
Review of Action Semantics by Peter D. Mosses. Cambridge Tractsin Theoretical Computer Science 26, Cambridge University Press,U.K., 372 + xx pages, 1992.Varol AkmanBilkent University, AnkaraJuly 2, 1998In ABC of Reading (Faber and Faber, London, 1979, pp. 39{40), a little book ofextraordinary beauty, Ezra Pound makes the following observations:When you start searching for `pure elements' in literature you will �ndthat literature has been created by the following classes of persons:1. Inventors. Men who found a new process, or whose extant work giveus the �rst known example of a process.2. The masters. Men who combined a number of such processes, andwho used them as well as or better than the inventors.3. The diluters. Men who came after the �rst two kinds of writer, andcouldn't do the job quite as well.4. Good writers without salient qualities. Men who are fortunateenough to be born when the literature of a given country is in goodworking order, or when some particular branch of writing is `healthy'.[: : :]5. Writers of belles-lettres. That is, men who didn't really invent any-thing, but who specialized in some particular part of writing, whocouldn't be considered as `great men' or as authors who were tryingto give a complete presentation of life, or of their epoch.6. The starters of crazes.Replacing \literature" with \programming language semantics," in this reviewI'll argue that Mosses should probably be seen as belonging to the third1 category.1Caveat: I am not a specialist in the area of programming language semantics|although Ioccasionally teach a senior-level course on denotational semantics. Again, in the words of Pound\you might at least beware and avoid accepting opinions from men who haven't produced notablework" (ibid., p. 40). 1

That is, Mosses does present interesting work which has considerable promise, but Ido not sincerely think that action semantics matches the richness and charm of say,denotational semantics. In fact, while reading this book, I have missed at severalplaces the terse yet precise approach of Mosses's excellent survey in the Handbook ofTheoretical Computer Science [3] (not to mention another superior survey by Gunterand Scott [2]). The theoretically oriented reader will �nd little in Mosses's book thatis of fundamental (or foundational) importance. Mosses seems to accept this anyway,as the following excerpt (p. 5) shows:Programmers should �nd action semantic descriptions almost as easy toread as the usual reference manuals, without much preparation. On theother hand, although the foundations of action semantics are �rm enough,the theory for reasoning about actions (and hence about programs) is stillrather weak, and needs further development. This situation is in markedcontrast to that of denotational semantics, where the theory (at leastfor dealing with deterministic, sequential programs) is strong, but severepragmatic di�culties hinder its application to realistic programming lan-guages.As can be understood from the last remark of the above passage, the main goalof action semantics is to give useful semantics descriptions of realistic2 programminglanguages. Action semantics can be seen as a mixture of the denotational, algebraic,and operational approaches to formal semantics. It has been under development since1977, by Mosses, and since 1984 additionally by Watt [7].What are actions? Basically, actions are dynamic, computational entities. Theperformance of an action directly represents information processing behavior and insome sense mirrors the stepwise nature of computation. A performance of an actioneither `completes' (corresponding to normal termination), `escapes' (corresponding toexceptional termination), `fails' (corresponding to abandoning the performance of anaction), or `diverges' (corresponding to nontermination). Action performances re
ectpossible program behaviors. Mosses initially considers single-agent performances, andassumes that in any particular performance, steps occur in a de�nite order (ratherthan concurrently). Thus, the current information available when performing a step iswell-de�ned and con
icting changes to the current information cannot arise. He laterturns to multi-agent performances. In this case, a dynamically-changing distributedsystem of agents proceeds to perform separate actions with asynchronous messagetra�c among agents (a.k.a. `true' concurrency).According to Mosses, denotational semantics is quite weak in terms of pragmaticfeatures (due to its heavy dependence on the �-notation). In fact, the original moti-vation for the development of action semantics was Mosses's considerable discontent2For instance, the following report may be seen as an illustration of this goal: Pascal ActionSemantics, Version 0.6, by P. D. Mosses and D. A. Watt, available from the �rst author. Thisreport provides, according to the authors, an almost complete formal speci�cation of the dynamicsemantics of Standard Pascal. 2

with practical aspects of denotational semantics. While Mosses accepts that higher-order functions on Scott domains have an elegant mathematical theory [2, 4], he com-plains that the functions required to represent the semantics of the usual constructsof programming languages are invariably rather complex. He notes that a descriptionof the semantics of a conventional programming language is di�cult to read whenit is given in terms of semantics equations using purely functional representations.(Besides, it may be a formidable task to grasp the operational implications of sucha description. After all, �-abstraction corresponds to call-by-name, not call-by-valueparameter passing.) But the really annoying practical problem with the denotationalparadigm, asserts Mosses, concerns the poor modi�ability and extensibility of de-notational descriptions. He `proves' this last claim as follows. In all textbooks ondenotational semantics (so far!), the simple semantic equations for expression evalua-tion need to be altogether reformulated when declarations and statements are added.In general, Mosses explains concepts in an informal manner before giving theassociated formal3 notation. Part I introduces the main ideas and formalism used inaction semantics. Part II introduces the details of action notation. It is intended to beread together with Part III which introduces a series of examples of action semanticdescriptions. The examples describe assorted programming constructs of|among allthings|ADA. This may re
ect a deep-rooted bias on my part but I was not at allhappy to see that this was the case. Even the `encouraging' remarks of Mosses (\Noprevious familiarity with ADA is required, as the necessary concepts are all explainedhere") did not really help me shake my disappointment. Accordingly, while Mossesdoes try to justify his insistence to base some of the exercises in his book on ADA4,I do not �nd this as a valid excuse.The book is aimed primarily at researchers (including graduate students) in se-mantics. In the remaining portion of this review, I would like to compare it with afew books that I am familiar with. Stoy's book [6] is based on C. Strachey's lecturesat Oxford and being more than 15 years old, cannot possibly stress the importantsyntactic constructs of later programming languages. However, it is still one of thebest sources available, primarily due to its lucid style. The book of Gordon [1] is moreon the engineering side and delves into the foundational problems only in a few places.Still, it is one of the best places to look to have a quick (yet thorough) appreciation of�-calculus. Schmidt's book [5] includes a rather useful description of domain theory(apparently to be outdated by the upcoming volume of Roscoe and Reed [4]). Itsonly weakness is (arguably) the coverage of a number of minor or subordinate itemswhich at times is damaging to the overall coherence.I would like to end this review on a lighter note. As I have stated earlier, a mainconcern of Mosses in advancing action semantics has been comprehensibility. Accord-3Unfortunately, this gives rise to a fair amount of redundancy in the text. One encounters a moreformal version of a current discussion later just to discover that there was probably no need for theless formal version at all. This `repetitive' style of presentation especially makes itself felt in theprefaces and the summaries that accompany each chapter; I am simply at a loss to apprehend thenecessity of such material in a research-level text.4Cf., for instance, p. 19: \ADAwas chosen here primarily because its Reference Manual, althoughlarge, is quite accessible to the casual reader|thanks to its Glossary and copious cross-referencing."3

ing to Mosses, the comprehensibility of action semantic descriptions is high becausethey use suggestive words. (For example, the action combinator corresponding tosequential performance is written as \then".) This way, Mosses states, the actionnotation becomes a reasonable compromise between say, denotational semantic no-tations and informal English [sic]. Strange, because long time ago I was taught thatthe following is one of the most fundamental `laws' of computer programming:Make it possible for programmers to write in English and you will �ndout that programmers cannot write in English.References[1] M. J. C. Gordon, Programming Language Theory and Its Implementation, Pren-tice Hall, 1988.[2] C. A. Gunter and D. S. Scott, \Semantic domains," Handbook of TheoreticalComputer Science, Vol. B, pp. 633{674, J. van Leeuwen (ed.), Elsevier, 1990.[3] P. D. Mosses, \Denotational semantics," Handbook of Theoretical Computer Sci-ence, Vol. B, pp. 573{631, J. van Leeuwen (ed.), Elsevier, 1990.[4] A. W. Roscoe and G. M. Reed, Domains for Denotational Semantics, PrenticeHall, 1993 (to appear).[5] D. A. Schmidt, Denotational Semantics: A Methodology for Language Develop-ment , Allyn & Bacon, 1986.[6] J. E. Stoy, The Scott-Strachey Approach to Programming Language Theory, MITPress, 1977.[7] D. A. Watt, Programming Language Syntax and Semantics, Prentice Hall, 1991.
4

