Skip to main content
Log in

A process ontology approach in biochemistry: the case of GPCRs and biosignaling

  • Letter to the editor
  • Published:
Foundations of Chemistry Aims and scope Submit manuscript

A Correction to this article was published on 20 January 2023

This article has been updated

Abstract

According to process ontology in the philosophy of biology, the living world is better understood as processes rather than as substantial individuals. Within this perspective, an organism does not consist of a hierarchy of structures like a machine, but rather a dynamic hierarchy of processes, dynamically maintained and stabilized at different time scales. With this respect, two processual approaches on enzymes by Stein (Hyle Int J Philos Chem 10(4):5–22, 2004, Process Stud 34:62–80, 2005, Found Chem 8:3–29, 2006) and by Guttinger (Everything Flows: Towards a Processual Philosophy of Biology, Oxford University Press, Oxford, 2018) allows to think of macromolecules as relational and processual entities. In this work, I propose to extend their arguments to another case study within the biochemical domain, which is the case of ligand receptors and receptor-mediated biosignaling. The aim of this work is to analyze the case of G Protein-Coupled Receptors and biosignaling under the consideration of a processual ontology. I will defend that the processual ontology framework is adequate for the biochemical domain and that it allows accounting for the current biochemical knowledge related to the case study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Change history

Notes

  1. This is not an exhaustive list of process philosophers.

  2. During this time, the demonstration that ferments were proteins was achieved by the crystallization of urease by James Sumner and of pepsin by John Northrop (Morange 2007).

  3. Supramolecular chemistry, as it was firstly defined by the chemist Jean Marie Lehn in 1988 (Lehn 1988), is the chemistry of non-covalent intermolecular bonds, which studies the structures and functions of entities formed by two or more chemical species.

  4. For more details on the discussion around protein microstructuralism, see Slater (2009), Tobin (2010), Goodwin (2011), Havstad (2018), Tahko (2020).

References

  • Alassia, F.: ¿ Es posible una ontología procesual de las entidades bioquímicas? Consideraciones a partir del caso de los receptores celulares y la señalización celular. Estudios de Filosofía 65, 153–175 (2022). https://doi.org/10.17533/udea.ef.345867.

  • Bartol, J.: Biochemical kinds. British J. Phil. Sci. 67(2), 531–551 (2016). https://doi.org/10.1093/bjps/axu046

    Article  Google Scholar 

  • Berg, K.A., Clarke, W.P.: Making sense of pharmacology: inverse agonism and functional selectivity. Int. J. Neuropsychopharmacol. 21(10), 962–977 (2018). https://doi.org/10.1093/ijnp/pyy071

    Article  Google Scholar 

  • Birch, C., Cobb, J.B.: The Liberation of Life: From the Cell to the Community. Cambridge University Press, Cambridge (1981)

    Google Scholar 

  • Bulusu, G., Desiraju, G.R.: Strong and weak hydrogen bonds in protein-ligand recognition. J. Indian Inst. Sci. (2019). https://doi.org/10.1007/s41745-019-00141-9

    Article  Google Scholar 

  • Calebiro, D., Koszegi, Z.: The subcellular dynamics of GPCR signaling. Mol. Cell. Endocrinol. 483(2019), 24–30 (2019)

    Article  Google Scholar 

  • Cobb, J.B.: Ecology, science, and religion: toward a postmodern worldview. In: Griffin, D.R. (ed.) The Reenchantment of Science, pp. 99–114. State University of New York Press, New York (1988)

    Google Scholar 

  • Cox, M.M., David, L.N.: Lehninger Principles of Biochemistry, 6th edn. Wh Freeman, New York (2012)

    Google Scholar 

  • Davis, C.M., Gruebele, M., Sukenik, S.: How does solvation in the cell affect protein folding and binding? Curr. Opin. Struct. Biol. 48, 23–29 (2018). https://doi.org/10.1016/j.sbi.2017.09.003

    Article  Google Scholar 

  • De Lean, A., Stadel, J.M.Y., Lefkowitz, R.L.: A ternary complex model explains the agonist-specific binding properties and the adenylate cyclase-coupled beta-adrenergic receptor. J. Biol. Chem. 255, 7108–7117 (1980)

    Article  Google Scholar 

  • Deichmann, U.: “Molecular” versus “colloidal”: Controversies in the history of biology and biochemistry, 1900–1940. Bull. Hist. Chem. 32, 105–118 (2007)

    Google Scholar 

  • Dupré, J.: The Metaphysics of Biology (Elements in the philosophy of biology). Cambridge University Press, Cambridge (2021)

    Book  Google Scholar 

  • Dupré, J., Nicholson, D.: A manifesto for a processual philosophy of biology. In: Nicholson, D., Dupré, J. (eds.) Everything Flows: Towards a Processual Philosophy of Biology, pp. 3–45. Oxford University Press, Oxford (2018)

    Chapter  Google Scholar 

  • Ferreira de Freitas, R., Schapira, M.: A systematic analysis of atomic protein–ligand interactions in the PDB. MedChemComm 8, 1970–1981 (2017). https://doi.org/10.1039/C7MD00381A

    Article  Google Scholar 

  • Fischer, E.: Einfluss der Konfiguration auf die Wirkung der Enzyme. Ber. Dtsch. Chem. Ges. 27, 2985–2993 (1894)

    Article  Google Scholar 

  • Fischer, E.: Untersuchungen über aminosäuren, polypeptide und proteine. Ber. Dtsch. Chem. Ges. 39, 530–610 (1906)

    Article  Google Scholar 

  • French, S. Krause, D.: Identity in physics: A historical, philosophical and formal analysis. Oxford: Oxford University Press (2006).

  • Goodwin, W.: Structure, function, and protein taxonomy. Biol. Philos. 26(4), 533–545 (2011). https://doi.org/10.1007/s10539-011-9252-8

    Article  Google Scholar 

  • Grouleff, J., Irudayam, S.J., Skeby, K.K., Schiøtt, B.: The influence of cholesterol on membrane protein structure, function, and dynamics studied by molecular dynamics simulations. Biochim. Biophys. Acta (BBA) Biomembr. 1848(9), 1783–1795 (2015)

    Article  Google Scholar 

  • Gurevich, V.V., Gurevich, E.V.: GPCR signaling regulation: the role of GRKs and arrestins. Front. Pharmacol. 10, 125 (2019)

    Article  Google Scholar 

  • Guttinger, S.: A process ontology for macromolecular biology. In: Nicholson, D., Dupré, J. (eds.) Everything Flows: Towards a Processual Philosophy of Biology, pp. 303–320. Oxford University Press, Oxford (2018)

    Chapter  Google Scholar 

  • Guttinger, S.: Process and practice: understanding the nature of molecules. HYLE Int. J. Philos. Chem. 27, 47–66 (2021)

    Google Scholar 

  • Havstad, J. C.: Messy chemical kinds. British J. Phil. Sci. 69, 719–743 (2018). https://doi.org/10.1093/bjps/axw040

    Article  Google Scholar 

  • Hilger, D., Masureel, M., Kobilka, B.: Structure and dynamics of GPCR signaling complexes. Nat. Struct. Mol. Biol. 25(1), 4–12 (2018)

    Article  Google Scholar 

  • Hipp, M.S., Kasturi, P., Hartl, F.U.: The proteostasis network and its decline in ageing. Nat. Rev. Mol. Cell Biol. 20(7), 421–435 (2019). https://doi.org/10.1038/s41580-019-0101-y

    Article  Google Scholar 

  • Kenakin, T.: Principles: receptor theory in pharmacology. Trends Pharmacol. Sci. 25(4), 186–192 (2004)

    Article  Google Scholar 

  • Koshland, D.E.: Application of a theory of enzyme specificity to protein synthesis. Proc. Natl. Acad. Sci. 44, 98–104 (1958)

    Article  Google Scholar 

  • Krause, D., Arenhart, J.R.B.: Individuality, quantum physics, and a metaphysics of non-individuals. The role of the formal. In: Guay, A., Pradeu, T. (eds.) Individuals Across the Sciences, pp. 61–84. Oxford University Press, Oxford (2016)

    Google Scholar 

  • Labarca, M., Lombardi, O.: Why orbitals do not exist? Found. Chem. 12(2), 149–157 (2010)

    Article  Google Scholar 

  • Lehn, J.M.: Supramolecular chemistry—scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture). Angew. Chem., Int. Ed. Engl. 27(1), 89–112 (1988)

    Article  Google Scholar 

  • Lewowicz, L.Y., Lombardi, O.: Stuff versus individuals. Found. Chem. 15(1), 65–77 (2013)

    Article  Google Scholar 

  • Lowe, E.J.: Individuation. In: Loux, M.J., Zimmerman, D.W. (eds.) The Oxford Handbook of Metaphysics, pp. 75–95. Oxford University Press, Oxford (2003)

    Google Scholar 

  • Lowe, E.J.: Non-individuals. In: Guay, A., Pradeu, T. (eds.) Individuals Across the Sciences, pp. 49–60. Oxford University Press, Oxford (2016)

    Google Scholar 

  • Manglik, A., Kobilka, B.: The role of protein dynamics in GPCR function: insights from the β2AR and rhodopsin. Curr. Opin. Cell Biol. 27, 136–143 (2014). https://doi.org/10.1016/j.ceb.2014.01.008

    Article  Google Scholar 

  • Maudsley, S., Patel, S.A., Park, S.S., Luttrell, M.L., Martin, B.: Functional signaling biases in G protein-coupled receptors: game theory and receptor dynamics. Mini. Rev. Med. Chem. 12(9), 831–840 (2012)

    Article  Google Scholar 

  • McEwen, B.S., Wingfield, J.C.: The concept of allostasis in biology and biomedicine. Horm. Behav. 43(1), 2–15 (2003)

    Article  Google Scholar 

  • Morange, M.: From the beginnings: How biochemistry has evolved as a discipline. Biochemist 29(5), 6–10 (2007)

    Article  Google Scholar 

  • Morange, Michel: Explanatory relationships between chemical and biological sciences. In: Philosophy of Chemistry, pp. 509–518. Elsevier, Amsterdam (2012). https://doi.org/10.1016/B978-0-444-51675-6.50032-3

    Chapter  Google Scholar 

  • Morange, M.: The Black Box of Biology. Harvard University Press, Cambridge (2020)

    Book  Google Scholar 

  • Nicholson, D.Y., Dupré, J. (eds.): Everything Flows: Towards a Processual Philosophy of Biology. Oxford University Press, Oxford (2018)

    Google Scholar 

  • Pauling, L.: Molecular architecture and biological reactions. Chem. Eng. News 24(10), 1375–1377 (1946)

    Article  Google Scholar 

  • Pauling, L., Corey, R.B., Branson, H.R.: The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain. Proc. Natl. Acad. Sci. 37(4), 205–211 (1951). https://doi.org/10.1073/pnas.37.4.205

    Article  Google Scholar 

  • Pradeu, T.: Genidentity and biological processes. In: Nicholson, D.Y., Dupré, J. (eds.) Everything Flows: Towards a Processual Philosophy of Biology, pp. 96–112. Oxford University Press, Oxford (2018)

    Chapter  Google Scholar 

  • Rescher, N.: Process metaphysics: An introduction to process philosophy. Suny Press, Albany (1996)

    Google Scholar 

  • Santos, R., Ursu, O., Anna Gaulton, A., Bento, P., Donadi, Ramesh S., Bologa, C.G., Karlsson, A., Al-Lazikani, B., Hersey, A., Oprea, T.I., Overington, J.P.: A comprehensive map of molecular drug targets. Nat. Rev. Drug Dis. 16(1), 19–34 (2017). https://doi.org/10.1038/nrd.2016.230

    Article  Google Scholar 

  • Santos, G., Vallejos, G., Vecchi, D.: A relational-constructionist account of protein macrostructure and function. Found. Chem. 22(3), 363–382 (2020)

    Article  Google Scholar 

  • Schoffeniels, E.: Phenomenology and ontology of the molecular concept. In: Maruani, J. (ed.) Molecules in Physics, Chemistry, and Biology, pp. 3–24. Springer Netherlands, Dordrecht (1988). https://doi.org/10.1007/978-94-009-2849-7_1

    Chapter  Google Scholar 

  • Schummer, J.: The chemical core of chemistry I: a conceptual approach. HYLE Int. J. Philos. Chem. 4, 129–162 (1998)

    Google Scholar 

  • Seibt, J.: Ontological tools for the process turn in biology some basic notions of general process theory. In: Nicholson, D., Dupré, J. (eds.) Everything Flows: Towards a Processual Philosophy of Biology, pp. 113–136. Oxford University Press, Oxford (2018)

    Chapter  Google Scholar 

  • Seibt, J. (2021). Process Philosophy. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Fall 2021 Edition). Online: https://plato.stanford.edu/archives/fall2021/entries/process-philosophy/.

  • Seyedabadi, M., Ghahremani, M.H., Albert, P.: Biased signaling of G protein coupled receptors (GPCRs): molecular determinants of GPCR/transducer selectivity and therapeutic potential. Pharmacol. Ther. 200, 148–178 (2019)

    Article  Google Scholar 

  • Slater, M.H.: Macromolecular pluralism. Philos. Sci. 76(5), 851–863 (2009). https://doi.org/10.1086/605817

    Article  Google Scholar 

  • Staudinger, H.: Über polymerisation. Ber. Dtsch. Chem. Ges. 53, 1073–1085 (1920). https://doi.org/10.1002/cber.19200530627

    Article  Google Scholar 

  • Steed, J., Atwood, J.L.: Supramolecular Chemistry. Wiley, Hoboken (2022)

    Google Scholar 

  • Stein, R.L.: Towards a process philosophy of chemistry. Hyle Int. J. Philos. Chem. 10(4), 5–22 (2004)

    Google Scholar 

  • Stein, R.L.: Enzymes as ecosystems - a panexperientialist account of biocatalytic chemical transformation. Process. Stud. 34, 62–80 (2005)

    Google Scholar 

  • Stein, R.L.: A process theory of enzyme catalytic power – the interplay of science and metaphysics. Found. Chem. 8, 3–29 (2006). https://doi.org/10.1007/s10698-005-7907-8

    Article  Google Scholar 

  • Stein, R. L. (2022). Mechanisms of macromolecular reactions. History and Philosophy of the Life Sciences, 44(2), 1–28. https://doi.org/10.1007/s40656-022-00492-0

  • Stephenson, R. P.: A modification of receptor theory. British J. Pharm. 11, 379–393 (1956). https://doi.org/10.1111/j.1476-5381.1956.tb00006.x

    Article  Google Scholar 

  • Tahko, T.E.: Where do you get your protein? Or: biochemical realization. Br. J. Philos. Sci. 71(3), 799–825 (2020). https://doi.org/10.1093/bjps/axy044

    Article  Google Scholar 

  • Tobin, E.: Microstructuralism and macromolecules: the case of moonlighting proteins. Found. Chem. 12(1), 41–54 (2010). https://doi.org/10.1007/s10698-009-9078-5

    Article  Google Scholar 

  • Wang, Y., Bugge, K., Kragelund, B.B., Lindorff-Larsen, K.: Role of protein dynamics in transmembrane receptor signalling. Curr. Opin. Struct. Biol. 48, 74–82 (2018). https://doi.org/10.1016/j.sbi.2017.10.017

    Article  Google Scholar 

  • Wennerström, H., Estrada, E.V., Danielsson, J., Oliveberg, M.: Colloidal stability of the living cell. Proc. Natl. Acad. Sci. 117(19), 10113–10121 (2020). https://doi.org/10.1073/pnas.1914599117

    Article  Google Scholar 

  • Vallejos-Baccelliere, G. F. (2022). Problemas contemporáneos en la filosofía de la bioquímica. Culturas Científicas, 3(1), 45–77.

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank to the Secretary of Science and Technology of the National University of Patagonia San Juan Bosco (Argentina), for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiorela Alassia.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: to correct the several typos introduced, missing first letters and spaces between words, remnants of words or fragments of sentences retained incorrectly, new references inserted in incorrect order.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alassia, F. A process ontology approach in biochemistry: the case of GPCRs and biosignaling. Found Chem 24, 405–422 (2022). https://doi.org/10.1007/s10698-022-09443-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10698-022-09443-w

Keywords

Navigation