1),
1(81),1(A1)). Now, by (1) again, it follows thati(g), 1(8), T(A)) is an algebraiza-
tor for F,(A4,).

For (d): Assume ~ j, and lety € Trmy, = Fm(F,(A41)). ThenK;z = 1(p) =
7(p) holds. Thus, by, 82, As) being a deductivizatoK, = &2(T(¢)A2j(p)) =
82(0(9)A2j(9)) follows. Then, by the definition of,, =k, (4,1 () A2 (), proving
I~ J.

The proofs of statements (3) and (4) above are immediate from the definitions
of FL andF,.

We have proved thaALOG andQVAR are isomorphic categories. O

5 Cocompleteness

Theorem 5.1 QVAR isa small-cocomplete category (i.e., all small colimits exist
init).

The proof uses the following lemma.

Lemma 5.2 (cf. [8], p. 109) If a category has all coequalizers and all small co-
products then it is small-cocomplete.
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Proof of Lemma 5.2: Here we give the sketch of the proof in order to illustrate that
colimits in general are indeed “computable” if coequalizers and coproducts are given.
Let a small diagramD be given. Let Oy, i a) aconj,, b€ the coproduct cocone of
all the objects ofD. Let M denote the set of those objects®fwhich are domains
of some morphisms db, and let(O,, ja) acar b€ the coproduct dM. Then the two
coconeg Oy, i) pcar ANA(O1, iBM) acar, BeObj,, meMor (A, By INAUCE two morphisms

f andg from O, to O;.

(E” f)(VAG M) fjA= iA
A'g)(VA e M)(YB e Objp)(Yme Morp(A, B)) gja=igm

It is proved in MacLane [8] that the coequalizer of diagram, O,, f, g) equals to

the colimit of diagramD. O
Proof of Theorem5.1: We give the small coproducts and the coequalizers in cate-
gory QVAR.

Let D be a small diagram iQVAR with
Objp = {4s:s€ S} = {(ts, Ks, [Es, 85, Adlk,) : S€ S},

for some se6, and having no morphisms. For eagh S, let Axs € Fmla;, be a set
of ts-type quasi-equations such tHdbd; (Axs) = Ks. Let

t =a [Hts (1) denotes disjoint union
seS
AX =gt |H AU {(E(0) = 85,(X)) < (B5,(X) =85,(X) : S1.5€ )
seS

K —def MOdt(AX).

Then for anys;, s, € S, (&g, 8s;, As,) =K (Es,, Js,, As,). Now lets € Sbe arbitrary
and let o o

[57 87 A]K =def [557 887 AS]K-
Claim5.3 ((t,K,[&, 3, Alk), [[ida]])ss iSthe coproduct of D.

Proof of Claim5.3:  LetA =q¢ (t, K, [, 8, Alx) andA’ =q¢ (t', K, [&/, 8", A'l/).
Assume thata’, [[ js]])scs is @ cocone ofD. We have to prove that there is a unique
H € Morgyar(A, A) such thatVs € S) H[[idg]] = [[ ss]]-
To this end, leth : dom(t) — Trmy be the following function. For ang e S,
f € dom(ty),
h(f) =ger Js( ).

Thenh is a term-translation afinto t’ with h o idg, = Js, for anys e S. We prove
that
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[[idﬂs]]‘ L]l

(@) hisan(A4, 4’)-interpretation;
(b) forany(A, A")-interpretatior’ with h' oidg, = js(se€ S), h~ h'" holds.

For (a): Sinceysis an(A4s, A')-interpretation,

(#,8', A') >0 (Js(Es). Js(8s), Js(As))
holds, for anys € S. Therefore, for anyg;, s, € S,
(Js(Fsy)s I 8y Js (D)) 2k (U5, (Bsy) T, (8s,). Ty (D)), e,
K E (jsl (Eg)(X) = jsl((ssl)(x)) <~ (352(552)()() = 392(552)()()) (2)

Now letgp € Fmla; and assumg& = ¢. Then Ax = ¢ thus, by Lemma 3.8,

h(AX) k= h(g). ®3)

By definition,

h(A) = [Hhida(Axs)) U

seS

{5y (Esy) (X) = Js, (85,) (X)) <> (Js, (Bsy) (X) = s, (8s,) (X)) : S1, S2 € S}

Now, since(Vs € S) hoidg, = jsandysis an(4s, A')-interpretation, (2) implies that
K" = h(AX). Thus, by (3)K" = h(¢) follows, as needed.
For (b): Leth’ be an(A4, A’)-interpretation with' oidg, ~ js(s€ S). Then for
anyse S ts e Trmy,
K'f= (W oida,)(ts) = Js(Ts).

In particular, for any-ary f € dom(ts),

K = 0 (f(X0, ... Xk1)) = Js(F (X0, - ., Xk_1)).

By the definition ofh, for anys € S, for anyk-ary f € dom(ts),

K' = h(f (X0, ..., %_1)) = Js(F (X0, . .., Xk_1))

also holds. Now, by induction on the structure-dype terms, it follows that for any
Te Trm,
K N =ho,
provingh’ ~ h.
Thus, by (a) and (b)H =gt [[h]] is the unique morphism wittH[[idz,]] =
[[ss]] (s€ 9, proving Claim 5.3. 0
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Now let 4 = (t,Ki, [&, &, Ailk,) (i = 1,2) be two objects oQVAR, and let
[[h]], [[g]] € Morgyar(A1, A2). Consider the following diagrari.

[[h1]
Ay
([all

Let Ax, € Fmla, be a set of,-type quasi-equations such tHdd;, (Axy) =
K,, andlet

Ay

AX =g AXpU

(A(F (X0, -+, Xke1)) = §(F(Xo, ..., Xe_1)) 1 T € dom(ty) k-ary}
K =ge MOdtZ(AX).

Claim5.4 ((tp, K, [£2, 82, Aj]k), [[ids,]]) isthe colimit of Z.

Proof of Claim5.4:  First, it can be proved by induction on the structure;efype
terms that for any € Trm,, K = h(r) = §(r). Therefore, sincgidg, o h)"=hand
(idg, o @) = §, [[id,]][[ h]] = [[id,]]I[ 9]] follows.

o Second, lefl =g« (1o, K, [£2, 82, As]k ), and take an objecl’ =g (t', K', [&/,
&', A'lgs) of QVAR and some [f]] € Morqvar (A2, A") with [[ /][ h]] = [[ Il gl]-
We have to show that there is a unique Morgyar (A, A’) such thatl[[idg,]] =

(L1

[Lh]]

_—

Ay

[Ldll
A

ar |

[t
ﬂ/

We show thatl =g [[/]] is an appropriate choice that is,

(c) yisan(A4, A')-interpretation;
(d) forany(A, A')-interpretation;’ with 7' oidg, ~ 7, ;' = ; holds.

For (c): First, sincg is an(A4,, A')-interpretation,
(1(22), 1(32), 1(A2)) = (&', 8", A) and K’ = j(AXp). (4)
Second, since [][[ hl] = [[J1Il[ g]], thus for anyk-ary function symbol of typé;,

K' = 7(h(f (X0, ..., %1)) = J(E(F (X0, ..., X 1)) <=
K' = 5(h(f (X0, ..., %1)) = §(F (X0, - .., Xk_1))). (5)

Now lety € Fmla;, and assumK = ¢. By Lemma 3.8;( AX) = j(¢) holds. There-
fore, by (4) and (5)K’ = j(¢) follows.
Item (d) can be proved analogously to item (b) in the proof of Claim 5.3 above.
O
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We have proved that small coproducts and coequalizers exist in cat€)diR.
Now, by Lemma 5.2, all small colimits exist @QVAR. O

Corollary 55 ALOG isa small-cocomplete category.

We note that though colimits always exist XALOG, they are not always “interest-
ing.” E.g. if L, and £, are two different algebraizable logical systems viity(L,) =
Alg(Lp) then their coproduct iALOG is an inconsistent logic.

The proof of Theorem 5.1 also yields the following result.

Corollary 5.6  Let D bea small diagram of QVAR, having objects (ts, Ks, [£s, Js,
Aglk.)ses for some set S, and having arbitrary morphisms. Let (t, K, [2, §, A]k) be
the colimit of D. If for each s € S, K isafinitely axiomatizable quasi-variety then K
is also finitely axiomatizable.

From the point of view of logics, this corollary means that any combinatidimiodly
axiomatizable logics (“logics admitting finite Hilbert-style inference systems” in [2],
or “finite deductive systems” in [4]) is also finitely axiomatizable.

6 Discussion In this paper only the first steps have been taken toward a systematic
study of combining arbitrary logics by translating them into usual first-order logic.
Investigation can be extended to the study of categories of logics, where e.g. the con-
sequence relation it compact ((4) of Definition 2.1 is missing); or where condition

(6e) of Definition 2.1 is missing (callezbngruential logicsin [4]); or where condi-

tion (6) of Definition 2.1 is missing altogether (callgductural logicsin [4]).

An even more ambitious task is to develop the category theoretic “reconstruc-
tion” of combining logics which are given not merely with their consequence rela-
tions but also together with their semantics. (Algebraization of these kinds of logics
is given e.g. [2], [3], [12].) This kind of “modeling” should be capable to reconstruct
how the semantics of a combined logic is built up from the semantics of its “compo-
nents.” A means of treating the “combination of semantics” problem without trans-
lating the consituent logics into first-order logic is Gabbay’s fibred semantics.

There is also an “inward” direction, i.e., towards the subcategori€d/&iR. In
this terrain, mostly the category of varieties and its subcategories have been studied
in the literature. However, the investigation of the cocompleteness conditions in the
subcategories @VAR is still largely open, notwithstanding that the cocompleteness
of a subcategory can be considered a kind of methodological test of the “autonomy”
of the corresponding class of logics.
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