
Situated Modeling of EpistemicPuzzlesMURAT ERSAN, Computer Science Department, Brown University,Providence, Rhode Island 02912, USA. E-mail: me@cs.brown.eduVAROL AKMAN, Department of Computer Engineering andInformation Science, Bilkent University, Bilkent, Ankara 06533,Turkey. E-mail: akman@cs.bilkent.edu.trAbstractSituation theory is a mathematical theory of meaning introduced by Jon Barwise and John Perry. Ithas evoked great theoretical interest and motivated the framework of a few `computational' systems.PROSIT is the pioneering work in this direction. Unfortunately, there is a lack of real-life applicationson these systems and this study is a preliminary attempt to remedy this de�ciency. Here, we solvea group of epistemic puzzles using the constructs provided by PROSIT.Keywords: computational situation theory, epistemic puzzles, common knowledge, PROSIT1 IntroductionSituation theory is a principled programme to develop a mathematical theory ofmeaning which aims to clarify and resolve some formidable problems in the studyof language, information, logic, and philosophy of mind. It was introduced by JonBarwise and John Perry in their Situations and Attitudes [3] and stimulated greatinterest. The theory matured within the last ten years or so [6, 7] and various ver-sions of it have been applied to a number of linguistic issues [8], resulting in what iscommonly known as situation semantics . This was accompanied by assorted studieson the computational aspects of the theory, which gave birth to a small collection ofprogramming languages based on situation theory; cf. [24] for a recent survey.PROSIT (PROgramming in SItuation Theory) [14, 15, 5] is the pioneering work inthis direction. PROSIT seems to be especially suitable for writing programs simulat-ing human-like (commonsense) reasoning [12]. Unfortunately, there have been veryfew attempts to employ PROSIT in this style. Such a study is, however, of greatimportance, and would help us see where and why we should utilize systems basedon situation theory, and how we should go about formulating a situation-orientedprogramming paradigm [23, 22]. Pinning our faith upon situation theory, we triedto make use of PROSIT in the solution of what we came to call epistemic puzzles[13, 19, 20]. Thus, throughout this paper the nature of epistemic puzzles and theirmodeling via a situation-theoretic world-view will be analyzed.A short introduction to situation theory will be o�ered in the next section. Thiswill be followed by a review of PROSIT. Then we'll explain what epistemic puzzlesare like, how they have been solved using classical approaches, and why the situatedstandpoint �ts best to model and solve them. The discussion will be supported by51Bull. of the IGPL, Vol. 3 No. 1, pp. 51{76 1995 c
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52 Situated Modeling of Epistemic Puzzlesa variety of puzzles, some of which were introduced by Raymond Smullyan in hisForever Undecided: A Puzzle Guide to G�odel [20]. (Also cf. [16, 17, 18] for similarpuzzles.)2 Situation theorySituation theory is a mathematical theory of meaning with considerable depth. Thepresent introduction will cover only those aspects of the theory required for an ap-praisal of the ideas in the sequel.Barwise and Perry were aware of the limitations of classical logic and contendedthat the standard view of logic is inappropriate for many of the uses to which it hasbeen put by semanticists. Some semantic theories emphasized the power of languageto classify minds, i.e., the mental signi�cance of language, while others focused on theconnections between language and the described world, i.e., the external signi�cance oflanguage. However, Barwise and Perry claim that for an expression to have meaning,it should convey information. This is possible only if the expressions have a link withthe kinds of events they describe and also a link with the states of mind. They developa theory of situations and of meaning as a relation between situations. The theoryprovides a system of abstract objects that describe the meaning of expressions andmental states in terms of the information they carry about the world.The information-based approach to the semantics of natural languages has resultedin what is known as situation semantics. The primary idea is that language is used toconvey information about the world. Two sentences with the same interpretation|describing the same situation|can carry di�erent information. Context-dependence,which was underestimated in classical approaches to semantics, is the essential hy-pothesis of situation semantics. Indexicals, demonstratives, tenses, and other lin-guistic devices rely heavily on context for their interpretation. Therefore, a sentencecan be used over and over again in di�erent situations to say di�erent things. Itsinterpretation is subordinate to the situation in which the sentence is uttered.The framework of situation theory mainly consists of the things an (intelligent)agent is able to discriminate using his cognitive abilities. The basic ingredients include� individuals , viz. entities that are individuated as `objects',� properties that hold or fail to hold for these individuals,� relations that hold or fail to hold among these individuals, and� spatial and temporal locations , viz. regions of space and time.Two key notions of situation theory are infons and situations . Infons are the basicinformational units and are considered to be discrete items of information. Infons aredenoted as � P; a1; : : : ; an; i� where P is an n-place relation, a1; : : : ; an are objectsappropriate for the respective argument places of P , and i is the polarity (0 or 1).Situations are `�rst-class' citizens of the theory. There is no clear-cut de�nitionof what a situation exactly is. Rather, a situation is considered to be a structuredpart of the Reality that a cognitive agent somehow manages to pick out (individuate).Situations support facts:s supports � (denoted as s j= �) if � is an infon that is true of situation s.



Situated Modeling of Epistemic Puzzles 53Truth or falsity do not depend on j= but instead are handled by the notion of polar-ity. For example, SIT1 6j=�running,Bob,1� does not imply SIT1 j=�running,Bob,0�.Abstract situations are the mathematical constructs with which we can representreal situations. They are more amenable to manipulation. An abstract situation isde�ned to be a set of infons: given a real situation s, f� j s j= �g is the correspondingabstract situation.Types are higher-order uniformities which cut across individuals, relations, situa-tions, and spatial and temporal locations. For each type T , an in�nite collection ofparameters T1; T2; : : : is introduced. For example, IND1 is an IND-parameter (param-eters of type individual). Given a SIT -parameter, SITi, and a set of infons, I , [SITi jSITi j= I ] denotes a situation-type, the type of situation in which conditions in I aresatis�ed. For example, [SIT1 j SIT1 j=�running,Bob,LOC1,TIM1; 1�] denotes thetype of situation in which Bob is running at some location and at some time.Frequently, rather than parameters ranging over all individuals, we need parametersthat range over a more limited class, i.e., restricted parameters . Given a parameter,v, and a condition, D, on v, a restricted parameter v " D is de�ned. This is of thesame basic type as v and satis�es the requirements imposed by D. For example, inthe following, _b ranges over all footballs and _a over all men kicking footballs:_b =IND2 "�football,IND2; 1�_a =IND3 " f�man,IND3; 1�;�kicking,IND3,_b; 1�gIn addition, it is possible to obtain new types (in the form [s j s j= I ]) using aparameter and a set of infons. For example, [SIT1 j SIT1 j=�kicking, _a; _b; 1�] repre-sents a situation-type where a man is kicking a football; [ _a j SIT1 j=�kicking, _a; _b; 1�]denotes the type of men kicking a football.In situation theory, the 
ow of information is realized by a certain group of infonscalled constraints . A situation s will carry information relative to the constraintC = [S ) S0], if s : S[f ], where f anchors the parameters in S and S0. Hence, theinformation carried by s relative to C is that there is a situation s0, possibly extendings, of type S0[f ]. In the following example, an agent who is aware of C will infer thatthere is a �re whenever he perceives smoke:S0 = [ _s0 j _s0 j=�smoke-present, _l; _t; 1�]S1 = [ _s1 j _s1 j=��re-present, _l; _t; 1�]C = [S0 ) S1].3 PROSITCurrently, there are three computational systems based on situation theory. PROSIT,developed by Nakashima et al. [14, 15, 5], is the earliest system. It was followed bythe ASTL system of Black [4]. Another computational medium called BABY-SIT iscurrently being built by Akman and T�n [23, 22, 21]. PROSIT is primarily aimed atproblems of knowledge representation whereas ASTL is intended for experiments innatural language processing. On the other hand, BABY-SIT will hopefully handleproblems of both sorts. A considerably detailed comparative study on PROSIT,ASTL, BABY-SIT, and other systems with a situation-theoretic 
avor has recentlyappeared [24]. Therefore, we won't go into the details of ASTL and BABY-SIT.



54 Situated Modeling of Epistemic PuzzlesHowever, since the epistemic puzzles in this paper were implemented in PROSIT,this section will be devoted to that language.PROSIT [14, 15, 5] is a declarative language in which both programs and data arejust sets of infons . This feature makes PROSIT akin to Prolog, but PROSIT is basedon situation theory rather than Horn clauses. The motivation behind the design ofthis language rests on the following desirable features, each of which is supported bythe theory:� Partially speci�ed objects and partial information.� Situations as �rst-class citizens.� Situatedness of information and constraints.� Informational constraints.� Self-referential expressions.3.1 Syntax and semanticsExpressions in PROSIT are either atoms or lists. Atoms that are numbers or stringsare considered to be constants ; atoms that are symbols are regarded either as param-eters or variables . Lists are similar to Lisp lists.Parameters are Lisp symbols starting with a character other than *. They are usedto represent things that cannot be captured by PROSIT constants, such as objects,situations, and relations. Usually, di�erent parameters correspond to di�erent entities.Parameters can be used in any infon (including queries and constraints); their scope isglobal. Symbols starting with * are variables. Variables are place-holders that standfor any PROSIT expression. They only appear in constraints and queries; their scopeis local to the constraint or query they participate in.In PROSIT, an infon is represented as a list whose �rst element is the symbol fora relation and whose remaining elements are the objects for which the relation holds.For example, the infon (loves John Mary) expresses that the relation loves holdsbetween the objects represented by the parameters John and Mary. PROSIT hasno polarity argument in infons, but handles this using the predicate no. Thus, (noinfon) stands for the `dual' of infon.One can assert infons, and query a knowledge base incorporating, among otherthings, infons. Unlike Prolog, infons are local to situations. For example, to assertthe infon mentioned above into a situation, sit1, we write (!= sit1 (loves JohnMary)).In PROSIT, there exists a tree hierarchy among situations, with the situation topat the root of the tree. Thus top is the global situation and the `owner' of all theother situations generated. One can traverse the `situation tree' using the predicatesin and out. in causes the interpreter to go to a speci�ed situation which will be a partof the `current situation' (the situation in which the predicate is called). out causesthe interpreter to go to the owner of the current situation. Although it is possible toissue queries from any situation about any other situation, the result will depend onwhere the query is made. If a situation sit2 is de�ned in the current situation, saysit1, then sit1 is said to be the owner of sit2. (We can also say that sit2 is apart of sit1, or that sit1 describes sit2.) Brie
y, the owner relation states that if(!= sit2 infon) holds in sit1, then infon holds in sit2, and conversely, if infon



Situated Modeling of Epistemic Puzzles 55holds in sit2 then (!= sit2 infon) holds in sit1.Similar to the owner relation there is the subchunk relation, denoted by ([ sit1sit2), where sit1 is a subchunk of sit2 (or sit2 is a superchunk of sit1). Whensit1 is asserted to be the subchunk of sit2 it means that sit1 is totally described bysit2. A superchunk is like an owner (except that out will always cause the interpreterto go to the owner, not to a superchunk).PROSIT has two more relations that can be de�ned between situations: subtype andsubsituation. When the subtype relation, denoted by (@< sit1 sit2)), is asserted,it causes the current situation to describe that sit2 supports each infon valid in sit1and that sit2 respects every constraint that is respected by sit1, i.e., sit1 becomesa subtype of sit2. The subsituation relation, denoted by (<-- sit1 sit2), is thesame as (@< sit1 sit2) except that only infons, but no constraints, are inherited.Both relations are transitive.A distinguishing feature of PROSIT is that the language allows circularity [2]. Thefact that PROSIT permits situations as arguments of infons makes it possible to writeself-referential statements. Consider a card game (sit1) between two players. Johnhas the ace of spades and Mary has the queen of spades. When both players displaytheir cards we have:(!= sit1 (has John a-of-spd))(!= sit1 (has Mary q-of-spd))(!= sit1 (sees John sit1))(!= sit1 (sees Mary sit1))Clearly the last two infons are circular, viz. sit1 supports facts in which it appearsas an argument.3.2 InferenceThe notion of informational constraints is a distinguishing feature that shaped thedesign of PROSIT. Constraints can be considered as special types of information that`generate' new facts. They are just a special case of infons, and therefore, are alsosituated. A constraint can be speci�ed using either of the three relations =>, <=, and<=>. Constraints speci�ed with => are forward-chaining. They are of the form (=>head result1 : : : resultn). If head is asserted to the situation then all of the results arealso asserted to that situation. Constraints speci�ed with <= are backward-chaining.They are of the form (<= head goal1 : : : goaln). If each of the goals is supported by thesituation, then head is also supported (though not asserted) by the same situation.Finally, constraints speci�ed with <=> should be considered as both backward- andforward-chaining (bidirectional).If there is a constraint \A smiling person must be a happy person" in sit1, i.e.,(resp sit1 (=> (smiling *X) (happy *X)))then the assertion of (smiling John) in sit1 will force PROSIT to assert (happyJohn) in sit1. Here resp stands for \respects" and causes sit1 to respect theconstraint about smiling.When an expression, expr , is queried, PROSIT tries to evaluate the query, bindingvalues to the variables in the query as the interpreter goes through the database.



56 Situated Modeling of Epistemic PuzzlesIf this process fails at any stage, PROSIT backtracks to the previous stage in thesearch of a solution, and undoes all the bindings made along the incorrect path. Thesearch will succeed if (i) expr uni�es with an expression that is explicitly assertedin the current situation or its subsituations, or (ii) expr uni�es with the head of abackward-chaining constraint (<= head goal1 : : : goaln) and �nds a solution to all ofthe goals when queried in order.PROSIT o�ers two types of uni�cation. One is variable uni�cation (V-uni�cation),the other is parameter uni�cation (P-uni�cation). V-uni�cation is the one familiarfrom Prolog and binds variables to objects. It occurs only in the query mode andits e�ects are undone when PROSIT backtracks. P-uni�cation occurs only in theassertion mode. It is performed by explicitly stating that two parameters stand forthe same object and can be uni�ed. P-uni�cation is one of the major di�erencesbetween PROSIT and Prolog (in which atoms never unify).3.3 ApplicationsAlthough it o�ers a variety of constructs that can be used for simulating human-likereasoning, there have been few attempts to employ PROSIT in this style. One ofthe applications in which PROSIT was used is the treatment of identity which weconsider next.Parameters are the means to keep track of the correspondence between concepts inthe mind and real objects in the world, cf. [10]. The idea can be exempli�ed by thefollowing. The famous Roman orator Cicero's �rst name is Tully. For someone whoknows this identity, the answer to the question \Is Tully an orator?" would be \Yes".However, for someone who is not aware of this identity it is not possible to give thesame answer.In PROSIT, it is easy to express the di�erence between someone who knows theidentity of Cicero and Tully, and someone who does not. If an individual is aware ofthe identity of Cicero and Tully, his knowledge will be classi�ed by sit1 where(!= sit1 (= cicero tully))(!= sit1 (orator cicero))Here, the former is a P-uni�cation which states that Cicero and Tully are the sameperson; the latter states that Cicero is an orator. On the other hand, the knowledgeof someone who does not know this identity is classi�ed by sit2 where(!= sit2 (orator cicero))The system's response for each case will be as follows:(!= sit1 (orator tully))yes.(!= sit2 (orator tully))unknown.A rather recent study on communication and inference through situations [14] wasthe most serious attempt to make use of PROSIT. It was mainly aimed at a problem(\The Three Wisemen") that requires cooperation in a multi-agent setting. Situationtheory was used as a framework to represent common knowledge [1]. The idea behind



Situated Modeling of Epistemic Puzzles 57this choice was to exploit the foundations of situation theory for analyzing information
ow.4 Situations and epistemic puzzles4.1 Epistemic puzzlesEpistemic puzzles deal with knowledge|either in the form of individual knowledgeor common knowledge (mutual information). The ontology of these puzzles includethe agents whose knowledge we try to represent, A = fa; b; : : :g, the knowledge eachagent has, K = fKa;Kb; : : :g, and the facts mentioned in the statement of the puzzle.If we let all the facts in a puzzle make up the set F = ff1; f2; : : :g (where each fi isa relation that holds among the agents and objects that are present in the puzzle),then each Ki is a subset of F . The primary question to be answered in epistemicpuzzles is generally about the facts that the agents are aware of. So a puzzle mightask if an agent, say x, is aware of the fact fi, i.e., whether fi 2 Kx. However,this representation fails to handle two fundamental properties of knowledge [1, 2]:circularity (i.e., if a knows f3, then he knows that he knows f3, ad in�nitum) anddeductive omniscience (i.e., if a knows that p and p entails q, then a knows that q).For this representation to handle circularity of knowledge it should be extended suchthat each Ki is an element of itself. So if a knows the facts f1, f3, and f4, thenKa = ff1; f3; f4;Kag. To achieve deductive omniscience the de�nition of the factsshould be extended. In addition to simple relations that hold among agents, rules ofthe form \If : : : then : : : " should also be considered as belonging to the facts .To elucidate the de�nitions above, we show how they can be used to representcommon knowledge. In a card game, John has the ace of spades and Mary has thequeen of spades. Jack comes and looking at her cards announces that Mary has thequeen of spades. At this point, each agent's knowledge is represented as follows:Kjohn = f�has,john,a-of-spd,1�;Kjohn;KcommongKmary = fKmary;KcommongKcommon = f�has,mary,q-of-spd,1�;KcommongWe now describe, via an example, what an epistemic puzzle looks like:Two logicians place cards on their foreheads so that what is written on thecard is visible only to the other logician. Consecutive positive integers havebeen written on the cards. The following conversation ensues:A: I don't know my number.B : I don't know my number.A: I don't know my number.B : I don't know my number.: : : n statements of ignorance later : : :A or B : I know my number.What is on the card and how does the logician know it?Note that the facts that we are after are restricted. We are only interested in thenumbers on the cards, not in the colors or the shapes of the cards. Here, both A andB know some facts, and as the conversation proceeds they generate new facts. At the



58 Situated Modeling of Epistemic Puzzlesend, one of them �nds out what the number on his forehead is. The aim of this studyis to simulate the way the agent holds information about the situation he happens tobe in and the way he reasons about this information.There have been many attempts in AI to deal with knowledge and information.The most common tool used in tackling the fundamental problems posed by theseconcepts was classical (predicate) logic or its extensions such as modal, temporal, anddeontic logics [9, 11]. All these attempts were of a mathematical nature, and thereforewithin the existing pure mathematics paradigm. On the other hand, situation theoryemerged as a realistic theory of information. First, an empirical study of informationwas made [8]. This was followed by the application of the existing mathematicaltechniques and the development of new mathematical tools. In that respect, situationtheory is tailor-made for problems involving knowledge and information.4.2 Previous approachesWe'll examine three di�erent approaches used in solving epistemic puzzles. First, we'llanalyze how Smullyan solves his knights-and-knaves puzzles using symbolic logic. In[20], Smullyan introduces a number of puzzles about liars and truth-tellers [2]. Mostof the events in the puzzles take place on the Island of Knights and Knaves where thefollowing three propositions hold:1. Knights always make true statements.2. Knaves always make false statements.3. Every inhabitant is either a knight or a knave.The aim of the puzzles is to decide whether an inhabitant is a knight or a knaveusing the statements he makes. Assume that P is a native of the Island of Knightsand Knaves. Let k be the proposition that \P is a knight". Suppose P utters aproposition X . In Smullyan's puzzles the reasoner knows neither the truth value ofk nor the truth value of X , i.e., he does not know whether the native is a knightor a knave, and he does not know whether the asserted proposition is true or false.The only thing he knows is that P is a knight if and only if X is true. So he knowsthat the proposition k � X is true. So the sentence \P asserts X" is translated ask � X . We'll show how this fact helps in the solution of a particular problem thatwill be detailed in Section 4.3.2: a native of the island, P1, declares to a census-takerthat he and his wife, P2, are both knaves; can he be telling the truth? Now, k1 isthe proposition that P1 is a knight, and :k1 that he is a knave. Similarly :k2 is theproposition that P2 is a knave. Translating to symbolic logic, the reasoner knows thatk1 � (:k1 ^ :k2). At this point, the domain of the problem changes from knowledgeto symbolic logic: given two propositions k1 and k2 such that k1 � (:k1 ^:k2), whatare the truth values of k1 and k2? Using a truth table one can easily verify that theonly case in which k1 � (:k1 ^ :k2) is when k1 is false and k2 is true. Hence P1 waslying.Although there is a very interesting translation here from the domain of knowledgeto the domain of symbolic logic, the question \Is this the way an intelligent agenthandles such problems?" should be carefully considered. Would an intelligent agentuse a truth table to decide who is lying and who is telling the truth?



Situated Modeling of Epistemic Puzzles 59In the second approach, rather than explaining the way an agent reasons throughoutthe puzzle, it is proven that the �nal result that the agent has reached is correct. Forexample, in the puzzle about cheating husbands this is done using induction [13,p. 168]:The queens of the matriarchal city-state of Mamajorca, on the continent ofAtlantis, have a long record of opposing and actively �ghting the male in�-delity problem. Ever since technologically-primitive days of Queen HenriettaI, women in Mamajorca have been required to be in perfect health and passan extensive logic and puzzle-solving exam before being allowed to take a hus-band. The queens of Mamajorca, however, were not required to show suchcompetence.It has always been common knowledge among the women of Mamajorca thattheir queens are truthful and that the women are obedient to the queens. It wasalso common knowledge that all women hear every shot �red in Mamajorca.Queen Henrietta I awoke one morning with a �rm resolution to do away withthe in�delity problem in Mamajorca. She summoned all of the women heads-of-households to the town square and read them the following statement:There are (one or more) unfaithful husbands in our community. Althoughnone of you knew before this gathering whether your own husband was faithful,each of you knows which of the other husbands are unfaithful. I forbid you todiscuss the matter of your husband's �delity with anyone. However, should youdiscover your husband is unfaithful, you must shoot him on the midnight of theday you �nd about it.Thirty nine silent nights went by, and on the fortieth night, shots were heard.How did the wives decide on the in�delity of their husbands? As a solution to thisproblem, a theorem stating that if there are n unfaithful husbands they will be shoton the midnight of the nth day, is proven [13, p. 169]. For n = 1 there would be oneunfaithful husband. His wife would immediately realize that he is the unfaithful one,just after hearing the queen's statement, because she de�nitely knows that there isno other unfaithful husband. Assume that the claim holds for n = k, i.e., if there arek unfaithful husbands they would be shot on the kth night. We prove that the claimalso holds if there are k+1 unfaithful husbands. In that case, every cheated wife wouldknow k unfaithful husbands. As all the cheated wives are logically competent, theyknow that if there are k unfaithful husbands then those husbands will be shot on thekth night. As none of the cheated wives can prove that their husband is unfaithful,no shots are �red during the �rst k nights. Because no shots are �red on the kthnight, the cheated wives decide that there are more than k unfaithful husbands andthat their own husband is unfaithful too. So the unfaithful husbands are shot on thek + 1st night. It must be noted that, rather than explicating how the cheated wivesdecide that their husbands are unfaithful, this proof demonstrates that their decisionis correct.The third approach used in solving these puzzles is the most realistic one. It explainshow the agents in these puzzles reason about the situations they �nd themselves in.A slight blemish of this approach is that, it is informal. For example, the solutionof the puzzle where the native P1 states that he and his wife, P2, are both knaves isgiven as follows [20, p. 16]:



60 Situated Modeling of Epistemic PuzzlesIf the husband were a knight, he would never have claimed that he and hiswife were both knaves. Therefore he must be a knave. Since he is a knave, hisstatement is false; so they are not both knaves. This means his wife must beknight. Therefore he is a knave and she is a knight.This informal solution seems to be the right one to handle these puzzles. Whatwe'll try to do in the sequel is in some sense to formalize it using situation-theoreticconcepts.4.3 The situated approachSituation theory, as mentioned earlier, is tailor-made for the problems involving knowl-edge and information. It provides a group of features that motivated the design ofPROSIT|a language especially suitable for writing commonsense reasoning programs[12].One of these features is that situations are �rst-class citizens of the theory. Thisfeature combines reasoning in situations and reasoning about situations. More specif-ically, situations can be arguments to relations. Therefore situation theory should notonly be considered as a theory of relations in situations, but also of relations amongsituations.Both individual and common knowledge are represented as situations. These situ-ations consist of a number of infons representing the facts an agent is aware of. So ifJack knows that John has the ace of spades and that Mary has the queen of spades,then the situation representing Jack's individual knowledge, i.e., jk, will consist oftwo infons (discarding any unrelated stu�):(!= jk (has john a-of-spd))(!= jk (has mary q-of-spd))An important advantage of using situations to represent knowledge is that it ispossible to express some statements that are not expressible in logic. For example,the statement \I know a man who drinks wine every night" can be most closelyrendered in (implicitly sorted) predicate logic by the following formula:(9x)[know(I; x) ^ drinkswineeverynight(x)]However, this formula can also be interpreted as: \I know a man, and that mandrinks wine every night. (I don't know whether he drinks wine every night.)" Usingsituations to represent knowledge, we would write the following infons to express theoriginal statement:(!= i-know (man *x))(!= i-know (drinks-wine-every-night *x))On the other hand, if I didn't know that he drinks wine every night, then the secondinfon would not hold.Another feature of situation theory that helps formalize epistemic concepts is thegeneral treatment of partial information. As mentioned previously, situations arepartial, i.e., they do not de�ne the truth or falsity of all relations on all objects inthe domain. Assume that Mary and Jack are facing each other in a room, and that



Situated Modeling of Epistemic Puzzles 61there is a cat behind Mary. Jack is able to see the cat, so the situation that modelshis knowledge will support the fact that there is a cat in the room:(!= jk (in-room cat))However, in the situation representing Mary's knowledge there should be no infonto that e�ect. Hence, when a query is made about the cat in the situation representingMary's knowledge, the answer should not be no but rather unknown.Logical omniscience is supported by informational constraints in situation theory.For example, if Bob is attuned to the constraint that every smiling human beingis happy, and knows that John is smiling, then he deduces John is happy. This isrepresented as follows:(resp bk (=> (smiling *X) (happy *X)))The circularity of knowledge is modeled via \self-referential expressions" which isanother important feature of situation theory. Situations are members par excellenceof the ontology of situation theory; therefore, they can be used as constituents ofinfons. For example, if common stands for the situation holding the facts that arecommon to every agent, i.e., the common knowledge situation, and jk stands forJack's individual knowledge, then either of the following expressions states that Jackknows everything that is common knowledge:(!= jk common)([ common jk)The second expression illustrates the use of the subchunk relation. It can be trans-lated as \common is fully described by the infons in jk". So if infon holds in common,then (!= common infon) holds in jk.Using the subchunk relation it is straightforward to de�ne circularity. ([ jk jk)will generate a self-referential situation, and as jk stands for the individual knowledgeof Jack, it will provide for the desired circularity. So if Jack knows that Mary has thequeen of spades, then all of the following will hold:(!= jk (has mary q-of-spd))(!= jk (!= jk (has mary q-of-spd)))(!= jk (!= jk (!= jk (has mary q-of-spd)))): : :The �nal feature of situation theory that led us to using it as a framework forepistemic puzzles is the \situatedness of information and constraints". Each infon orconstraint exists in a situation (more formally, is supported by a situation). Conse-quently, each infon or constraint has an interpretation according to the situation itexists in. This can be considered as context-dependence.To clarify the argument above, consider a constraint that deduces facts about theheight of individuals. Let both Mike and John be 185 cm tall. Both are aware of thefact that if someone is higher than 185 cm, then that individual is taller than Mikeand John. The following represents the constraint that is supported by Mike's (orJohn's) knowledge:(resp mk(<= (taller *y *x) (me *x) (height *y *h) (> *h 185)))



62 Situated Modeling of Epistemic PuzzlesIf John knows that Bob is 175 cm tall and Mike knows that Bill is 195 cm tall, thenMike will deduce the fact that Bill is taller than himself, viz.(!= mk (taller bill mike))but John will not be able to deduce anything using the previous constraint.The same argument holds for infons. Imagine a case which Holmes and Watsonare working on: a theft in which the door of the 
at that the thief broke into is notfractured and that the windows are closed. Although both Holmes and Watson areaware of these facts, viz.(!= hk (intact door) (closed windows))(!= wk (intact door) (closed windows))only Holmes is able to deduce that the thief had the key to the door. This is becauseonly Holmes �nds out that the thief has a key, using the following constraint:(resp hk(=> (and (intact door) (closed windows) (has thief key))))This example demonstrates that the same infon can generate di�erent facts indi�erent contexts; a system should simulate this capability if it is trying to performhuman-like reasoning [12].It can be concluded that the main advantage of using situation theory in represent-ing knowledge is the conceptual clarity it o�ers. Epistemic puzzles can be modeledwithout much e�ort; all the tools required for this are already present in situationtheory. This is due to the fact that situation theory is a `natural' theory of informa-tion.4.3.1 The Three Wisemen problemThe solution of the \Three Wisemen Problem" [14] in PROSIT is, to our best knowl-edge, the only serious attempt to use situation-theoretic constructs in the resolutionof epistemic puzzles. It turns out that the situation-theoretic aspects of PROSIT(reasoning about situations and in situations) o�er an intuitive and simple solutionfor this hypothetical problem [14, p. 79]:Three wisemen are sitting at a table, facing each other, each with a white haton his head. Someone tells them that each of them has a white or red hat butthat there is at least one white hat. Each wiseman can see the others' hatsbut not his own. If a fourth person asks them whether they know their owncolor, then the �rst two wisemen will answer no, but, after that, the third onewill answer yes.The available facts in the problem can be categorized into two groups: facts thatare known by all wisemen and facts that are known individually. Facts such as thatthere are three agents A, B , and C , that all agents are wise, and that each agent iswearing either a white or a red hat are known by all three wisemen. On the otherhand, the fact that say, B and C are wearing white hats is known only by A.There are two ways for an agent to decide that his hat is white. The �rst is whenthe other two wisemen have red hats. The second is when his assumption of having a
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A
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A.C A.C.B

Inheritance relation
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Fig. 1: The Three Wisemen Problem. The facts known to all wisemen are kept insituation W. The facts that A knows are kept in situation A. The facts that A knowsthat C knows are kept in situation A.C. The facts that A knows that C knows thatB knows are kept in situation A.C.B.red hat causes a contradiction. The approach followed by [14] is to use the latter inorder to solve this problem. A assumes that he has a red hat. After B and C answersno, A concludes that C should have said yes (because from B 's answer C concludesthat at least one of A and C is wearing a white hat) if he (A) were wearing a red hat.So A knows that he is wearing a white hat. PROSIT's tree hierarchy of situationsmakes it rather easy to represent this (Figure 1).4.3.2 Smullyan's puzzlesThese puzzles are epistemic in the sense that knights `re
ect' their individual knowl-edge and beliefs while knaves `re
ect' the contrary of them. A simple puzzle of thistype is the following [20, pp. 15{16]:The census-taker Mr. McGregor once did some �eldwork on the Island ofKnights and Knaves. On this island, women are also called knights and knaves.McGregor decided on this visit to interview married couples only. McGregorknocked on one door; the husband partly opened it and asked McGregor hisbusiness. \I am a census-taker," replied McGregor, \and I need informationabout you and your wife. Which, if either, is a knight, and which, if either, isa knave?" \We are both knaves!" said the husband angrily as he slammed thedoor.What type is the husband and what type is the wife?The solution, already given in Section 4.2, is repeated here for convenience [20,p. 16]:If the husband were a knight, he would never have claimed that he and hiswife were both knaves. Therefore he must be a knave. Since he is a knave, hisstatement is false; so they are not both knaves. This means his wife must beknight. Therefore he is a knave and she is a knight.As it can be seen from the solution, when a reasoner is asked to solve this puzzlehe �rst makes some assumptions. Then, based on these assumptions, he considers a
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H: Knight H: Knight H: Knave

W: Knight W: KnightW: Knave W: Knave

H: Knave
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Fig. 2: The hypothetical worlds created by the reasoner for the census-taker problem.There is only one world (Sit4) coherent with the statement the husband uttered.hypothetical world and tries to �nd out whether there are any incoherences in thisworld. If an incoherence is detected he concludes that his assumption is wrong andforgets about that world. The reasoner continues to make new assumptions (whilelearning something from the previous failures) until he �nds all the solutions, i.e., thecoherent hypothetical worlds (Figure 2). In the puzzle above, �rst it was assumedthat the husband is a knight, but this assumption led to failure because a knight cannever claim that he is a knave. So it was decided that the husband is a knave.Examining the structure of these puzzles one must notice properties that are suit-able for a situated treatment:� Actions always take place in a clearly de�ned context (e.g., the Island of Knightsand Knaves).� There are abstract individuals, properties, and relations (e.g., being a knight,being on the island, and so on).� There are well-de�ned rules that invariably hold on the island (e.g., knights alwaysmake true statements).As mentioned previously, for a system to solve these puzzles it should be able tomake human-like reasoning. There are three main properties that enable PROSITto simulate human-like reasoning. The �rst is situated programming, i.e., infons andconstraints are local to situations. The second is PROSIT's situation tree structure,with which one can represent iterated knowledge/belief (e.g., \A knows that B believesthat C knows : : : "). The third is the use of incoherence to generate new information.Now, we'll see how PROSIT solves these puzzles. The following puzzle [20, pp. 23{24]will be exploited to explain our approach:This is the story of a philosopher|a logician, in fact|who visited the clusterof islands and fell in love with a bird-girl named Oona. They were married. His



Situated Modeling of Epistemic Puzzles 65; Testing the coherency of a situation requires a; translation of the uttered sentences to what they; really mean.(! (resp island (<= (coherent)(means P1 *sentence *translation)(means P2 *sentence2 *translation2)(and *translation *translation2)))); Every sentence uttered by a knight is true.(! (resp island (<= (means *x *sentence *sentence)(says *x *sentence) (knight *x)))); Any sentence uttered by a knave is false.(! (resp island (<= (means *x *sentence (no *sentence))(says *x *sentence) (knave *x))))Fig. 3. Three main constraints of the puzzle about Oona.marriage was a happy one, except that his wife was too 
ighty! For example,he would come home late at night for dinner, but if it was a particularly lovelyevening, Oona would have 
own o� to another island. So he would have topaddle around in his canoe from one island to another until he found Oonaand brought her home. [: : : ] On one occasion, the husband came to an islandin search of Oona and met two natives A and B. He asked them whether Oonahad landed on the island. He got the following responses:A: B is a knight, and Oona is on this island.B: A is a knave, and Oona is on this island.Is Oona on this island?The solution of this puzzle will make use of various properties of PROSIT, includinginheritance. As the solution is based on creating hypothetical situations and testingtheir coherency, it is useful to have a situation, say island , from which all the hy-pothetical situations will inherit some essential facts that will not change from onesituation to another. For example, the fact that A says \B is a knight, and Oonais on this island" will hold in every hypothetical situation. Therefore this is kept inisland . Similarly, the rules stating that knights always make true statements and thatknaves always make false statements are kept in island . The three main constraintsused in the solution of this puzzle are shown in Figure 3.The �rst step of the solution, i.e., making assumptions about the natives, is sim-ulated by creating hypothetical situations. Each hypothetical situation represents adi�erent combination of assumptions. A reasoner can assume A to be a knight ora knave, B to be a knight or a knave, and Oona to be on the island or not. So,the program will generate eight (23) hypothetical situations. The following are twohypothetical situations (Sit1, Sit2) that we will be examining:Sit1: (knight A) (knave B) (on-island Oona)Sit2: (knave A) (knave B) (no (on-island Oona))The next step is to generate the infons that hold in the hypothetical situations. Ifa knight makes a statement, it means that this statement holds in that situation. Onthe other hand, if a statement is made by a knave, it is concluded that the negation of



66 Situated Modeling of Epistemic Puzzlesthat statement holds in the situation. So the following infons hold in the hypotheticalsituations Sit1 and Sit2:Sit1: (and (knight B) (on-island Oona))(no (and (knave A) (on-island Oona)))Sit2: (no (and (knight B) (on-island Oona)))(no (and (knave A) (on-island Oona)))The �nal step is to check the hypothetical situations and to discard the ones thatare incoherent. The coherent situations are then the solutions of the puzzle. In theprevious case, Sit1 is one of the incoherent hypothetical situations to be discardedand Sit2 is a solution (in fact, the only solution):Sit1: (and (knight B) (on-island Oona)) (from the second step)(knave B) (from the �rst step)Incoherent!Sit2: Coherent, therefore A and B are knaves and Oona is not on the island.Smullyan's solution is as follows [20, p. 26]:A couldn't possibly be knight, for if he were, then B would be a knight (asA said), which would make A a knave (as B said). Therefore A is de�nitelya knave. If Oona is on the island we get the following contradiction: It isthen true that A is a knave and Oona is on the island, hence B made a truestatement, which makes B a knight. But then A made a true statement inclaiming that B is a knight and Oona is on the island, contrary to the factthat A is a knave! The only way out of the contradiction is that Oona is noton the island. So Oona is not on this island (and, of course, A and B are bothknaves).The simpler puzzle given earlier, i.e., the census-taker, is solved in a similar fashion.There are two natives, H and W , in the puzzle. Each can be either a knight or aknave, so there will be four hypothetical situations (Figure 2):Sit1: (knight H) (knight W)Sit2: (knight H) (knave W)Sit3: (knave H) (knight W)Sit4: (knave H) (knave W)After the generation of new infons using the statement uttered by H , the hypo-thetical situations will consist of the following:Sit1: (knight H) (knight W) (and (knave H) (knave W))Sit2: (knight H) (knave W) (and (knave H) (knave W))Sit3: (knave H) (knight W) (no (and (knave H) (knave W)))Sit4: (knave H) (knave W) (no (and (knave H) (knave W)))Among these hypothetical situations the only coherent one is Sit3, which statesthat H is a knave and W is a knight.It is time to examine how PROSIT �nds out about these incoherences. As it isseen from the examples above, a distinguishing feature of PROSIT is that it allows



Situated Modeling of Epistemic Puzzles 67; If a native is a knight, he definitely is not a knave.(! (resp island (=> (knight *x) (no (knave *x))))); If a native is a knave, he definitely is not a knight.(! (resp island (=> (knave *x) (no (knight *x))))); N.B. (no (and *st1 *st2)) is equiv. to (or (no *st1) (no *st2))(! (resp island (<= (means *x (or (no *st1) (no *st2)))(says *x (and *st1 *st2)) (knave *x)))); N.B. (no (or *st1 *st2)) is equiv. to (and (no *st1) (no *st2))(! (resp island (<= (means *x (and (no *st1) (no *st2)))(says *x (or *st1 *st2)) (knave *x))))Fig. 4. The constraints about negative knowledge.incoherence in situations. A situation may support both an infon and its dual. Thisshould not be considered as a contradiction in the system, but merely a contradictionin the situation, viz. the situation is incoherent (cannot be actual). This kind ofincoherence can be adequately used to get new information. In the example above,there is a situation (Sit1) that supports both (knight H) and (knave H). (knaveH) is equivalent to (no (knight H)) (using the rules in Figure 4), therefore both(knight H) and its dual are supported by the situation. The situation is incoherentand the assumptions have failed. One �nal comment on PROSIT is that it does notdistribute no over and and or, therefore two additional constraints should be de�nedin order to achieve this (Figure 4).4.3.3 The Cheating Husbands puzzleThe cheating husbands puzzle is well-known from folklore and has long been theprimary example to illustrate the subtle relationship between knowledge, communi-cation, and action in a distributed environment. The puzzle involves an initial stepin which a set of facts is announced publicly, thereby becoming common knowledge.Moses et al. [13], using a number of variants of the puzzle, describe what happenswhen synchronous, asynchronous, and ring-based communication channels are usedto send a protocol to be followed, e.g., announce the orders of the queen. The area ofdistributed computing is mainly interested in the types of protocols, the delays andbounds in communication, and whether the communication is fault-tolerant or not.For example, instead of making an announcement at the town-square, the queen maysend letters to all wives; this makes the communication asynchronous. Similarly, totest whether the system is fault-tolerant, another version of the puzzle in which wivesare disobedient, i.e., they gossip about their husbands' �delity, is used.On the other hand, we are interested in the way agents reason about knowledge,assuming that communication is totally synchronous and reliable. We are using thepuzzle to illustrate how intelligent agents reason in a multi-agent system, and howthey represent each others' knowledge.The three wisemen problem is a special case of this puzzle where the number ofagents is restricted to three. In this puzzle all the wives in Mamajorca know eachother. They know that a husband is either faithful or unfaithful. On the other hand,none of the wives know whether their husbands are faithful or not. Because all of these



68 Situated Modeling of Epistemic Puzzles; A wife knows that her husband is unfaithful if the; assumption that her husband is faithful results in; an incoherent situation.(! (resp wives (<= (unfaithful *x *time)(me *x)(wife *y)(wife *z)(not (= *x *y))(not (= *z *x))(not (= *z *y))(! ([ wives *y))(! (@< wives *y))(bind-lisp *pre (- *time 1))(! (!= *y (faithful *x *pre)))(transfer-knowledge-about-third *y *z)(incoherent *y))))Fig. 5: The constraint that decides the faithfulness of a husband by making assump-tions and searching for incoherences.facts are common to all the wives in Mamajorca, they are supported by the situationwives which holds the infons that are common to all individuals in the puzzle. Someof the relations require an argument that indicates a temporal location. The temporallocation is represented by an integer, n, which indicates the nth night after the queenhas made the announcement. Every silent night after the announcement is regardedas the wives' not being able to decide about their husbands' �delity.We now analyze the case where there are three unfaithful husbands. After thesecond silent night following the announcement, b's (a wife) not knowing whether herhusband is faithful or unfaithful is represented as(!= wives (no (!= b (faithful b 2))))(!= wives (no (!= b (unfaithful b 2))))Let a be one of the wives whose husband is unfaithful. Throughout the two silentnights she knows who the other cheated wives are (say, b and c):(!= a (unfaithful b 1))(!= a (unfaithful c 1))(!= a (unfaithful b 2))(!= a (unfaithful c 2))A wife whose husband is unfaithful would realize this fact either if none of the otherwives are cheated (the queen declared that there are some unfaithful husbands) or ifher assumption that her husband is faithful generates a contradiction. The latter canbe considered as proof-by-contradiction.The way a wife decides that her husband is unfaithful is via making assumptionsand checking whether an assumption causes any incoherences (Figure 5). Let a be thewife who is reasoning. In the constraint that models the way a wife would reason insuch a situation, the premise (me *x) would bind *x to the situation this constraint



Situated Modeling of Epistemic Puzzles 69; A hypothetical situation is incoherent if it; supports a fact we know it does not support.(! (resp wives (<= (incoherent *y)(no (!= *y *x)) (!= *y *x)))); If the wives *x and *y know the character of the; third wife's (*z) husband, they know that each of them; knows it. So if (!= *x (character *z)), then; (!= *x (!= *y (character *z))) should be asserted.(! (resp wives (<= (transfer-knowledge-about-third *y *z)(or(and(character *character)(*character *z *time)(bind-lisp *pre (- *time 1))(! (!= *y (*character *z *pre))))(true)))))Fig. 6: Constraints that are used to �nd the incoherences and to transfer the knowl-edge about the third party.is activated in, e.g., a. The next two premises bind the variables *y and *z to theother cheated wives b and c, respectively. The premises(! ([ wives *y))(! (@< wives *y))indicate that b, i.e., the individual bound to the variable *y, knows that the factssupported by wives are common to all wives (subchunk relation), and is aware ofall the facts that are supported by wives (subtype relation). Next a assumes thather husband is faithful. She knows that if her husband were faithful, the other wiveswould know it. In the program, this assumption is made by asserting the fact that a'shusband is faithful in the situation that holds the facts that a knows that b knows,via the premise(! (!= *y (faithful *x *pre)))The variable *pre is assigned to the value *time�1 (using bind-lisp which makesuse of Lisp functions), where *time indicates the night on which the reasoningis made. Moreover, the facts that a knows about c's husband are also assertedinto the situation supporting the facts that a knows that b knows, because whata knows about c's husband, b knows it too. This is achieved by the constrainttransfer-knowledge-about-third. The �nal step is to check if the assumption amade would cause any incoherence. This is realized by the constraint incoherentwhich checks if a situation supports a fact we know it does not support. It should benoted that this rule implicitly expresses the fact that if someone is not faithful, he isunfaithful.The constraint that transfers knowledge about the third individual (Figure 6) isa good example of the use of the situation tree hierarchy. If a knows on the secondnight after the announcement that b's husband is unfaithful then she knows that cknows it too:



70 Situated Modeling of Epistemic Puzzles(!= a (unfaithful b 2))(!= a (!= c (unfaithful b 2)))So an infon supported by the situation a is copied to another situation a.c usingthe procedure transfer-knowledge-about-third.The constraint incoherent (Figure 6) checks whether a situation is coherent ornot. This is achieved by searching for an infon that is supported by that situationwith both positive and negative polarities.To clarify the explanations made above, consider how a would reason until she �ndsout that her husband is unfaithful. a knows that b and c are being cheated:(!= a (unfaithful b 3))(!= a (unfaithful c 3))a wishes to learn whether her husband is faithful or not. She assumes that herhusband is faithful. She knows that if her assumption were true, then b would beaware of this fact. She also knows that b knows the fact that c is being cheated.; a's assumption(!= a (!= b (faithful a 2))); transferred knowledge about c(!= a (!= b (unfaithful c 2)))b did not shoot her husband on the second night, i.e., she did not know that herhusband was unfaithful. So, an incoherence would occur if she shot her husband onthe second night, i.e., if she knew that her husband was unfaithful. (This would makea's assumption false, and mean that a's husband is unfaithful.) To decide on the truthof her assumption, a should learn whether b could have decided that her husband isfaithful or unfaithful. b could decide about her husbands faithfulness, just like a did.b would also assume that her husband was faithful. Then b would know that c wouldalso know this fact on the �rst night after the announcement was made. b would alsoknow that c would have known that a's husband is faithful.; b's assumption(!= a (!= b (!= c (faithful b 1)))); transferred knowledge about a(!= a (!= b (!= c (faithful a 1))))However this assumption of b would lead to a contradiction, because if c had knownthat both a's and b's husbands are faithful, then she would have immediately decidedthat her husband is unfaithful and shoot him.Because of this incoherence, b must decide on the second night that her husband isunfaithful and shoot him. In other words, if a's assumption about her husband weretrue then b would have shot her husband on the second night. But this did not happen,which means that a's assumption that her husband is faithful fails. a's husband isunfaithful and she shoots her husband on the third night after the announcement wasmade. Making the same reasoning b and c also shoot their husbands.4.3.4 The Facing Logicians puzzleThe facing logicians puzzle (cf. Section 4.1) is another puzzle which can be consideredto be epistemic. Assume that the �rst logician, A, has the number 4 on the card on



Situated Modeling of Epistemic Puzzles 71; If the number on the other logician's forehead is n and; if the logician knows that the number on his forehead; is not n-1, then the number on his forehead is n+1.(! (resp common (<= (know *x)(me *x)(logician *y)(not (= *x *y))(num *y *z)(bind-lisp *a (- *z 1))(no (num *x *a))(bind-lisp *k (+ *z 1))(! (num *x *k)))))Fig. 7. The constraint with which a logician �nds out the number on his forehead.his forehead, and the other logician, B , has the number 3. A knows that the numberon the forehead of B is 3, while the B knows that A has the number 4 on his forehead.It is common knowledge to both that the numbers on their foreheads are positive.(Both are also aware of the fact that common knowledge is common.)(!= a (num b 3))(!= b (num a 4))(!= common (no (num a 0)))(!= common (no (num b 0)))([ common a)(@< common a)([ common b)(@< common b)Facts that are common knowledge are known by all the individuals and it is knownthat these facts are common (Figure 7). The subchunk relation, [ , is used to in-dicate that the individual knows that the facts supported by the situation commonare common. The subtype relation, @<, on the other, indicates that any infon thatis supported by the situation common is also supported by the situation representingthe individual's knowledge.It is also common knowledge that the numbers are consecutive. So if a logicianknows that the number on the forehead of the other logician is n and if he also knowsthat the number on his own forehead is not n� 1, then he de�nitely knows that thenumber on his forehead is n+ 1.Assume that B is the one who is asked whether he knows what the number on hisforehead is. B would answer \no" because he does not have enough knowledge tomake a decision. He could only answer \yes" if the number on the forehead of A were1. Then he could easily deduce the fact that the number on his forehead was 2. B 'sanswer, however, will make A to learn that the number on his (A's) forehead is not 1.How does A come to such a decision? Well, he makes assumptions about the numberon his forehead. He assumes that the number on his forehead is 1. If it were so, thenB would know it. In the program this fact is asserted to the situation a.b which holdsthe facts that A knows that B knows. A continues reasoning: \If B knew that the



72 Situated Modeling of Epistemic Puzzles(! (resp common (<= (no (know *x))(me *x)(logician *y)(not (= *x *y))(not (!= common (num *y *k)))(no (num *y *z))(bind-lisp *a (+ *z 1))(! (!= *y (num *x *a)))(! ([ common *y))(! (@< common *y))(incoherent *y)(clear *y)(not (num *x *s))(! (!= common (no (num *x *a)))))))Fig. 8: The constraint that generates the numbers that cannot be on the forehead ofa logician.number on my forehead were 1, would everything be as it is now? Would it cause anycontradiction?" So A tries to �nd a contradiction in the facts that he knows that Bknows. From his previous answer A knows that B does not know what the numberon his (B 's) forehead is. So A tries to prove that B would know the number on his(B 's) forehead, if the number on A's forehead were 1, and reaches a contradiction.B would know what the number on his (B 's) forehead is using the rule in Figure 7.This kind of reasoning using incoherences in situations is performed by the constraintin Figure 8.To elucidate the way the program deduces the facts about the number on theforehead of a logician, we examine in detail the situation in which a has 4 on hisforehead, and b has 3. In the beginning, it is common knowledge that none of thelogicians have the number 0 on their foreheads:(!= common (no (num a 0)))(!= common (no (num b 0)))The situation tree is illustrated in Figure 9 where a and b are the situations thatsupport the facts known by A and B , respectively, and common denotes the situationsupporting the facts that are common to both agents. The dashed arrows indicatethat both a and b are inheriting the infons supported by common, i.e., both agents areaware of the facts that are common, and know that these facts are common.After B says \I don't know my number," the fact that the number on A's foreheadis not 0 becomes common knowledge (Figure 10):(!= common (no (num a 1)))Next, A says \I don't know my number," implying that the number on B 's foreheadis neither 1 nor 2 (Figure 11):(!= common (no (num b 1)))(!= common (no (num b 2)))
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(num  b  3) (num  a  4)Fig. 9: The situation tree shows the facts that A knows, B knows, and those thatare common.
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(num  a  1)Fig. 10: A makes the assumption that the number on his forehead is 1, and reachesto an incoherence.Then, B once again says \I don't know my number," and it is concluded that thenumber on A's forehead is neither 2 nor 3 (Figure 12):(!= common (no (num a 2)))(!= common (no (num a 3)))At this moment, A deduces that the number on his forehead is 4, because he knowsthat the numbers are consecutive, that B 's number is 3, and that the number on hisown forehead is not 2 (Figure 13):(!= a (num a 4))Note that the logicians are making intelligent assumptions. If it is known thatthe number on the forehead of A is not n, then B assumes that the number on his
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Fig. 11: B makes the assumption that the number on his forehead is 1 or 2, and eachtime is led to an incoherence.
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(know  b)Fig. 12. A �nds out that the number on his forehead is neither 2 nor 3.forehead is n+ 1. At the instant when it is known that the number on the foreheadof A is not 0 and 1, B assumes that the number on his forehead is 1 or 2, whichhelps him reach an incoherence, and derive new facts. However, B 's assuming thatthe number on his forehead is, say 8, would not help him much.5 ConclusionOur primary aim was to analyze PROSIT [14, 15, 5] which is based on situation theory,and to investigate applications that can be nurtured by situation theory. We choseepistemic puzzles [16, 17, 18, 20] as a test domain because these embody the knowledge
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