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Abstract

The variety MBA of monadic bounded algebras consists of Boolean
algebras with a distinguished element E, thought of as an existence pred-
icate, and an operator ∃ reflecting the properties of the existential quan-
tifier in free logic. This variety is generated by a certain class FMBA of
algebras isomorphic to ones whose elements are propositional functions.

We show that FMBA is characterised by the disjunction of the equa-
tions ∃E = 1 and ∃E = 0. We also define a weaker notion of “relatively
functional” algebra, and show that every member of MBA is isomorphic
to a relatively functional one.

In [1], an equationally defined class MBA of monadic bounded algebras was
introduced. Each of these algebras comprises a Boolean algebra B with a dis-
tinguished element E, thought of as an existence predicate, and an operator
∃ on B reflecting the properties of the existential quantifier in logic without
existence assumptions. MBA was shown to be generated by a certain proper
subclass FMBA of algebras isomorphic to algebras of Boolean-valued functions.

In this paper we characterise FMBA as consisting precisely of those monadic
bounded algebras in which ∃E = 0 or ∃E = 1. So FMBA is defined by a
disjunction of two equations. We also define a weaker notion of “relativised”
functional algebra and show that every monadic bounded algebra is isomorphic
to one of these more general functional ones. The paper builds on [1], with
which the reader is assumed to be familiar.

We review the definition of FMBA. Let B be a Boolean algebra, X a set,
and XE ⊆ X. The set BX of all functions from X to B is a Boolean algebra
with respect to the pointwise operations. A Boolean subalgebra A of BX with
a distinguished member E of A is called a functional monadic bounded algebra,
with domain (X,XE) and distinguished function E, or more briefly a functional
MBA, iff

(F1) E(x) = 1B for every x ∈ XE ;

(F2) for every p ∈ A, both
∨
{p(x) | x ∈ XE} and

∨
{p(x) ∧ E(x) | x ∈ X}

exist in B and are equal; and

(F3) for every p ∈ A, A contains the constant function ∃p on X, defined by
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∃p(y) =
∨
{p(x) | x ∈ XE}.

FMBA is the class of all algebras that are isomorphic to some functional algebra
meeting this definition. MBA on the other hand is a class of abstract algebras
A = (B, E, ∃) satisfying the equational conditions (ax1)–(ax6) stated in [1,
§3]. In §6 of [1] there is an example of a monadic bounded algebra that is not
isomorphic to any functional one.

Note that if A is a functional MBA as above, and A∗ is any subalgebra
of A, hence A∗ contains E and is closed under ∃, then (F2) and (F3) remain
true for all p ∈ A∗, so A∗ is also a functional MBA with the same domain and
distinguished element.

To build functional algebras we need the notion of a constant from the
theory of monadic algebras [2, p. 63]. This is motivated by the question of how
to represent the concept of a particular individual x0 ∈ X within the structure
of an abstract algebra. Think of the process of applying each predicate (like
“is human”) to x0 to form a proposition (“x0 is human”). Since predicates
correspond to propositional functions p : X → B, this suggests the definition
of a function c : BX → BX assigning to each p ∈ BX the function cp defined
by cp(x) = p(x0). This c is an endomorphism of the Boolean algebra BX .
If BX is a functional MBA with respect to E and ∃, then c ◦ ∃ = ∃, since
c(∃p)(x) = ∃p(x0) = ∃p(x) in general. Note also that if x0 ∈ XE , then cE = 1
in BX , as cE(x) = E(x0) = 1 in B.

Now let A = (B, E, ∃) be an abstract MBA. A constant of A is defined to
be a Boolean homomorphism c : B → B such that c ◦ ∃ = ∃. Note that the
identity function on B is a constant, a fact we make significant use of.1 Let XA

be the set of all constants on A, and

XA
E = {c ∈ XA | cE = 1A}.

A will be called a rich algebra if it satisfies:

(R1) if p ∧ E 6= 0, then there is a c ∈ XA
E with ∃p = cp.

(R2) if p 6= 0, then there is a c ∈ XA with cp 6= 0.

If A is a monadic algebra, then E = 1, XA
E = XA and p ≤ ∃p, so (R2)

follows from (R1). So our definition of rich is consistent with that of [2].

Theorem 1. Every rich MBA is isomorphic to a functional MBA.

Proof. Let A be an MBA with XA and XA
E as above. For each p ∈ A, define

p̃ : XA → B by putting p̃(c) = cp. Then define a function f from B to BXA

by putting f(p) = p̃. It is readily checked that f is a Boolean homomorphism,

1Constants on a monadic algebra in [2] are also required to satisfy the condition ∃ ◦ c = c,
which would exclude the identity as c unless ∃ is the identity. We do not need this condition,
and it can fail in the example of the constant defined by x0 above, e.g. if XE = ∅. For that
example we have only ∃cp ≤ cp, and ∃cp ∧ E = cp ∧ E.
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because each constant preserves the Boolean operations in B, and these opera-

tions are defined pointwise in the functional algebra BXA

. Also f is injective by
the condition (R2), which implies that if p 6= 0 in B, then there exists c ∈ XA

with p̃(c) 6= 0, hence f(p) 6= 0 in BXA

.

Now let Ã be the range of f , a subalgebra of BXA

that is isomorphic to B,
and contains Ẽ. We will demonstrate that Ã is a functional MBA with domain
(XA, XA

E ) and distinguished function Ẽ that is isomorphic to A.
For condition (F1) in the definition of a functional MBA, if c ∈ XA

E then

since cE = 1B it is immediate that Ẽ(c) = 1B as required. For (F2) and (F3)
we show that for each p in A,

∃p =
∨
{p̃(c) | c ∈ XA

E } =
∨
{p̃(c) ∧ Ẽ(c) | x ∈ XA}

in B, or equivalently that

∃p =
∨

c∈XA
E

cp =
∨

c∈XA

c(p ∧ E). (1)

This ensures that (F2) holds for each p̃ ∈ Ã. Since ∃̃p(c) = c(∃p) = ∃p (as

c ◦ ∃ = ∃), it also ensures that ∃̃p is the function ∃p̃ on XA with constant

value
∨
{p̃(c) | c ∈ XA

E }, and hence that this function belongs to Ã, giving

(F3). That makes Ã a functional MBA. But then f(∃p) = ∃̃p = ∃p̃ = ∃f(p),

andf(E) = Ẽ, so f is an MBA-homomorphism making A isomorphic to Ã,
completing the proof.

It remains to prove (1). We note that

(i) If c ∈ XA, then c(p ∧ E) ≤ ∃p; and

(ii) If c ∈ XA
E , then cp = c(p ∧ E).

(i) holds as p ∧ E ≤ ∃p by (ax3), and c is monotonic, so c(p ∧ E) ≤ c∃p; but
c∃p = ∃p as c is a constant of A. (ii) holds because cE = 1, so cp = cp ∧ 1 =
cp ∧ cE = c(p ∧ E).

There are two cases for (1). The first is that p ∧ E = 0, i.e. p ≤ E′. Recall
from [1] that ∃ takes the value 0 on the ideal generated by E′ in any MBA, so
∃p = 0 here. Hence for any c ∈ XA, we get c(p ∧ E) = 0 by (i). But then if
c ∈ XA

E , we get cp = 0 by (ii). So (1) holds in this case because all elements
referred to in (1) are equal to 0.

The other case is when p ∧ E 6= 0. Then by richness condition (R1) for A,
there is some c∗ ∈ XA

E with ∃p = c∗p. Now (ii) implies that

{cp | c ∈ XA
E } ⊆ {c(p ∧ E) | c ∈ XA}. (2)

(i) states that ∃p is an upper bound of the larger of these two sets. But ∃p is
c∗p, which belongs to the smaller set. Thus ∃p belongs to both sets and is an
upper bound of both, hence is the least upper bound of both, i.e. (1) holds.
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This proof provides the additional information that for any q ∈ Ã,

if q ∧ Ẽ 6= 0, then there is some c ∈ XA
E with q(c) = the constant

value of ∃q.

For if q = p̃ and q ∧ Ẽ 6= 0 in Ã, then p∧E 6= 0 in A, so by (R1) there is some
c ∈ XA

E with cp = ∃p, which says that p̃(c) = ∃p̃(c).
We turn now to results about the existence of richness. First we show that

when ∃E = 1, then condition (R1) can be strengthened.

Lemma 2. Let A be a rich MBA having ∃E = 1. Then for every element p of
A, there is some constant c of A with cE = 1 and ∃p = cp.

Proof. If E = 0, then 1 = ∃E = ∃0 = 0. Hence A is a one-element algebra, and
the conclusion of the Lemma holds simply by taking c as the identity function
on A.

So we may assume E 6= 0. Then putting p = E in (R1), there is some
c ∈ XA

E with cE = ∃E = 1. Hence c(E′) = (cE)′ = 0. Now for any p ∈ A, if
p ∧E = 0, then p ≤ E′, so ∃p = 0 and cp ≤ c(E′) = 0, giving ∃p = cp (= 0) to
fulfil the Lemma in this case.

But if p ∧ E 6= 0, the desired conclusion is directly given by (R1).

Theorem 3. If {Ai | i ∈ I} is a collection of rich MBA’s that satisfy ∃E = 1,
then the direct product

∏
I Ai is rich.

Proof. Let Ai = (Bi, Ei,∃i) with greatest and least elements 1i and 0i, so
∃iEi = 1i. Let A be

∏
I Ai. For each i, let πi : A → Ai be the projection

homomorphism, and write pi = πi(p) for each p ∈ A. Then p is the tuple
〈pi | i ∈ I〉. In particular, the distinguished element E of A is 〈Ei | i ∈ I〉.

To prove A satisfies (R1), we prove the stronger version from Lemma 2. Let
p ∈ A. Then for each i ∈ I, by the Lemma applied to Ai there is some constant
ci of Ai with ciEi = 1i and ∃ipi = cipi. Let c : A → A be the product of
all these ci’s, defined by (cq)i = ci(qi). Then c is a Boolean homomorphism,
as each ci is. Also (c∃q)i = ci∃iqi = ∃iqi for all i ∈ I, so c∃q = ∃q in general.
Hence c is a constant of A. Similarly (cE)i = ciEi = 1i for all i, so cE = 1 in
A. Finally, (∃p)i = ∃ipi = cipi = (cp)i in general, so ∃p = cp as required.

To prove A satisfies (R2), let p 6= 0. Then for some i, pi 6= 0i, so by (R2) in
Ai, there is some constant ci of Ai with cipi 6= 0i. For each j 6= i, let cj be the
identity constant on Aj . Then let c be the product of {cj | j ∈ I}. As above, c
is a constant on A. But (cp)i = cipi 6= 0i, so cp 6= 0 as required.

Theorem 4. Every basic MBA is rich.

Proof. Recall that in a basic MBA, the quantifier takes the value 1 outside the
ideal {p | p ≤ E′}. In any MBA it takes the value 0 on this ideal, as noted
earlier.

It follows that if A is basic, then any Boolean homomorphism c : A→ A is
a constant of A, since ∃p ∈ {0,1} and c fixes 0 and 1, so c∃p = ∃p for all p. In
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particular, if U is an ultrafilter of A, then the characteristic function of U , of
the form A→ {0,1} ⊆ A, is a constant of A.

To prove (R1) for A, suppose p ∧ E 6= 0. Then there is an ultrafilter U of
A with p ∧ E ∈ U . Let c be the characteristic function of U . Then E ∈ U , so
cE = 1 and hence c ∈ XA

E . Also p ∈ U , so cp = 1. But ∃p = 1 as A is basic,
so cp = ∃p as required.

For (R2), if p 6= 0, there is an ultrafilter U with p ∈ U . Again let c be the
characteristic function of U . Then c ∈ XA and cp = 1. But p 6= 0 implies
1 6= 0, so cp 6= 0 as required.

We are now ready to prove our main result.

Theorem 5. FMBA is precisely the class of all monadic bounded algebras in
which ∃E is 0 or 1.

Proof. Theorem 2.3 of [1] showed that every functional MBA has ∃E ∈ {0,1},
hence so does every algebra isomorphic to a functional MBA, i.e. every member
of FMBA.

For the converse, let A = (B, EA,∃A) be any MBA having ∃EA ∈ {0A,1A}.
If in fact ∃EA = 0A, then EA = 0A, and ∃Ap = 0A for all p. By the Stone
representation of B there is a set X and a Boolean monomorphism f : B→ 2X

making B isomorphic to a subalgebra Ã of the functional Boolean algebra 2X .
Let E = fEA = f0A = 0 in Ã. Put XE = ∅. Then it is readily checked
that Ã is a functional MBA with domain (X,XE) and distinguished function
E. The condition (F1) holds vacuously as XE = ∅. For each p in A, the sets∨
{fp(x) | x ∈ XE} and

∨
{fp(x) ∧ E(x) | x ∈ X} both have join 0B, and

the function ∃fp on X defined by ∃fp(y) =
∨
{fp(x) | x ∈ XE} has constant

value 0B, so is equal to f0A ∈ Ã. This proves (F2) and (F3) for Ã. But also
f∃Ap = f0A = ∃fp, so f is an MBA-homomorphism making A isomorphic to
the functional MBA Ã.

Alternatively, ∃EA = 1A. Now by Theorem 5.1 of [1], every MBA is iso-
morphic to a subdirect product of basic MBA’s. Hence there is a collection
{Ai | i ∈ I} of basic MBA’s and an injective homomorphism f : A→

∏
i∈I Ai.

For each i ∈ I, composing f with the projection from
∏

i∈I Ai shows there is
a homomorphism A→ Ai, implying ∃iEi = 1i. Also Ai is rich by Theorem 4.
Hence by Theorem 3,

∏
i∈I Ai is rich, and so is isomorphic to some functional

MBA Ã by Theorem 1. Let f̃ be the composition of f with the isomorphism
from

∏
i∈I Ai to Ã. The range of f̃ is then a subalgebra of Ã, hence a func-

tional MBA with the same domain and distinguished element as Ã, to which
A is isomorphic under f̃ .

So in both cases we get that A is isomorphic to a functional MBA and hence
belongs to FMBA.

The other topic of this paper is the development of a weaker notion of func-
tional algebra, in terms of which every MBA can be represented. Given a set
X and a Boolean algebra B, then a Boolean subalgebra A of BX with a dis-
tinguished element E is called a relatively functional MBA if for each p ∈ A,
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the join
∨
{p(x) ∧ E(x) | x ∈ X} exists in B, and A contains the constant

function ∃p on X with this join as value. In this definition, we have abandoned
the notion of the set XE , but have retained enough structure to ensure that A
is an MBA.

Note that any subalgebra of a relatively functional MBA is a relatively func-
tional MBA with the same distinguished element.

One way to obtain algebras of this kind is to apply the notion of relativised
monadic algebra from Example 3.1 of [1]. A functional monadic algebra based
on X and B is a Boolean subalgebra A of BX such that for every p ∈ A, the
join

∨
{p(x) | x ∈ X} exists in B, and A contains the constant function ∃p on

X with this join as value. Here we have no E as well as no XE . Any monadic
algebra (i.e. any MBA with E = 1) is isomorphic to such a functional monadic
algebra [2, p. 70]. But if A is a functional monadic algebra as described, and E
is an arbitrary element of A, we can define an operation ∃E on A by putting
∃Ep = ∃(p ∧ E) ∈ A for all ∈ A. Then for any y ∈ X we have

∃Ep(y) =
∨
{p(x) ∧ E(x) | x ∈ X} in B.

So this creates from A a relatively functional MBA AE with distinguished
element E and quantifier ∃E . The notion of relatively functional MBA is itself
more general than this, as it does not assume the existence of any background
functional monadic algebra.

Next we define an abstract MBA A to be relatively rich if it satisfies richness
condition (R2), and in place of (R1) it has

(R1′) for any p there is a c ∈ XA with ∃p = c(p ∧ E).

Lemma 6. Every rich MBA is relatively rich.

Proof. Let A satisfy (R1) and (R2). To prove (R1′), suppose first that p∧E 6= 0.
Then by (R1) there is a c ∈ XA

E with ∃p = cp. But cE = 1, so c(p ∧ E) =
cp ∧ cE = cp = ∃p.

But if p ∧ E = 0, i.e. p ≤ E′, then ∃p = 0. Let c ∈ XA be the identity
constant on A. Then c(p ∧ E) = c0 = 0 = ∃p.

Theorem 7. Any direct product of relatively rich MBA’s is relatively rich.

Proof. Let A =
∏

i∈I Ai with each Ai relatively rich. We use the notation of
the proof of Theorem 3. For each p ∈ A and each i ∈ I, by (R1′) in Ai there is
a constant ci on Ai with ∃pi = ci(pi ∧ Ei). Let c be the product of these ci’s.
Then c is a constant on A, as in Theorem 3, with ∃p = c(p ∧ E).

This shows that A satisfies (R1′). The proof that it satisfies (R2) is un-
changed from Theorem 3.

Theorem 8. Every relatively rich MBA is isomorphic to a relatively functional
MBA.
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Proof. Let A = (B, E, ∃) be relatively rich. We repeat the construction used
in Theorem 1. For each p ∈ A, define p̃ : XA → B by putting p̃(c) = cp; and

then f : B → BXA

by f(p) = p̃. Let Ã be the range of f . f is a Boolean
homomorphism, and is injective because A satisfies (R2).

To show that Ã is a relatively functional MBA with distinguished function
Ẽ, it suffices to show that for each p in A,

∃p =
∨
{p̃(c) ∧ Ẽ(c) | x ∈ XA}

in B, i.e. that

∃p =
∨

c∈XA

c(p ∧ E). (3)

This ensures that ∃̃p is the function ∃p̃ onXA with constant value
∨
{p̃(c)∧Ẽ(c) |

x ∈ XA}, and hence that this function belongs to Ã. Then f(∃p) = ∃f(p), and
f is an MBA-homomorphism making A isomorphic to the relatively functional
algebra Ã, completing the proof.

To prove (3), note that for a given p, by (R1′) there is some c∗ ∈ XA with
∃p = c∗(p ∧ E). But for all c ∈ XA, we have c(p ∧ E) ≤ c∃p = ∃p. Thus ∃p
is an upper bound of {c(p ∧ E) | c ∈ XA} and also belongs to this set, which
implies (3).

We can now show that these functional algebras encompass all monadic
bounded algebras.

Theorem 9. Every MBA is isomorphic to a relatively functional MBA.

Proof. If A is any MBA , by [1, Theorem 5.1] there is an injective homomor-
phism f : A→

∏
i∈I Ai into a direct product for which every Ai is basic, hence

rich, hence relatively rich (Lemma 6). Then
∏

i∈I Ai is relatively rich (Theorem

7), so is isomorphic to a relatively functional MBA Ã (Theorem 8). Let f̃ be

the composition of f with this isomorphism from
∏

i∈I Ai to Ã. The range of

f̃ is then a subalgebra of Ã, hence a relatively functional MBA with the same
distinguished element as Ã, to which A is isomorphic under f̃ .
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