Functional Monadic Bounded Algebras

Robert Goldblatt

9 June 2010

Abstract

The variety **MBA** of monadic bounded algebras consists of Boolean algebras with a distinguished element E, thought of as an existence predicate, and an operator \exists reflecting the properties of the existential quantifier in free logic. This variety is generated by a certain class **FMBA** of algebras isomorphic to ones whose elements are propositional functions.

We show that **FMBA** is characterised by the disjunction of the equations $\exists E = \mathbf{1}$ and $\exists E = \mathbf{0}$. We also define a weaker notion of "relatively functional" algebra, and show that every member of **MBA** is isomorphic to a relatively functional one.

In [1], an equationally defined class **MBA** of *monadic bounded algebras* was introduced. Each of these algebras comprises a Boolean algebra **B** with a distinguished element E, thought of as an existence predicate, and an operator \exists on **B** reflecting the properties of the existential quantifier in logic without existence assumptions. **MBA** was shown to be generated by a certain proper subclass **FMBA** of algebras isomorphic to algebras of Boolean-valued functions.

In this paper we characterise **FMBA** as consisting precisely of those monadic bounded algebras in which $\exists E = \mathbf{0}$ or $\exists E = \mathbf{1}$. So **FMBA** is defined by a disjunction of two equations. We also define a weaker notion of "relativised" functional algebra and show that every monadic bounded algebra is isomorphic to one of these more general functional ones. The paper builds on [1], with which the reader is assumed to be familiar.

We review the definition of **FMBA**. Let **B** be a Boolean algebra, X a set, and $X_E \subseteq X$. The set \mathbf{B}^X of all functions from X to **B** is a Boolean algebra with respect to the pointwise operations. A Boolean subalgebra **A** of \mathbf{B}^X with a distinguished member E of **A** is called a *functional monadic bounded algebra*, with *domain* (X, X_E) and *distinguished function* E, or more briefly a *functional* **MBA**, iff

- (F1) $E(x) = \mathbf{1}^{\mathbf{B}}$ for every $x \in X_E$;
- (F2) for every $p \in \mathbf{A}$, both $\bigvee \{p(x) \mid x \in X_E\}$ and $\bigvee \{p(x) \land E(x) \mid x \in X\}$ exist in **B** and are equal; and
- (F3) for every $p \in \mathbf{A}$, **A** contains the constant function $\exists p$ on X, defined by

$$\exists p(y) = \bigvee \{ p(x) \mid x \in X_E \}.$$

FMBA is the class of all algebras that are isomorphic to some functional algebra meeting this definition. **MBA** on the other hand is a class of abstract algebras $\mathbf{A} = (\mathbf{B}, E, \exists)$ satisfying the equational conditions (ax1)–(ax6) stated in [1, §3]. In §6 of [1] there is an example of a monadic bounded algebra that is not isomorphic to any functional one.

Note that if **A** is a functional **MBA** as above, and \mathbf{A}^* is any subalgebra of **A**, hence \mathbf{A}^* contains E and is closed under \exists , then (F2) and (F3) remain true for all $p \in \mathbf{A}^*$, so \mathbf{A}^* is also a functional **MBA** with the same domain and distinguished element.

To build functional algebras we need the notion of a *constant* from the theory of monadic algebras [2, p. 63]. This is motivated by the question of how to represent the concept of a particular individual $x_0 \in X$ within the structure of an abstract algebra. Think of the process of applying each predicate (like "is human") to x_0 to form a proposition (" x_0 is human"). Since predicates correspond to propositional functions $p: X \to \mathbf{B}$, this suggests the definition of a function $c: \mathbf{B}^X \to \mathbf{B}^X$ assigning to each $p \in \mathbf{B}^X$ the function cp defined by $cp(x) = p(x_0)$. This c is an endomorphism of the Boolean algebra \mathbf{B}^X . If \mathbf{B}^X is a functional **MBA** with respect to E and \exists , then $c \circ \exists = \exists$, since $c(\exists p)(x) = \exists p(x_0) = \exists p(x)$ in general. Note also that if $x_0 \in X_E$, then $cE = \mathbf{1}$ in \mathbf{B}^X , as $cE(x) = E(x_0) = \mathbf{1}$ in \mathbf{B} .

Now let $\mathbf{A} = (\mathbf{B}, E, \exists)$ be an abstract **MBA**. A constant of \mathbf{A} is defined to be a Boolean homomorphism $c : \mathbf{B} \to \mathbf{B}$ such that $c \circ \exists = \exists$. Note that the identity function on \mathbf{B} is a constant, a fact we make significant use of.¹ Let $X^{\mathbf{A}}$ be the set of all constants on \mathbf{A} , and

$$X_E^{\mathbf{A}} = \{ c \in X^{\mathbf{A}} \mid cE = \mathbf{1}^{\mathbf{A}} \}.$$

A will be called a *rich* algebra if it satisfies:

- (R1) if $p \wedge E \neq \mathbf{0}$, then there is a $c \in X_E^{\mathbf{A}}$ with $\exists p = cp$.
- (R2) if $p \neq \mathbf{0}$, then there is a $c \in X^{\mathbf{A}}$ with $cp \neq \mathbf{0}$.

If **A** is a monadic algebra, then $E = \mathbf{1}$, $X_E^{\mathbf{A}} = X^{\mathbf{A}}$ and $p \leq \exists p$, so (R2) follows from (R1). So our definition of rich is consistent with that of [2].

Theorem 1. Every rich **MBA** is isomorphic to a functional **MBA**.

Proof. Let **A** be an **MBA** with $X^{\mathbf{A}}$ and $X_{E}^{\mathbf{A}}$ as above. For each $p \in \mathbf{A}$, define $\tilde{p}: X^{\mathbf{A}} \to \mathbf{B}$ by putting $\tilde{p}(c) = cp$. Then define a function f from **B** to $\mathbf{B}^{X^{\mathbf{A}}}$ by putting $f(p) = \tilde{p}$. It is readily checked that f is a Boolean homomorphism,

¹Constants on a monadic algebra in [2] are also required to satisfy the condition $\exists \circ c = c$, which would exclude the identity as c unless \exists is the identity. We do not need this condition, and it can fail in the example of the constant defined by x_0 above, e.g. if $X_E = \emptyset$. For that example we have only $\exists cp \leq cp$, and $\exists cp \land E = cp \land E$.

because each constant preserves the Boolean operations in **B**, and these operations are defined pointwise in the functional algebra $\mathbf{B}^{X^{\mathbf{A}}}$. Also f is injective by the condition (R2), which implies that if $p \neq \mathbf{0}$ in **B**, then there exists $c \in X^{\mathbf{A}}$ with $\tilde{p}(c) \neq \mathbf{0}$, hence $f(p) \neq \mathbf{0}$ in $\mathbf{B}^{X^{\mathbf{A}}}$.

Now let $\widetilde{\mathbf{A}}$ be the range of f, a subalgebra of $\mathbf{B}^{X^{\mathbf{A}}}$ that is isomorphic to \mathbf{B} , and contains \widetilde{E} . We will demonstrate that $\widetilde{\mathbf{A}}$ is a functional **MBA** with domain $(X^{\mathbf{A}}, X_{E}^{\mathbf{A}})$ and distinguished function \widetilde{E} that is isomorphic to \mathbf{A} .

For condition (F1) in the definition of a functional **MBA**, if $c \in X_E^{\mathbf{A}}$ then since $cE = \mathbf{1}^{\mathbf{B}}$ it is immediate that $\widetilde{E}(c) = \mathbf{1}^{\mathbf{B}}$ as required. For (F2) and (F3) we show that for each p in \mathbf{A} ,

$$\exists p = \bigvee \{ \widetilde{p}(c) \mid c \in X_E^{\mathbf{A}} \} = \bigvee \{ \widetilde{p}(c) \land \widetilde{E}(c) \mid x \in X^{\mathbf{A}} \}$$

in **B**, or equivalently that

$$\exists p = \bigvee_{c \in X_E^{\mathbf{A}}} cp = \bigvee_{c \in X^{\mathbf{A}}} c(p \wedge E).$$
(1)

This ensures that (F2) holds for each $\tilde{p} \in \tilde{\mathbf{A}}$. Since $\exists p(c) = c(\exists p) = \exists p$ (as $c \circ \exists = \exists$), it also ensures that $\exists p$ is the function $\exists p$ on $X^{\mathbf{A}}$ with constant value $\bigvee \{\tilde{p}(c) \mid c \in X_E^{\mathbf{A}}\}$, and hence that this function belongs to $\tilde{\mathbf{A}}$, giving (F3). That makes $\tilde{\mathbf{A}}$ a functional **MBA**. But then $f(\exists p) = \exists p = \exists p = \exists f(p)$, and $f(E) = \tilde{E}$, so f is an **MBA**-homomorphism making \mathbf{A} isomorphic to $\tilde{\mathbf{A}}$, completing the proof.

It remains to prove (1). We note that

- (i) If $c \in X^{\mathbf{A}}$, then $c(p \wedge E) \leq \exists p$; and
- (ii) If $c \in X_E^{\mathbf{A}}$, then $cp = c(p \wedge E)$.

(i) holds as $p \wedge E \leq \exists p$ by (ax3), and c is monotonic, so $c(p \wedge E) \leq c \exists p$; but $c \exists p = \exists p$ as c is a constant of **A**. (ii) holds because $cE = \mathbf{1}$, so $cp = cp \wedge \mathbf{1} = cp \wedge cE = c(p \wedge E)$.

There are two cases for (1). The first is that $p \wedge E = \mathbf{0}$, i.e. $p \leq E'$. Recall from [1] that \exists takes the value **0** on the ideal generated by E' in any **MBA**, so $\exists p = \mathbf{0}$ here. Hence for any $c \in X^{\mathbf{A}}$, we get $c(p \wedge E) = \mathbf{0}$ by (i). But then if $c \in X_E^{\mathbf{A}}$, we get $cp = \mathbf{0}$ by (ii). So (1) holds in this case because all elements referred to in (1) are equal to **0**.

The other case is when $p \wedge E \neq \mathbf{0}$. Then by richness condition (R1) for \mathbf{A} , there is some $c^* \in X_E^{\mathbf{A}}$ with $\exists p = c^*p$. Now (ii) implies that

$$\{cp \mid c \in X_E^{\mathbf{A}}\} \subseteq \{c(p \land E) \mid c \in X^{\mathbf{A}}\}.$$
(2)

(i) states that $\exists p$ is an upper bound of the larger of these two sets. But $\exists p$ is c^*p , which belongs to the smaller set. Thus $\exists p$ belongs to both sets and is an upper bound of both, hence is the least upper bound of both, i.e. (1) holds. \Box

This proof provides the additional information that for any $q \in \widetilde{\mathbf{A}}$,

if $q \wedge \tilde{E} \neq \mathbf{0}$, then there is some $c \in X_E^{\mathbf{A}}$ with q(c) = the constant value of $\exists q$.

For if $q = \tilde{p}$ and $q \wedge \tilde{E} \neq \mathbf{0}$ in \mathbf{A} , then $p \wedge E \neq \mathbf{0}$ in \mathbf{A} , so by (R1) there is some $c \in X_E^{\mathbf{A}}$ with $cp = \exists p$, which says that $\tilde{p}(c) = \exists \tilde{p}(c)$.

We turn now to results about the existence of richness. First we show that when $\exists E = \mathbf{1}$, then condition (R1) can be strengthened.

Lemma 2. Let **A** be a rich **MBA** having $\exists E = \mathbf{1}$. Then for every element p of **A**, there is some constant c of **A** with $cE = \mathbf{1}$ and $\exists p = cp$.

Proof. If $E = \mathbf{0}$, then $\mathbf{1} = \exists E = \exists \mathbf{0} = \mathbf{0}$. Hence **A** is a one-element algebra, and the conclusion of the Lemma holds simply by taking c as the identity function on **A**.

So we may assume $E \neq \mathbf{0}$. Then putting p = E in (R1), there is some $c \in X_E^{\mathbf{A}}$ with $cE = \exists E = \mathbf{1}$. Hence $c(E') = (cE)' = \mathbf{0}$. Now for any $p \in \mathbf{A}$, if $p \wedge E = \mathbf{0}$, then $p \leq E'$, so $\exists p = \mathbf{0}$ and $cp \leq c(E') = \mathbf{0}$, giving $\exists p = cp \ (= \mathbf{0})$ to fulfil the Lemma in this case.

But if $p \wedge E \neq \mathbf{0}$, the desired conclusion is directly given by (R1).

Theorem 3. If $\{\mathbf{A}_i \mid i \in I\}$ is a collection of rich MBA's that satisfy $\exists E = \mathbf{1}$, then the direct product $\prod_I \mathbf{A}_i$ is rich.

Proof. Let $\mathbf{A}_i = (\mathbf{B}_i, E_i, \exists_i)$ with greatest and least elements $\mathbf{1}_i$ and $\mathbf{0}_i$, so $\exists_i E_i = \mathbf{1}_i$. Let \mathbf{A} be $\prod_I \mathbf{A}_i$. For each i, let $\pi_i : \mathbf{A} \to \mathbf{A}_i$ be the projection homomorphism, and write $p_i = \pi_i(p)$ for each $p \in \mathbf{A}$. Then p is the tuple $\langle p_i \mid i \in I \rangle$. In particular, the distinguished element E of \mathbf{A} is $\langle E_i \mid i \in I \rangle$.

To prove **A** satisfies (R1), we prove the stronger version from Lemma 2. Let $p \in \mathbf{A}$. Then for each $i \in I$, by the Lemma applied to \mathbf{A}_i there is some constant c_i of \mathbf{A}_i with $c_i E_i = \mathbf{1}_i$ and $\exists_i p_i = c_i p_i$. Let $c : \mathbf{A} \to \mathbf{A}$ be the product of all these c_i 's, defined by $(cq)_i = c_i(q_i)$. Then c is a Boolean homomorphism, as each c_i is. Also $(c \exists q)_i = c_i \exists_i q_i = \exists_i q_i$ for all $i \in I$, so $c \exists q = \exists q$ in general. Hence c is a constant of \mathbf{A} . Similarly $(cE)_i = c_i E_i = \mathbf{1}_i$ for all i, so $cE = \mathbf{1}$ in \mathbf{A} . Finally, $(\exists p)_i = \exists_i p_i = c_i p_i = (cp)_i$ in general, so $\exists p = cp$ as required.

To prove **A** satisfies (R2), let $p \neq \mathbf{0}$. Then for some $i, p_i \neq \mathbf{0}_i$, so by (R2) in \mathbf{A}_i , there is some constant c_i of \mathbf{A}_i with $c_i p_i \neq \mathbf{0}_i$. For each $j \neq i$, let c_j be the identity constant on \mathbf{A}_j . Then let c be the product of $\{c_j \mid j \in I\}$. As above, c is a constant on **A**. But $(cp)_i = c_i p_i \neq \mathbf{0}_i$, so $cp \neq \mathbf{0}$ as required.

Theorem 4. Every basic MBA is rich.

Proof. Recall that in a basic **MBA**, the quantifier takes the value **1** outside the ideal $\{p \mid p \leq E'\}$. In any **MBA** it takes the value **0** on this ideal, as noted earlier.

It follows that if **A** is basic, then any Boolean homomorphism $c : \mathbf{A} \to \mathbf{A}$ is a constant of **A**, since $\exists p \in \{0, 1\}$ and c fixes **0** and **1**, so $c \exists p = \exists p$ for all p. In particular, if U is an ultrafilter of A, then the characteristic function of U, of the form $\mathbf{A} \to {\mathbf{0}, \mathbf{1}} \subseteq \mathbf{A}$, is a constant of A.

To prove (R1) for **A**, suppose $p \wedge E \neq \mathbf{0}$. Then there is an ultrafilter U of **A** with $p \wedge E \in U$. Let c be the characteristic function of U. Then $E \in U$, so $cE = \mathbf{1}$ and hence $c \in X_E^{\mathbf{A}}$. Also $p \in U$, so $cp = \mathbf{1}$. But $\exists p = \mathbf{1}$ as **A** is basic, so $cp = \exists p$ as required.

For (R2), if $p \neq \mathbf{0}$, there is an ultrafilter U with $p \in U$. Again let c be the characteristic function of U. Then $c \in X^{\mathbf{A}}$ and $cp = \mathbf{1}$. But $p \neq \mathbf{0}$ implies $\mathbf{1} \neq \mathbf{0}$, so $cp \neq \mathbf{0}$ as required.

We are now ready to prove our main result.

Theorem 5. FMBA is precisely the class of all monadic bounded algebras in which $\exists E \text{ is } \mathbf{0} \text{ or } \mathbf{1}$.

Proof. Theorem 2.3 of [1] showed that every functional **MBA** has $\exists E \in \{0, 1\}$, hence so does every algebra isomorphic to a functional **MBA**, i.e. every member of **FMBA**.

For the converse, let $\mathbf{A} = (\mathbf{B}, E^{\mathbf{A}}, \exists^{\mathbf{A}})$ be any MBA having $\exists E^{\mathbf{A}} \in \{\mathbf{0}^{\mathbf{A}}, \mathbf{1}^{\mathbf{A}}\}$. If in fact $\exists E^{\mathbf{A}} = \mathbf{0}^{\mathbf{A}}$, then $E^{\mathbf{A}} = \mathbf{0}^{\mathbf{A}}$, and $\exists^{\mathbf{A}}p = \mathbf{0}^{\mathbf{A}}$ for all p. By the Stone representation of \mathbf{B} there is a set X and a Boolean monomorphism $f: \mathbf{B} \to \mathbf{2}^{X}$ making \mathbf{B} isomorphic to a subalgebra $\widetilde{\mathbf{A}}$ of the functional Boolean algebra $\mathbf{2}^{X}$. Let $E = fE^{\mathbf{A}} = f\mathbf{0}^{\mathbf{A}} = \mathbf{0}$ in $\widetilde{\mathbf{A}}$. Put $X_{E} = \emptyset$. Then it is readily checked that $\widetilde{\mathbf{A}}$ is a functional MBA with domain (X, X_{E}) and distinguished function E. The condition (F1) holds vacuously as $X_{E} = \emptyset$. For each p in \mathbf{A} , the sets $\bigvee \{fp(x) \mid x \in X_{E}\}$ and $\bigvee \{fp(x) \land E(x) \mid x \in X\}$ both have join $\mathbf{0}^{\mathbf{B}}$, and the function $\exists fp$ on X defined by $\exists fp(y) = \bigvee \{fp(x) \mid x \in X_{E}\}$ has constant value $\mathbf{0}^{\mathbf{B}}$, so is equal to $f\mathbf{0}^{\mathbf{A}} \in \widetilde{\mathbf{A}}$. This proves (F2) and (F3) for $\widetilde{\mathbf{A}}$. But also $f\exists^{\mathbf{A}}p = f\mathbf{0}^{\mathbf{A}} = \exists fp$, so f is an MBA-homomorphism making \mathbf{A} isomorphic to the functional MBA $\widetilde{\mathbf{A}}$.

Alternatively, $\exists E^{\mathbf{A}} = \mathbf{1}^{\mathbf{A}}$. Now by Theorem 5.1 of [1], every **MBA** is isomorphic to a subdirect product of basic **MBA**'s. Hence there is a collection $\{\mathbf{A}_i \mid i \in I\}$ of basic **MBA**'s and an injective homomorphism $f : \mathbf{A} \to \prod_{i \in I} \mathbf{A}_i$. For each $i \in I$, composing f with the projection from $\prod_{i \in I} \mathbf{A}_i$ shows there is a homomorphism $\mathbf{A} \to \mathbf{A}_i$, implying $\exists_i E_i = \mathbf{1}_i$. Also \mathbf{A}_i is rich by Theorem 4. Hence by Theorem 3, $\prod_{i \in I} \mathbf{A}_i$ is rich, and so is isomorphic to some functional **MBA** $\widetilde{\mathbf{A}}$ by Theorem 1. Let \widetilde{f} be the composition of f with the isomorphism from $\prod_{i \in I} \mathbf{A}_i$ to $\widetilde{\mathbf{A}}$. The range of \widetilde{f} is then a subalgebra of $\widetilde{\mathbf{A}}$, hence a functional **MBA** with the same domain and distinguished element as $\widetilde{\mathbf{A}}$, to which \mathbf{A} is isomorphic under \widetilde{f} .

So in both cases we get that \mathbf{A} is isomorphic to a functional **MBA** and hence belongs to **FMBA**.

The other topic of this paper is the development of a weaker notion of functional algebra, in terms of which every **MBA** can be represented. Given a set X and a Boolean algebra **B**, then a Boolean subalgebra **A** of \mathbf{B}^X with a distinguished element E is called a *relatively functional* **MBA** if for each $p \in \mathbf{A}$, the join $\bigvee \{p(x) \land E(x) \mid x \in X\}$ exists in **B**, and **A** contains the constant function $\exists p$ on X with this join as value. In this definition, we have abandoned the notion of the set X_E , but have retained enough structure to ensure that **A** is an **MBA**.

Note that any subalgebra of a relatively functional **MBA** is a relatively functional **MBA** with the same distinguished element.

One way to obtain algebras of this kind is to apply the notion of relativised monadic algebra from Example 3.1 of [1]. A functional monadic algebra based on X and **B** is a Boolean subalgebra **A** of \mathbf{B}^X such that for every $p \in \mathbf{A}$, the join $\bigvee \{p(x) \mid x \in X\}$ exists in **B**, and **A** contains the constant function $\exists p$ on X with this join as value. Here we have no E as well as no X_E . Any monadic algebra (i.e. any **MBA** with $E = \mathbf{1}$) is isomorphic to such a functional monadic algebra [2, p. 70]. But if **A** is a functional monadic algebra as described, and E is an arbitrary element of **A**, we can define an operation \exists^E on **A** by putting $\exists^E p = \exists (p \land E) \in \mathbf{A}$ for all $\in \mathbf{A}$. Then for any $y \in X$ we have

$$\exists^{E} p(y) = \bigvee \{ p(x) \land E(x) \mid x \in X \} \text{ in } \mathbf{B}.$$

So this creates from **A** a relatively functional **MBA** \mathbf{A}^E with distinguished element E and quantifier \exists^E . The notion of relatively functional **MBA** is itself more general than this, as it does not assume the existence of any background functional monadic algebra.

Next we define an abstract **MBA** \mathbf{A} to be *relatively rich* if it satisfies richness condition (R2), and in place of (R1) it has

(R1') for any p there is a $c \in X^{\mathbf{A}}$ with $\exists p = c(p \land E)$.

Lemma 6. Every rich MBA is relatively rich.

Proof. Let **A** satisfy (R1) and (R2). To prove (R1'), suppose first that $p \land E \neq \mathbf{0}$. Then by (R1) there is a $c \in X_E^{\mathbf{A}}$ with $\exists p = cp$. But $cE = \mathbf{1}$, so $c(p \land E) = cp \land cE = cp = \exists p$.

But if $p \wedge E = \mathbf{0}$, i.e. $p \leq E'$, then $\exists p = \mathbf{0}$. Let $c \in X^{\mathbf{A}}$ be the identity constant on \mathbf{A} . Then $c(p \wedge E) = c\mathbf{0} = \mathbf{0} = \exists p$.

Theorem 7. Any direct product of relatively rich **MBA**'s is relatively rich.

Proof. Let $\mathbf{A} = \prod_{i \in I} \mathbf{A}_i$ with each \mathbf{A}_i relatively rich. We use the notation of the proof of Theorem 3. For each $p \in \mathbf{A}$ and each $i \in I$, by (R1') in \mathbf{A}_i there is a constant c_i on \mathbf{A}_i with $\exists p_i = c_i(p_i \wedge E_i)$. Let c be the product of these c_i 's. Then c is a constant on \mathbf{A} , as in Theorem 3, with $\exists p = c(p \wedge E)$.

This shows that A satisfies (R1'). The proof that it satisfies (R2) is unchanged from Theorem 3.

Theorem 8. Every relatively rich **MBA** is isomorphic to a relatively functional **MBA**.

Proof. Let $\mathbf{A} = (\mathbf{B}, E, \exists)$ be relatively rich. We repeat the construction used in Theorem 1. For each $p \in \mathbf{A}$, define $\tilde{p} : X^{\mathbf{A}} \to \mathbf{B}$ by putting $\tilde{p}(c) = cp$; and then $f : \mathbf{B} \to \mathbf{B}^{X^{\mathbf{A}}}$ by $f(p) = \tilde{p}$. Let $\widetilde{\mathbf{A}}$ be the range of f. f is a Boolean homomorphism, and is injective because \mathbf{A} satisfies (R2).

To show that $\widetilde{\mathbf{A}}$ is a relatively functional **MBA** with distinguished function \widetilde{E} , it suffices to show that for each p in \mathbf{A} ,

$$\exists p = \bigvee \{ \widetilde{p}(c) \land \widetilde{E}(c) \mid x \in X^{\mathbf{A}} \}$$

in \mathbf{B} , i.e. that

$$\exists p = \bigvee_{c \in X^{\mathbf{A}}} c(p \wedge E).$$
(3)

This ensures that $\exists p$ is the function $\exists p$ on $X^{\mathbf{A}}$ with constant value $\bigvee \{ \tilde{p}(c) \land \tilde{E}(c) \mid x \in X^{\mathbf{A}} \}$, and hence that this function belongs to $\tilde{\mathbf{A}}$. Then $f(\exists p) = \exists f(p)$, and f is an **MBA**-homomorphism making **A** isomorphic to the relatively functional algebra $\tilde{\mathbf{A}}$, completing the proof.

To prove (3), note that for a given p, by (R1') there is some $c^* \in X^{\mathbf{A}}$ with $\exists p = c^*(p \wedge E)$. But for all $c \in X^{\mathbf{A}}$, we have $c(p \wedge E) \leq c \exists p = \exists p$. Thus $\exists p$ is an upper bound of $\{c(p \wedge E) \mid c \in X^{\mathbf{A}}\}$ and also belongs to this set, which implies (3).

We can now show that these functional algebras encompass all monadic bounded algebras.

Theorem 9. Every MBA is isomorphic to a relatively functional MBA.

Proof. If **A** is any **MBA**, by [1, Theorem 5.1] there is an injective homomorphism $f : \mathbf{A} \to \prod_{i \in I} \mathbf{A}_i$ into a direct product for which every \mathbf{A}_i is basic, hence rich, hence relatively rich (Lemma 6). Then $\prod_{i \in I} \mathbf{A}_i$ is relatively rich (Theorem 7), so is isomorphic to a relatively functional **MBA** $\widetilde{\mathbf{A}}$ (Theorem 8). Let \widetilde{f} be the composition of f with this isomorphism from $\prod_{i \in I} \mathbf{A}_i$ to $\widetilde{\mathbf{A}}$. The range of \widetilde{f} is then a subalgebra of $\widetilde{\mathbf{A}}$, hence a relatively functional **MBA** with the same distinguished element as $\widetilde{\mathbf{A}}$, to which \mathbf{A} is isomorphic under \widetilde{f} .

References

- [1] Galym Akishev and Robert Goldblatt. Monadic bounded algebras.
- [2] Paul R. Halmos. Algebraic Logic. Chelsea, New York, 1962.