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Abstract. The Belnap–Dunn logic (also known as First Degree Entailment, or FDE) is

a well-known and well-studied four-valued logic, but until recently little has been known

about its extensions, i.e. stronger logics in the same language, called super-Belnap logics

here. We give an overview of several results on these logics which have been proved in

recent works by Přenosil and Rivieccio. We present Hilbert-style axiomatizations, describe

reduced matrix models, and give a description of the lattice of super-Belnap logics and its

connections with graph theory. We adopt the point of view of Abstract Algebraic Logic,

exploring applications of the general theory of algebraization of logics to the super-Belnap

family. In this respect we establish a number of new results, including a description of the

algebraic counterparts, Leibniz filters, and strong versions of super-Belnap logics, as well

as the classification of these logics within the Leibniz and Frege hierarchies.
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1. Introduction

Since its introduction 40 years ago, four-valued Belnap–Dunn logic, also
known as First Degree Entailment, has inspired a remarkable amount of
research. Several papers in this extensive literature deal with the algebraic
semantics of the Belnap–Dunn logic (denoted by B throughout the paper),
highlighting in particular its connection with De Morgan algebras. However,
only very recently has a systematic investigation of the family of extensions
of B been attempted. Here by “extensions” we mean logics in the same
language as B (i.e. conjunction, disjunction, and negation, perhaps with
truth constants) which are stronger than B. We call these super-Belnap
logics, by analogy with the well-known family of super-intutionistic logics.
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As in the case of super-intuitionistic logics, classical logic turns out to be
the strongest non-trivial extension of B.

The family of super-Belnap logics includes three prominent systems that
have been introduced with rather disparate motivations: B itself and its two
three-valued cousins, the Logic of Paradox LP and strong Kleene logic K.
The logic B was first studied by Dunn [19,20] as the so-called first-degree
fragment of Anderson and Belnap’s [5] logic of entailment. Belnap [9,10]
then provided a computer scientific motivation for this logic. Specifically, it
was suggested by Belnap as a simple framework which a computer could use
to handle information which is potentially both inconsistent and incomplete
in a non-trivial way. The Logic of Paradox was introduced by Asenjo [6] as
a calculus of antinomies and later by Priest [37] with a view to applying
to the solution of various semantics paradoxes, such as the Liar Paradox.
This logic has been commonly adopted by adherents of dialetheism, the
view that some sentences may be both true and false. Finally, Kleene’s
original motivation for introducing what is now the semantics of strong
Kleene logic in [31,32] was to handle partial functions, i.e. functions which
are potentially undefined (Kleene himself did not introduce any notion of
logical consequence based on his three-valued algebra). Later on, it was
famously used by Kripke [33] in his theory of truth. Decidedly less attention
was paid to the logic K≤ = LP ∩K called Kleene’s logic of order by Font [23]
and Kalman implication by Makinson [34]. In one of the few papers dealing
with K≤, Dunn [21] proved that it is precisely the first-degree fragment of
the relevance logic R-mingle.

Until recently, the study of super-Belnap logics has been constrained to
the examples mentioned above. From a certain point of view, this is quite
understandable: they all enjoy a strikingly simple semantics which comes
with a transparent philosophical or computational motivation. On the other
hand, the emphasis in contemporary logic on the systematic study of fam-
ilies of logics rather than isolated examples, embodied e.g. in the paradigm
of Abstract Algebraic Logic (AAL) adopted here, makes it natural to view
these logics as part a wider common framework. The wealth of results involv-
ing the lattices of superintuitionistic and modal logics suggests that this is
a direction worth pursuing. In fact, not only does this perspective suggest
new questions and new logics to study, but trying to pinpoint their location
within a wider context sheds light even on the familiar examples above.

The impetus for a more systematic study of super-Belnap logics came
with the recent discovery of the Exactly True Logic, denoted ETL here, by
Pietz and Rivieccio [36]. A bilattice expansion was also independently intro-
duced by Marcos [35]. The logic ETL uses the same four-valued algebra of
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truth values as the Belnap–Dunn logic but has a different set of designated
values: as the name suggests, ETL preserves the truth-and-non-falsity of the
premises, whereas B is only concerned with preserving their truth (or equiv-
alently, their non-falsity). This naturally suggested the question: are there
any other extensions of B which have so far been overlooked? Rivieccio [44]
answered in the positive: perhaps surprisingly, given the paucity of known
examples, it turns out that there are infinitely many. In fact, Přenosil [38]
showed that B has a continuum of finitary extensions.

This recent research suggests that the realm of super-Belnap logics is
a large and unfamiliar place. The aim of the present paper is to bring
the reader up to date with what is currently known about it. Compared
to better-known classes such as modal and super-intuitionistic logics, the
main peculiarity of the super-Belnap family lies in the weakness of the link
between algebra and logic. In technical terms, this is due to the fact that non-
classical super-Belnap logics are non-protoalgebraic. The standard methods
of algebraization (developed by Blok, Pigozzi, and others) are thererefore
not immediately applicable, and other techniques have to be used. This
also means that super-Belnap logics form a good testing ground for some
recently developed tools of AAL, such as the theory of Leibniz filters and
strong versions of propositional logics [2].

Even though a systematic study of super-Belnap logics is a relatively
new enterprise, individual super-Belnap logics have been studied from the
point of view of AAL already since the 1990s. A Hilbert-style axiomatization
of the Belnap–Dunn logic was obtained independently by Pynko [39] and
Font [23]. The latter paper contains a comprehensive study of the Belnap–
Dunn logic from the perspective of Abstract Algebraic Logic. A Hilbert-style
axiomatization of the Logic of Paradox is given in [40]; Pynko also described
in [42] the lattice of extensions of LP, proving in particular that it is finite.

In the papers mentioned in the previous paragraph, and many others, the
signature of the Belnap–Dunn logic is taken to consist of the conjunction (∧),
the disjunction (∨), and the negation (¬). As explained below (Section 3), we
find it convenient to extend this language with the truth constants 1 and 0
representing truth and falsity. The vast majority of the propositions that
we will prove do not depend on this choice, and likewise Font’s and Pynko’s
results may easily be seen to hold in both languages.

In this paper we present an overview of the main results of Rivieccio [44]
and Přenosil [38], particularly as regards axiomatizations of super-Belnap
logics, their reduced models, and the description of the lattice of super-
Belnap logics. We then expand on these results in various directions, includ-
ing a description of the algebraic counterparts, Leibniz filters, and strong
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versions of selected logics, as well as the classification of super-Belnap logics
in the Leibniz and Frege hierarchies.

The paper is organized as follows. In the following preliminary section,
we review the fundamental notions of AAL which will be needed through-
out the paper, as well as the basic theory of De Morgan algebras. The
notions of strong versions and explosive extensions of logics are also intro-
duced in Section 2. In Section 3 we present an overview of the known facts
about super-Belnap logics, due mainly to Pynko [39], Font [23], and Riv-
ieccio [44]. These include the semantic and syntactic characterizations of
the best-known systems and a description of their reduced models. We also
prove some facts which were originally stated in [44] without proof, such as
the completeness theorems for Kleene’s logics K and K≤. The structure of
the lattice of super-Belnap logics, including its connections to graph theory,
is then described in Section 4, which draws on [38]. The results presented in
Sections 5 and 6 are new except where we state otherwise in the text. In Sec-
tion 5 we classify all super-Belnap logics within the Leibniz and Frege hierar-
chies of AAL, describe the algebraic counterparts of different super-Belnap
logics, and provide algebraic semantics for the truth-equational logics in this
family. Finally, Section 6 studies the implications of the theory of Leibniz
filters and strong versions of logics in the super-Belnap setting, including
the interactions between strong versions and explosive extensions of logics.

2. Preliminaries

2.1. Universal Algebra

We shall assume familiarity with the basic notions of Universal Algebra. For
details we refer the reader e.g. to [15]. We only review some basic notation
here: V(K) denotes the variety generated by a class of algebras K, Q(K)
denotes the quasivariety generated by K, I(K) denotes the class of isomorphic
images of algebras in K, and PS(K) denotes the class of subdirect products
of algebras in K.

2.2. De Morgan Algebras

We now introduce the classes of algebras which form the algebraic coun-
terparts of the Belnap–Dunn logic. Depending on whether we include the
truth constants or not, these are the classes of De Morgan algebras and
De Morgan lattices. De Morgan lattices are distributive lattices having an
order-reversing involution, usually called the De Morgan negation, denoted
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Figure 1. Some important De Morgan algebras

¬. De Morgan algebras are De Morgan lattices with a top element 1 and a
bottom element 0 which are part of the signature. Both of these classes are
locally finite varieties.

There are exactly three subdirectly irreducible De Morgan algebras [30],
namely the algebras B2,K 3, and DM 4 depicted in Figure 1. The negation
¬ is in all cases given by reflection with respect to the horizontal axis of
symmetry. In particular, the algebras K3 and DM4 contain respectively
one and two fixpoints of ¬. The algebra K4 will be needed in Theorem 2.1.
Note that B2 ≤ K3 ≤ DM4.

Consequently, there are exactly three non-trivial varieties of De Morgan
algebras, namely the whole variety DMA, the subvariety of Kleene algebras
KA defined by the inequality x∧¬x ≤ y∨¬y, and the subvariety of Boolean
algebras BA defined by x∧¬x ≤ y. The corresponding varieties of De Morgan
lattices will be denoted by DML, KL, and BL.

Pynko [41] proved that there are only finitely many quasivarieties of
De Morgan lattices: the quasivariety of non-idempotent De Morgan lattices
NIDML defined by the quasiequation x = ¬x ⇒ x = y, the quasivariety
of non-idempotent Kleene lattices NIKL = KL ∩ NIDML, the quasivariety
NIDML∪KL, the quasivariety of regular Kleene lattices RKL defined by the
quasiequation ¬x ≤ x & x ∧ ¬y ≤ ¬x ∨ y ⇒ ¬y ≤ y, and of course the
varieties DML, KL, BL, as well as the trivial variety.

Moving to the setting of De Morgan algebras, the corresponding classes
will be denoted NIDMA, NIKA, and RKA. Although there is a continuum
of quasivarieties of Kleene algebras, as shown by Adams and Dziobiak [1],
Pynko’s results about the De Morgan lattices generating the above quasi-
varieties still hold, as observed already by Gaitán and Perea [27]. The fol-
lowing theorem is thus essentially due to Pynko [41].

Theorem 2.1. (i) BA = Q(B2).

(ii) RKA = Q(K4).
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(iii) NIKA = Q(K3 × B2).

(iv) KA = Q(K3).

(v) NIDMA = Q(DM4 × B2).

(vi) NIDMA ∪ KA = Q(K3,DM4 × B2).

(vii) DMA = Q(DM4).

2.3. Sentential Logics

We shall adopt the standard terminology and notation employed in Abstract
Algebraic Logic (AAL). All the concepts not covered in this preliminary
section can be found in the textbook [24].

Let S = 〈Fm, 	S〉 be a (sentential) logic in an (algebraic) language L.
A logic S ′ = 〈Fm, 	S′〉 in the same language L is an extension of S if
	S ⊆ 	S′ . In this case we write S ≤ S ′ or S ′ ≥ S. The extensions of S
ordered by inclusion form a lattice which we denote Ext(S). The sublattice
of finitary extensions of S will be denoted Extω(S). We shall also make
use of the notation [S, S ′] to denote the set of all logics extending S and
extended by S ′. Given two logics S and S ′, we say that S ′ is axiomatized
(relative to S) by a set of logical rules Γi 	 ϕi, with i ∈ I, if it is the least
logic (extending S) such that Γi 	S′ ϕi. If a logic S is axiomatized by the
rules Γi 	 ϕi, with i ∈ I, and a logic S ′ is axiomatized by Δj 	 ϕj , with
j ∈ J , then their join S ∨ S ′ is the logic axiomatized by the rules Γi 	 ϕi

and Δi 	 ψi for i ∈ I and j ∈ J .
Given an algebra A, an S-filter of A is a subset F ⊆ A such that for

every homomorphism h : Fm → A and every Γ ∪ {ϕ} ⊆ Fm, if Γ 	S ϕ
and h(Γ) ⊆ F , then h(ϕ) ∈ F . We shall denote the set of all S-filters of
A by FiSA. Since FiSA is a closure system, there is a least S-filter of A
containing a given X ⊆ A, which will be denoted by FgA

S (X).
A (logical) matrix is a pair M = 〈A, F 〉, where A is an algebra and

F ⊆ A. We say that M is trivial if F = A. Every class M of logical matrices
induces a logic, which we denote by Log(M). Given a logic S, a matrix M
is a model of S if S ≤ Log(M). The notation Log(〈A, F 〉) will usually be
simplified to Log〈A, F 〉, and Log({M, M′}) to Log{M, M′}. The class of
all models of a logic S will be denoted by Mod(S). Classical references for
the theory of sentential logics and logical matrices are [45,46].

Let A be an arbitrary algebra. A congruence θ ∈ CoA is compatible
with a subset F ⊆ A if it does not identify elements in F with elements
outside F . The set of all congruences on A compatible with a given F ⊆ A
forms a complete sublattice of the lattice CoA. Its least element is the
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identity congruence on A, which we denote by idA. Its largest element is
known as the Leibniz congruence of F , denoted ΩA(F ). A trivial but useful
observation is that ΩA(∅) = ΩA(A) = A × A.

We shall be interested in two further distinguished relations. The first
(for F ⊆ A) is called the Suszko congruence of F (relative to S), defined
as the largest congruence of A compatible with every S-filter containing F .
Equivalently,

∼
Ω A

S (F ) :=
⋂{

ΩA(G) : G ∈ FiSA , F ⊆ G
}
.

The second is called the Frege relation of F (relative to S) and it is defined
by

ΛA
S (F ) :=

{
〈a, b〉 ∈ A × A : FgA

S (F, a) = FgA
S (F, b)

}
.

Unlike the congruences ΩA(F ) and
∼
Ω A

S (F ), the equivalence relation ΛA
S (F )

need not be compatible with the algebraic operations of A.
The relation ΛF m

S (∅) on the algebra of formulas is called the inter-
derivability relation. Traditionally, 〈ϕ,ψ〉 ∈ ΛF m

S (∅) is denoted by ϕ �	S ψ.
A logic S whose interderivability relation is a congruence on Fm is called
selfextensional. If this property lifts to arbitrary algebras, that is, if ΛA

S (∅)
is a congruence on every algebra A, then S is called fully selfextensional.
One can generalize these definitions to arbitrary S-theories and S-filters as
follows. If the Frege relation ΛF m

S (T ) is a congruence on Fm for every
T ∈ T hS, then S is Fregean; and if ΛA

S (F ) is a congruence on A for every
algebra A and every F ∈ FiSA, then S is fully Fregean. These four classes
of logics constitute the so-called Frege hierarchy in AAL.

A matrix 〈A, F 〉 is Leibniz-reduced when ΩA(F ) = idA, and it is Suszko-
reduced when

∼
Ω A

S (F ) = idA. The classes of all reduced matrices according
to these two criteria will be denoted respectively by

Mod∗(S) :=
{
〈A, F 〉 ∈ Mod(S) : ΩA(F ) = idA

}
,

ModSu(S) :=
{
〈A, F 〉 ∈ Mod(S) :

∼
Ω A

S (F ) = idA

}
.

These classes of matrices determine two classes of algebras that are consid-
ered in AAL as the natural algebraic counterparts of a logic:

Alg∗(S) :=
{
A : ∃ F ∈ FiSA such that ΩA(F ) = idA},

Alg(S) :=
{
A : ∃ F ∈ FiSA such that

∼
Ω A

S (F ) = idA}.

It is well known that Alg(S) = IPSAlg
∗(S) [26, Theorem 2.23]. As a

consequence, the inclusion Alg∗(S) ⊆ Alg(S) holds for arbitrary logics. The
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converse inclusion holds for a broad class of logics, including all so-called
protoalgebraic logics.1 This is for instance the case of classical propositional
logic, where Alg∗(CL) = Alg(CL) is the variety of Boolean algebras.

An L-equation is a pair of formulas, written as ϕ ≈ ψ. The set of all L-
equations will be denoted Eq. Given ϕ(x1, . . . , xn) ∈ Fm and a1, . . . , an ∈ A,
we denote by ϕA(a1, . . . , an) the interpretation on A of the formula ϕ under
any homomorphism h : Fm → A such that h(xi) = ai for 1 ≤ i ≤ n. Given
an algebra A and a set of equations τ (x) ⊆ Eq, we denote by τ (A) the set
of all elements a ∈ A satisfying the equations in τ (x), that is,

τ (A) := {a ∈ A : A � τ (x)�a�}.

Moreover, given F ⊆ A, we write

τA(F ) :=
{〈

δA(a), εA(a)
〉

: δ ≈ ε ∈ τ (x), a ∈ F
}

.

Given a set of equations τ (x) ⊆ Eq and a class of matrices M, we say that
truth is equationally definable in M by τ , or that τ defines truth in M, if for
every 〈A, F 〉 ∈ M we have F = τ (A).

Given a class K of L-algebras, the equational consequence relation relative
to K is the relation �K ⊆ P(Eq) × Eq defined by:

Π �K ϕ ≈ ψ iff ∀A ∈ K ∀h ∈ Hom(Fm,A) ∀δ ≈ ε ∈ Π

h(δ) = h(ε) ⇒ h(ϕ) ≈ h(ψ)

for every Γ∪{ϕ ≈ ψ} ⊆ Eq. It is well known that if K is a quasivariety, then
the consequence relation �K is finitary.

2.4. Truth-Equational and Assertional Logics

The main classification of logics in AAL is the so-called Leibniz hierarchy,
which classifies a given logic according to the algebraic properties enjoyed
by the Leibniz operator. For instance, protoalgebraic logics are characterized
through the order-preserving property of the Leibniz operator, i.e. for every
algebra A if F,G ∈ FiSA are such that F ⊆ G, then ΩA(F ) ⊆ ΩA(G).
In this work we will be (almost) exclusively dealing with non-protoalgebraic
logics, which means that the classification of super-Belnap logics inside the
Leibniz hierarchy will reduce to two classes, namely truth-equational and
assertional logics.2

1We refer the reader to [18] for a detailed treatment of protoalgebraic logics.
2For an overview of the Leibniz hierarchy, we refer the reader to [24]. Truth-equational

and assertional logics were introduced by Raftery [43] and have more recently been studied
in [3,4].
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Definition 2.2. A logic S is truth-equational if truth is equationally defin-
able in the class Mod∗(S).

A set of equations witnessing the truth-equationality of a logic S is called
a set of defining equations for S. This class of logics rightfully belongs to
the Leibniz hierarchy because truth-equationality can be characterized by a
lattice-theoretical property of the Leibniz operator, namely being completely
order-reflecting [43, Theorem 28].

Since Mod(S ′) ⊆ Mod(S) whenever S ′ ≥ S, truth-equationality is pre-
served through extensions. We record this fact for future reference.

Proposition 2.3. If S is a truth-equational logic and S ≤ S ′, then S ′ is
also truth-equational with same set of defining equations.

Given a logic S, an algebra A and an S-filter F on A, the Leibniz class
of F is the set

�F �∗ := {G ∈ FiSA : ΩA(F ) ⊆ ΩA(G)}.

We say that F is a Leibniz filter of A if it is the least element of its Leibniz
class. We denote the set of all Leibniz filters of A by Fi∗SA, and the least
element of the Leibniz class �F �∗ (which always exists) by F ∗. Leibniz filters
(and particularly a stronger version of this notion, called Suszko filters) turn
out to be deeply connected with truth-equational logics, as shown in [3].

Theorem 2.4. If S is truth-equational, then for every algebra A, every S-
filter of A is Leibniz.

In order to disprove the truth-equationality of a given logic S, it therefore
suffices to find an algebra A and an S-filter which is not a Leibniz filter of A.
This will be the strategy followed in Theorem 5.3.

Given a class of algebras K and a set of equations τ (x) ⊆ Eq, the τ -
assertional logic of K, denoted S(K, τ ), is defined by

Γ 	S(K,τ ) ϕ ⇔ τ (Γ) �K τ (ϕ).

A class K is called a τ -algebraic semantics for S if S = S(K, τ ). The notion
of an algebraic semantics of a logic was introduced in [11], and it was further
investigated in [13]. A relevant observation used later on is the following:
if K is a τ -algebraic semantics of a finitary logic S, then so is Q(K) [13,
Proposition 2.2]. One particular situation in which we will be dealing with
algebraic semantics is encompassed by the next result [13, Theorem 2.3].

Proposition 2.5. A logic S is complete w.r.t. a class of matrices M where
truth is equationally definable by τ if and only if the class of algebraic reducts
of M is a τ -algebraic semantics for S.



1060 H. Albuquerque et al.

Assertional logics, sometimes also called 1-assertional [12], are the par-
ticular case of τ -assertional logics where the set of equations is of the form
τ (x) = {x ≈ 1} and 1 is a constant term for some class of algebras K.

Definition 2.6. A logic S is assertional if it is the {x ≈ 1}-assertional logic
of some class of algebras K, where 1 is a constant term in K.

The next proposition relates the notions of algebraic semantics, truth-
equational logics, and assertional logics [43].

Proposition 2.7. (i) If S is truth-equational with a set of defining equa-
tions τ (x) ⊆ Eq, then Alg(S) is a τ -algebraic semantics for S, that is,
S =

(
Alg(S), τ

)
.

(ii) If S is 1-assertional, then it is truth-equational with a set of defining
equations τ (x) = {x ≈ 1}.

2.5. The Strong Version of a Sentential Logic

The notion of the strong version of a protoalgebraic logic was first introduced
by Font and Jansana [25]. More recently the theory has been generalized to
non-protoalgebraic logics in [2]. We recall here the results from [2] that will
be needed to characterize the strong versions of the super-Belnap logics
considered in Section 3.

Definition 2.8. The strong version of a logic S, denoted by S+, is the logic
induced by the class of matrices {〈A, F 〉 : A is an algebra and F is the least
S-filter of A}.

We could have equivalently defined the logic S+ as the logic induced
by the class of matrices

{
〈A, F 〉 : A is an algebra and F ∈ Fi∗SA

}
. Theo-

rem 2.4 then implies that the strong version of a truth-equational logic S
coincides with S itself. We shall therefore (in Section 6) be only interested
in finding the strong version of non-truth-equational super-Belnap logics.

Two different logics may share the same strong version. One such partic-
ular case is the following:

Lemma 2.9. If S ≤ S ′ ≤ S+, then (S ′)+ = S+.

Given an arbitrary logic S, we know a priori very little about the logic
S+. However, the study of Leibniz S-filters may give us some insight into
S+. We next introduce a definability criterion over the Leibniz S-filters,
which will be used in Section 6 for determining the strong versions of the
super-Belnap logics under study.
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Definition 2.10. A logic S has equationally definable Leibniz filters if there
is a set of equations τ (x) ⊆ Eq such that for every A and every F ∈ FiSA

F ∗ = {a ∈ A : τA(a) ⊆ ΩA(F )}.

In this case we say that the Leibniz S-filters are equationally definable by τ .

Equational definability of Leibniz filters has a most useful characteriza-
tion in practice [2, Theorem 3.4]:

Proposition 2.11. For any logic S and any set of equations τ (x) ⊆ Eq,
the following are equivalent:

(i) The Leibniz S-filters are equationally definable by τ ,

(ii) For every A ∈ Alg(S), τ (A) is the least S-filter of A.

The main result which makes equational definability of Leibniz S-filters
useful for determining the logic S+ is the following [2, Theorem 3.5]:

Theorem 2.12. If the Leibniz S-filters are equationally definable by a set of
equations τ (x) ⊆ Eq, then:

(i) S+ is the τ -assertional logic of Alg(S),

(ii) S+ is truth-equational with set of defining equations τ ,

(iii) FiS+A = Fi∗SA for every A.

2.6. Semilattice-Based Logics

A class of algebras K has semilattice reducts if there exists a binary term ∧
such that for every A ∈ K, 〈A, ∧A〉 is a semilattice. For every A ∈ K let
≤A denote the partial order induced by ∧A, that is, a ≤A b ⇔ a ∧A b = a
for every a, b ∈ A. The semilattice-based logic of K is defined for every
γ1, . . . , γn, ϕ ∈ Fm by

∅ 	≤
K ϕ ⇔ ∀A ∈ K ∀h ∈ Hom(Fm,A) ∀a ∈ A

a ≤A h(ϕ),

and

{γ1, . . . , γn} 	≤
K ϕ ⇔ ∀A ∈ K ∀h ∈ Hom(Fm,A)

h(γ1) ∧A · · · ∧A h(γn) ≤A h(ϕ).

Given a logic S, a binary term ∧ is a conjunction for S if x, y 	S x ∧ y,
x∧y 	S x and x∧y 	S y. The following facts about semilattice-based logics
will be used in the sequel. The proofs of (i)–(iii) can be found in [29], and
those of (iv)–(v) will appear in [2].



1062 H. Albuquerque et al.

Theorem 2.13. Each finitary selfextensional logic with a conjunction is
semilattice-based. Conversely, let S be the semilattice-based logic of a class
of algebras K.

(i) S is fully selfextensional and has a conjunction.

(ii) If S has theorems, then for every A ∈ Alg(S), the set of S-filters of A
coincides with the set of lattice filters of A.

(iii) Alg(S) = V(K).

(iv) If S has theorems, then the Leibniz S-filters are equationally definable
by τ (x) = {x ≈ 1}, where 1 is any S-theorem.

(v) If S has theorems, then S+ is the 1-assertional logic of Alg(S), where
1 is any S-theorem.

2.7. Explosive Extensions

The notion of explosive extension of a finitary base logic B (which is not
necessarily the Belnap–Dunn logic), introduced in [38], will be useful in the
following. It will suffice to consider this notion in the special case where
the language of B contains a formula ⊥ such that ⊥ 	B p, where p is a
propositional atom which does not occur in ⊥. An explosive extension of B
is a logic that extends B with a set of explosive rules, where an explosive
rule is a rule of the form Γ 	 ⊥. We shall use the notation Γ 	 ∅ for Γ 	 ⊥,
to emphasize the symmetry between axiomatic rules ∅ 	 ϕ and explosive
rules Γ 	 ∅. Observe that a non-trivial matrix validates the rule Γ 	 ∅ if
and only if no valuation on it designates all formulas in Γ.

We shall now list some basic facts about explosive extensions proved
in [38]. The explosive extensions of B form a lattice which will be denoted
Exp Ext(B) in the following. The sublattice of finitary explosive extensions
will be denoted ExpExtω(B).

Proposition 2.14. Let S ∈ Ext(B) and Sexp ∈ Exp Ext(B). Then we have
Mod(S ∩ Sexp) = Mod(S) ∪ Mod(Sexp).

Corollary 2.15. Alg∗(S ∩ Sexp) = Alg∗(S) ∪ Alg∗(Sexp).

Corollary 2.16. The (finitary) explosive extensions of a base logic B form
a distributive (algebraic) sublattice of Ext(B).

Axiomatizing the intersection of an explosive extension of B with an
arbitrary extension of turns out to be easy.
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Proposition 2.17. If S is the extension of B by the rules Γi 	 ϕi for i ∈ I
and Sexp is the explosive extension of B by the rule Δ 	 ∅, then S ∩ Sexp is
the extension of B by the rules Γi, Δ 	 ϕi for i ∈ I.

The explosive part of an extension S of B (relative to the base logic B),
denoted ExpB(S), is the largest explosive extension of B below S. The oper-
ator ExpB is an interior operator on Ext(B).

Proposition 2.18. Γ 	ExpB(S) ϕ if and only if either Γ 	B ϕ or Γ 	S ∅.

The operator ExpB is particularly useful for determining the logics
defined by products of matrices, as shown by the following proposition.

Proposition 2.19. If B = Log〈A, F 〉 and S = Log〈B, G〉 is an extension
of B, then ExpB S = Log〈A, F 〉 × 〈B, G〉.

3. An Overview of Super-Belnap Logics

In this section we introduce the Belnap–Dunn logic B and some of its notable
extensions, both from a semantic and a syntactic point of view. We mainly
draw on the papers [23,38,44] but some new results regarding reduced mod-
els of various super-Belnap logics are also proved here.

We take the signature of B to consist of the two binary connectives
∧ and ∨, the unary operator ¬, and the two constants 1 and 0. Although
B has usually been studied in the language {∧, ∨, ¬}, we find it convenient
to include the truth constants in the language. Virtually none of the results
presented below depend on this choice. Occasionally, as in the case of The-
orem 5.1, the almost trivial logic in the language without the constants
(axiomatized by the rule p 	 q) has to be excluded from consideration.

One reason for considering the language with the truth constants is that
the theory of Leibniz filters and strong versions becomes trivial in the
absence of theorems. Moreover, the application of Theorem 2.13 requires
that the logics in question have theorems. Finally, the choice is in part also
a matter of convenience when proving certain results: the duality theory for
De Morgan algebras is simpler than for De Morgan lattices.

We start by a semantic presentation of the most important super-Belnap
logics. Most of the logics mentioned in this section may be introduced via
the matrices depicted in Figure 2 or their products. The algebraic reducts
of these matrices are precisely the De Morgan algebras B2, K3, and DM4.
The Belnap–Dunn logic B is defined by the matrix 〈DM4, {b, t}〉. Recall
that we write this as B = Log 〈DM4, {b, t}〉. Apart from classical logic
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Figure 2. Logical matrices defining some basic super-Belnap logics

CL = Log 〈B2, {t}〉, the oldest and best known extensions of B are the
logics defined by the three-element submatrices of 〈DM4, {b, t}〉: strong
three-valued Kleene logic K = Log 〈K3, {t}〉 and the Logic of Paradox
LP = Log 〈K3, {n, t}〉 (relabelling b as n for the sake of uniformity). These
logics are linked by the following principle, whose easy proof we omit.

Proposition 3.1. ϕ 	K ψ if and only if ¬ψ 	LP ¬ϕ.

Kleene’s logic of order K≤ is defined as K ∩ LP, or in semantic terms
as Log {〈K3, {t}〉, 〈K3, {n, t}〉}. This logic is briefly mentioned by Font [23]
and Makinson [34], who calls it Kalman implication. It was also considered
by Dunn [20,21], who proved that it is precisely the first-degree fragment
of the logic R-mingle (in the same sense that B is the first-degree fragment
of the relevant logic E). This logic, however, has received considerably less
attention in the literature than K and LP.

All three of the three-valued logics K, LP, and K≤ are studied in Dunn’s
paper [22]. However, note that Dunn’s axiomatization of these logics involves
a “metarule” which allows us to infer ϕ ∨ ψ 	 χ from ϕ 	 χ and ψ 	 χ.
Dunn’s syntactic descriptions of K, LP, and K≤ are therefore not (Hilbert-
style) axiomatizations in our sense of the word.

The super-Belnap logics introduced above turn out to be the best-
behaved in the family. As proved in [38], they are the only non-trivial super-
Belnap logics to satisfy the (weak) proof by cases property, and moreover
B, K≤, and CL are the only ones that satisfy the contraposition property.
Finally, K and CL are the only structurally complete super-Belnap logics.3

3Following Cintula and Noguera [16], we say that a super-Belnap logic S enjoys the
(weak) proof by cases property if Γ, ϕ ∨ ψ �S χ whenever Γ, ϕ �S χ and Γ, ψ �S χ (for
Γ = ∅). It enjoys the contraposition property if ϕ �S ψ implies ¬ψ �S ¬ϕ.

A logic S is structurally complete if each admissible rule of S is in fact valid in S,
or more formally if Γ �S ϕ whenever ∅ �S σ(γ) for all γ ∈ Γ implies ∅ �S σ(ϕ) for each
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More recently, the Exactly True Logic ETL = Log 〈DM4, {t}〉 has been
introduced by Pietz and Rivieccio [36] and studied in more detail by Riv-
ieccio [44], initiating the search for new super-Belnap logics.

The logics B, K≤, and CL are intimately connected with the three sub-
varieties of De Morgan algebras: they are precisely the semilattice-based
logics of De Morgan, Kleene, and Boolean algebras, respectively.

Proposition 3.2. The following are equivalent for a finite Γ:

(i) Γ 	B ϕ,

(ii) the inequality
∧

Γ ≤ ϕ holds in DMA,

(iii) the inequality
∧

Γ ≤ ϕ holds in the algebra DM4.

Analogous equivalences hold for K≤, KA, K3 and CL, BA, B2.

The reduced models of B were described by Font [23]. In particular, his
characterization entails that B2 and K3 are the only chains in Alg∗(B).

Theorem 3.3. [23] 〈A, F 〉 ∈ Mod∗(B) if and only if A is a De Morgan
algebra, F is a lattice filter on A, and for all a < b there is some c ∈ A such
that either (i) a ∨ c /∈ F and b ∨ c ∈ F , or (ii) ¬b ∨ c /∈ F and ¬a ∨ c ∈ F .

Conversely, as a consequence of Proposition 3.2, each De Morgan algebra
equipped with a lattice filter is a model (not necessarily reduced) of B.

A finite Hilbert-style axiomatization of B was found independently by
Font [23] and Pynko [39] in the 1990s. They only consider the language
without the truth constants 1 and 0, but it is easy to show that adding the
following rules yields a calculus for the whole language:

0 ∨ p 	 p ∅ 	 1

¬1 ∨ p 	 p ∅ 	 ¬0

All other logics mentioned in this paper will be axiomatized relative to B.

Theorem 3.4. (i) B = Log 〈DM4, {b, t}〉.
(ii) LP = Log 〈K3, {n, t}〉 is axiomatized by ∅ 	 p ∨ ¬p.

(iii) K = Log 〈K3, {t}〉 is axiomatized by (p ∧ ¬p) ∨ q 	 q.

(iv) ETL = Log 〈DM4, {t}〉 is axiomatized by p, ¬p ∨ q 	 q.

(v) CL = Log 〈B2, {t}〉 is axiomatized by ∅ 	 p ∨ ¬p and p, ¬p ∨ q 	 q.

Footnote 3 continued
substitution σ. Equivalently, a logic S is structurally complete if each proper extension
adds some new theorems S.
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(vi) K≤ = LP ∩ K is axiomatized by (p ∧ ¬p) ∨ r 	 (q ∨ ¬q) ∨ r.

Proof. Item (i) holds by definition, item (ii) was proved by Pynko [40],
item (iv) was proved by Pietz and Rivieccio [36], and to prove (v) it suffices
to take any standard Hilbert axiomatization of classical logic and prove all
of its axioms using the rule disjunctive syllogism (Modus Ponens), the law
of the excluded middle, and inferences valid in B.

Item (iii) may be reduced to (ii): suppose that Γ 	K ϕ, where Γ is without
loss of generality finite. Then γ 	K ϕ for γ =

∧
Γ, hence ¬ϕ 	LP ¬γ by

Proposition 3.1. It follows from (ii) that there are formulas τ1, . . . , τn of the
form ψ ∨ ¬ψ such that ¬ϕ, τ1, . . . , τn 	B ¬γ, hence γ 	B ϕ ∨ ¬τ1 ∨ · · · ∨ ¬τn

and Γ 	B ϕ∨χ1 ∨ · · · ∨χn for some formulas χ1, . . . , χn of the form ψ ∧¬ψ.
In each logic which extends B by the rule (p ∧ ¬p) ∨ q 	 q, the rule Γ 	 ϕ is
therefore valid. Conversely, the rule (p ∧ ¬p) ∨ q 	 q is valid in K.

To prove item (vi), suppose that 〈A, F 〉 is a reduced model of B which
validates the rule (p∧¬p)∨r 	 (q ∨¬q)∨r. In particular, A is a De Morgan
algebra. Suppose for the sake of contradiction that A is not a Kleene algebra.
Then there are a, b ∈ A such that a ∧ ¬a � b ∨ ¬b. By Theorem 3.3 there is
some c ∈ A such that either ((a∧¬a)∧(b∨¬b))∨c /∈ F and (a∧¬a)∨c ∈ F or
(a∨¬a)∨c /∈ F and ((a∨¬a)∧(b∧¬b))∨c ∈ F . The latter option contradicts
the assumption that F is a lattice filter, therefore (a∧¬a)∨c ∈ F and either
(a∧¬a)∨c /∈ F or (b∨¬b)∨c /∈ F . The former option is again a contradiction,
therefore (a ∧ ¬a) ∨ c ∈ F and (b ∨ ¬b) ∨ c /∈ F . But this contradicts the
validity of the rule (p ∧ ¬p) ∨ r 	 (q ∨ ¬q) ∨ r in 〈A, F 〉. It follows that if
Γ 	 ϕ is not valid is the extension of B by the rule (p∧¬p)∨r 	 (q ∨¬q)∨r,
then the inequality

∧
Γ ≤ ϕ fails in some Kleene algebra, hence Γ �K≤ ϕ.

Conversely, the rule (p∧¬p)∨r 	 (q∨¬q)∨r is valid in K≤. Therefore Γ 	 ϕ
is valid in the extension of B by this rule if and only if Γ 	K≤ ϕ.

Observe that the rule (p ∧ ¬p) ∨ q 	 p is equivalent to the familiar rule of
resolution p ∨ q, ¬q ∨ r 	 p ∨ r. Note also that the rule p ∧ ¬p 	 q ∨ ¬q yields
a (much) weaker logic than K≤, namely the logic LP ∩ ECQ. It follows from
items (ii), (iii), and (iv) that CL = LP ∨ ETL = LP ∨ K.

We now introduce several other families of super-Belnap logics. The logic
ECQ extends B by the rule p, ¬p 	 q. More generally, we may introduce an
infinite chain of logics ECQn, each axiomatized by the rule

(p1 ∧ ¬p1) ∨ · · · ∨ (pn ∧ ¬pn) 	 ∅.

The limit of this sequence is ECQω =
∨

n∈ω ECQn =
⋃

n∈ω ECQn. We may
also consider logics obtained by adding these rules to ETL rather than B.
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This yields logics ETLn = ETL ∨ ECQn and ETLω = ETL ∨ ECQω, which
were introduced in [44] under the names Bn and Bω.

Note that ECQ1 = ECQ and ETL1 = ETL. The logics ECQn and ETLn

are shown to be pairwise distinct in [44], which implies that the logics ECQω

and ETLω are not finitely axiomatizable. On the other hand, it was shown
in [44] and [38] that the logics ETLω and ECQn may be defined by a finite
matrix, unlike the logics ECQn and ETLn for n ≥ 2.

Finally, another infinite chain of logics may be defined by the rules

(p1 ∧ ¬p1) ∨ · · · ∨ (pn ∧ ¬pn) ∨ q, ¬q ∨ r 	 r.

The logic axiomatized by all of these rules for n ≥ 1 will be denoted K−. It
was proved in [38] that this logic is not finitely axiomatizable.

To provide a semantic characterization of the above logics, the theory
of explosive extensions introduced in the previous section is useful. The
following facts were proved in [38] and used to establish Theorem 3.6.

Proposition 3.5. (i) ExpB ETLn = ECQn.

(ii) ExpB CL = ECQω.

(iii) ExpETL CL = ETLω.

(iv) ExpLP CL = LP ∨ ECQ.

(v) ExpK≤ CL = K≤ ∨ ECQ.

Proposition 2.19 now immediately yields the following results.

Theorem 3.6. (i) ECQ = Log 〈DM4, {b, t}〉 × 〈DM4, {t}〉.
(ii) ECQω = Log 〈DM4, {b, t}〉 × 〈B2, {t}〉.
(iii) ETLω = Log 〈DM4, {t}〉 × 〈B2, {t}〉.
(iv) LP ∨ ECQ = Log 〈K3, {n, t}〉 × 〈B2, {t}〉.
(v) K≤ ∨ ECQ = Log {〈K3, {n, t}〉 × 〈B2, {t}〉, 〈K3, {t}〉}.

In the proof of item (v), we use the fact that LP ∨ ECQ = LP ∪ ECQω,
hence K ∩ (LP ∨ ECQ) = K ∩ (LP ∪ ECQω = K≤ ∪ ECQω = K≤ ∨ ECQω.

We now describe the reduced models of various super-Belnap logics.
Recall that NIKA denotes the quasivariety of non-idempotent Kleene alge-
bras, that is, Kleene algebras where the negation has nofixpoints.

Theorem 3.7. Let 〈A, F 〉 ∈ Mod∗(B) be non-trivial. Then,

(i) 〈A, F 〉 ∈ Mod∗(ETL) iff F = {1},
(ii) 〈A, F 〉 ∈ Mod∗(K≤) iff A ∈ KA,



1068 H. Albuquerque et al.

(iii) 〈A, F 〉 ∈ Mod∗(K) iff A ∈ KA and F = {1},
(iv) 〈A, F 〉 ∈ Mod∗(LP) iff A ∈ KA and F = {a ∈ A : ¬a ≤ a},
(v) 〈A, F 〉 ∈ Mod∗(ETLω) iff A ∈ Q(DM4 × K3) and F = {1},
(vi) 〈A, F 〉 ∈ Mod∗(LP ∨ ECQ) iff A ∈ NIKA and F = {a ∈ A : ¬a ≤ a}.

Proof. (i) See [44, Theorem 10].

(ii) Assume 〈A, F 〉 ∈ Mod∗(K≤). Since Alg∗(K≤) ⊆ Alg(K≤), by Proposi-
tion 5.7 we have A ∈ KA. Conversely, assuming A ∈ KA, we only need
to check that 〈A, F 〉 is a model of the rule (p ∧ ¬p) ∨ r 	 (q ∨ ¬q) ∨ r,
which axiomatizes K≤ relative to B. To see this, it is enough to observe
that the inequality (x ∧ ¬x) ∨ z ≤ (y ∨ ¬y) ∨ z is valid in KA, and that
F is an upper set.

(iii) If 〈A, F 〉 ∈ Mod∗(K), we use Proposition 5.7 to conclude that A ∈ KA
as in the preceding item. Moreover, since ETL ≤ K, we have F = {1}
by item (i) above. Conversely, we need to show that if A ∈ KA, then the
matrix 〈A, {1}〉 satisfies the rule (p ∧ ¬p) ∨ q 	 q, which axiomatizes K
relative to B. To see this, it is enough to check that the quasiequation
(x ∧ ¬x) ∨ y ≈ 1 ⇒ y ≈ 1 is valid in K3 and therefore in every Kleene
algebra.

(iv) Assume that 〈A, F 〉 ∈ Mod∗(LP). Since Alg∗(LP) ⊆ Alg(LP), by
Proposition 5.8 we have A ∈ KA. Since p ∨ ¬p is a theorem of LP,
we have that all elements a ∈ A such that a = a ∨ ¬a (i.e. such that
¬a ≤ a) must be in F . Now suppose there is a ∈ F with a �= a ∨ ¬a
(i.e a < a∨¬a ∈ F ). Since 〈A, F 〉 is reduced, there must be c ∈ A such
that ¬a∨c ∈ F and ¬(a∨¬a)∨c /∈ F . Applying the De Morgan laws and
distributivity, we have ¬(a∨¬a)∨c = (a∧¬a)∨c = (a∨c)∧(¬a∨c) /∈ F .
Since ¬a ∨ c ∈ F and F is closed under ∧, we conclude that a ∨ c /∈ F .
But this is absurd, for the assumption that a ∈ F implies that
a ∨ c ∈ F , since F is an upper set. Therefore any element a ∈ F
must be such that ¬a ≤ a as required. Conversely, assume A ∈ KA and
F = {a ∈ A : ¬a ≤ a}. Then 〈A, F 〉 is certainly a model of LP because
LP is axiomatized, relative to B, by the axiom p ∨ ¬p and F contains
the interpretation of p ∨ ¬p under every valuation.

(v) Follows easily from [44, Lemma 13].

(vi) Since LP ≤ LP ∨ ECQ, assuming 〈A, F 〉 ∈ Mod∗(LP ∨ ECQ), we know
by item (iv) above that A ∈ KA and F = {a ∈ A : ¬a ≤ a}. If there
were some b ∈ A such that b = ¬b, then we would have b = b ∧ ¬b ∈ F .
Then, applying p ∧ ¬p 	 q (which is a rule of ECQ, hence a fortiori
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of LP ∨ ECQ), we would obtain F = A, against our assumption that
〈A, F 〉 was non-trivial and reduced. Conversely, if A ∈ NIKA and F =
{a ∈ A : ¬a ≤ a}, then 〈A, F 〉 is a model of LP by item (iv). Moreover,
〈A, F 〉 is a model of the rule p, ¬p 	 q, which axiomatizes ECQ relative
to B. To see this, notice that b ∈ F implies ¬b ≤ b, so ¬b ∈ F would
imply b = ¬b, which cannot happen in a non-trivial algebra in NIKA.

The simple description of the reduced models of ETL holds even if we
drop the constants 1 and 0 from the signature, i.e. the reduced models of
ETL are bounded even if the language does not contain the truth constants.

4. The Lattice of Super-Belnap Logics

Having introduced various super-Belnap logics in the previous section, we
now summarize what is known about the structure of the lattice of super-
Belnap logics Ext(B). We also outline the connections between finite graphs
and the reduced models of super-Belnap logics described in more detail
in [38], where the results stated without proof in this section are proved.

Figure 3 depicts a part of the lattice Ext(B). Note that this figure is not a
lattice diagram: although joins are faithfully represented by Figure 3, meets
are not. Full lines in Figure 3 represent covers, whereas dashed lines merely
represent inclusions.

Recall that a lattice is called modular if it satisfies the equality (a∧b)∨c =
(a ∨ c) ∧ b for c ≤ b. In particular, every distributive lattice is modular.

Theorem 4.1. The lattice Extω(B) is non-modular, in particular we have
(LP ∩ ETL) ∨ ECQ < (LP ∨ ECQ) ∩ ETL.

The lattice of super-Belnap logics splits into several disjoint parts.

Theorem 4.2. Each super-Belnap logic S either has the same theorems as B
or the same theorems as CL. In the former case we have S ≤ K, while in
the latter case we have LP ≤ S.

Theorem 4.3. Each non-trivial proper extension of B belongs to one of the
disjoint intervals [LP ∩ ECQ, LP], [ECQ, LP ∨ ECQ], and [ETL, CL].

In particular, CL is the largest non-trivial extension of B and the logic
LP ∩ ECQ is the smallest proper extension of B. Recall that by Proposi-
tion 2.17 the logic LP ∩ ECQ is axiomatized by the rule p, ¬p 	 q ∨ ¬q.
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Figure 3. Super-Belnap logics under study

Corollary 4.4. The only non-trivial proper extensions of K≤ are the logics
K≤ ∨ ECQ, K, LP, LP ∨ ECQ, and CL.

In other words, all extensions of K≤ are shown in Figure 3. This corollary
in particular subsumes the description of Ext(LP) due to Pynko [42].4

Theorem 4.5. Let S be a super-Belnap logic. Then either LP ∩ ECQ2 ≤ S
or S ≤ ETL. Likewise, either K≤ ≤ S or S ≤ K−.

In particular, ETL2 is the smallest proper extension of ETL and K− is
the largest extension of ETL strictly below K.

Some of the main results of [38] concern the connection between super-
Belnap logics and graph theory. This connection takes a particularly simple
form if we restrict our attention to the explosive extensions of B.

Theorem 4.6. The lattice Exp Extω(B) is isomorphic to the order dual of
the lattice of classes of finite graphs closed under homomorphisms.

Classes of finite graphs closed under homomorphisms are precisely the
upward closed sets of the so-called homomorphism order on finite graphs,
a remarkable structure which has been the object of much mathematical
attention, see in particular the monograph of Hell and Nešetřil [28].

4More precisely, Pynko described Ext(LP) for the language without 1 and 0.
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The whole lattice Extω(B) may in fact be described as the order dual of a
lattice of certain classes of triples (G,H, k) satisfying some suitable closure
conditions, where G and H are finite graphs and k ∈ {0, 1}. The proof of this
claim involves the Cornish–Fowler duality [17] restricted to finite De Mor-
gan algebras. The core of this duality is the following construction: given
a De Morgan frame, i.e. a poset (W, ≤) equipped with an order-inverting
involution δ, its complex algebra will be the lattice of all upsets of (W, ≤)
equipped with the operation ¬U = W \ δ[U ]. Finite De Morgan algebras are
precisely the complex algebras of finite De Morgan frames.

The dual spaces of finite reduced models of ETL may essentially be viewed
as graphs, where by graphs we mean finite symmetric (undirected) graphs
which possibly contain reflexive vertices (loops), i.e. vertices which are self-
adjacent. More precisely, given a graph G = (X,R), let X � δX be the set
consisting of the vertices u ∈ X and their copies δu ∈ δX, equipped with
the natural involution δ. We then define a partial order on X � δX such
that u ≤ δv if and only if uRv, u ≤ v if and only if u = v, and δu � v for
all u, v ∈ X. The complex algebra of (X � δX, ≤, δ) will be denoted α(G).
We define two different filters on α(G). The filter F = {1} will be denoted
F+(G), and the filter generated by the upset δX will be denoted F−(G).

Proposition 4.7. The finite reduced models of B are exactly the matrices
of the form 〈α(G), F+(G)〉×〈α(G), F−(H)〉×〈B2, {t}〉k for some graphs G
and H and some k ∈ ω. The finite reduced models of ETL are the matrices
of the form 〈α(G), F+(G)〉 × 〈B2, {t}〉k for some graph G and k ∈ ω.

Corollary 4.8. Every finite reduced model of the logic B has the form
〈A, F 〉 × 〈B, G〉 where 〈A, F 〉 is a reduced model of B but not a model of
ECQ and 〈B, G〉 is a reduced model of ETL.

With the help of Theorem 4.6 and Proposition 4.7, results from graph
theory may be used to yield a better understanding of super-Belnap logics.
For example, the following two results may be proved using the embed-
dability of the free countably generated semilattice into the homomorphism
order on finite graphs and Erdős’s theorem on the existence of graphs with
an unbounded girth among graphs with a chromatic number at most n.

Proposition 4.9. There is a non-finitary super-Belnap logic.

Proposition 4.10. For every n ≥ 2, the logics ECQn and ETLn are not
complete with respect to any finite set of finite matrices.

The lattice of classes of finite graphs under homomorphisms is known to
have the cardinality of the continuum. It now follows from Theorem 4.6 that
| Extω(B)| = 2ℵ0 . We may in fact make a more precise claim.



1072 H. Albuquerque et al.

Proposition 4.11. Exp Extω(B) = {B} ∪ Exp Extω(ECQ).

Proposition 4.12. ExpExtω(ECQ) is isomorphic to Exp Extω(ETL) via
the maps S �→ S ∨ETL and S �→ ExpECQ(S). ExpExtω(ECQ) is isomorphic
to a sublattice of [B, LP] via the maps S �→ S ∩ LP and S �→ S ∨ ECQ.

The theorem below now follows from these observations.

Theorem 4.13. Each of the intervals [LP ∩ ECQ, LP], [ECQ, LP ∨ ECQ],
and [ETL, CL] of the lattice Extω(B) has the cardinality of the continuum,
as do the distributive sublattices Exp Extω(B) and Exp Extω(ETL).

5. Algebraic Properties

In this section we shall place all super-Belnap logics within the Leibniz and
Frege hierarchies. We study the classes Alg∗(S) and Alg(S) for the super-
Belnap logics S in Figure 3, and prove that some well-known quasivarieties
of De Morgan algebras in fact form an algebraic semantics for some of these
logics.

5.1. Classification Within the Leibniz and Frege Hierarchies

We start by proving that no non-trivial super-Belnap logic apart from CL
is protoalgebraic. A syntactic proof of this fact was given in [38], but we
provide a simpler semantic proof.

Theorem 5.1. The only non-trivial protoalgebraic super-Belnap logic is CL.

Proof. Let S ∈ Ext(B) such that S �= CL. Then either S ≤ LP ∨ ECQ or
S ≤ K by Theorems 4.2 and 4.3 and Corollary 4.4. Since protoalgebraicity
is preserved by extensions, it suffices to prove that neither of the logics
LP ∨ ECQ and K is protoalgebraic. Recall that a logic S is protoalgebraic
if and only if the Leibniz operator is monotone on S-filters. To show that
LP∨ECQ is not protoalgebraic, consider the algebra K8 = K4×B2 and the
filters F = {〈a, 1〉, 〈1, 1〉} and G = {〈¬a, 1〉, 〈a, 1〉, 〈1, 1〉} ∈ FiLP∨ECQK8.
We have F ⊆ G and 〈〈a, 1〉, 〈1, 1〉〉 ∈ ΩK8(F ) but 〈〈a, 1〉, 〈1, 1〉〉 /∈ ΩK8(G).
To show that K is not protoalgebraic, consider the algebra K4 and the filters
F = {a, 1} and G = {¬a, a, 1}. We have F ⊆ G and 〈a, 1〉 ∈ ΩK4(F ) but
〈a, 1〉 /∈ ΩK4(G).

It is known that being protoalgebraic is equivalent to having the so-called
parametrized local deduction-detachment theorem [18, Theorem 2.15], in
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particular each logic which has the “classical” deduction-detachment theo-
rem, as defined e.g. by Czelakowski in [18, Section 2.6], is protoalgebraic.
The result of Beall et al. [8] that the logic LP does not have the deduction-
detachment theorem can therefore be improved as follows.

Corollary 5.2. The only non-trivial super-Belnap logic which enjoys the
deduction-detachment theorem is CL.

As mentioned in Section 2, Theorem 5.1 reduces the characterization
of super-Belnap logics inside the Leibniz hierarchy to two classes: truth-
equational and assertional logics. As it turns out, such logics belong either
to the interval [LP, CL] or to the interval [ETL, CL].

Theorem 5.3. A non-trivial super-Belnap logic S is truth-equational if and
only if either S ∈ [LP, CL] or S ∈ [ETL, CL]. Truth is defined in Mod∗S by
x ∨ ¬x ≈ x in the former case, and by x ≈ 1 in the latter case.

Proof. Suppose that S ∈ [LP, CL] or S ∈ [ETL, CL]. Since truth-equatio-
nality is preserved by extensions, it suffices to show that LP and ETL are
truth-equational. In the first case, let us fix τ (x) := {x ∨ ¬x ≈ x} and let
〈A, F 〉 ∈ Mod∗(LP). Since B ≤ LP, we have 〈A, F 〉 ∈ Mod∗(B). It follows
by Theorem 3.6 (iv) that F = {a ∈ A : a ∨ ¬a = a} = τ (A). Therefore, the
equation {x ∨ ¬x ≈ x} defines truth in Mod∗(LP) by Theorem 3.6 (iv) and
the equation {x ≈ 1} defines truth in Mod∗(ETL) by Theorem 3.6 (i).

As for the converse implication, the proof proceeds by contraposition.
Suppose then that S is a non-trivial super-Belnap logic such that S /∈
[LP, CL] and S /∈ [ETL, CL]. It follows by Theorem 4.5 that S ≤ K and
S ≤ LP ∨ECQ. Therefore, S ≤ K ∩ (LP ∨ECQ) = K≤ ∨ECQ. It now suffices
to show that the logic K≤ ∨ECQ is not truth-equational. We know by Theo-
rem 3.6 (v) that K≤ ∨ECQ =

{
〈K3, {n, t}〉×〈B2, {t}〉, 〈K3, {t}〉

}
=

{
〈K3×

B2, {t, ¬a}, 〈K3, {t}〉
}
. Fix F := {a, t}. Then F ∈ FiK≤∨ECQ(K3 × B2).

Also, K3 × B2 ∈ KA = Alg(K≤ ∨ ECQ). We claim that F is not a Leibniz
filter of A. First, it is easy to check that ΩK3×B2(F ) = idK3×B2 . Now,
since ΩK3×B2(F ) = idK3×B2 , it follows that �F �∗ = K6, and therefore
F ∗ =

⋂
FiK≤∨ECQ(K3 × B2). Now, {t} ∈ FiK≤∨ECQ(K3 × B2), because

{t} ∈ FiK(K3×B2) and K≤∨ECQ ≤ K. Moreover, since K≤ ≤ K≤∨ECQ and
K3×B2 ∈ Alg(K≤), it follows that FiK≤∨ECQ(K3×B2) ⊆ FiK≤(K3×B2) =
Filt(K3 × B2), where Filt(K3 × B2) denotes the set of lattice filters of
K3 × B2. So, {t} =

⋂
Filt(K3 × B2) ⊆

⋂
FiK≤∨ECQ(K3 × B2). Then

{t} =
⋂

FiK≤∨ECQ(K3 × B2), hence F �= F ∗, i.e. F is not a Leibniz
K≤ ∨ECQ-filter of K3 ×B2. It finally follows by Theorem 2.4 that K≤ ∨ECQ
is not truth-equational, as desired.
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Theorem 5.4. A non-trivial super-Belnap logic S is 1-assertional if and
only if S ∈ [ETL, CL].

Proof. Let S ∈ [ETL, CL]. Since 1-assertionality is preserved by extensions,
and ETL is 1-assertional by Theorem 5.3 (i), it is clear that S is 1-assertional
as well. Conversely, let S be a non-trivial 1-assertional super-Belnap logic.
Then Alg(S) ⊆ Alg(B) = DMA = Alg(ETL). Since S =

(
Alg(S), τ1

)
and

ETL =
(
Alg(ETL), τ1

)
, with τ1(x) = {x ≈ 1}, it follows that ETL ≤ S.

Since S is non-trivial, we also have S ≤ CL.

Note that the only algebraic constants in DMA are 1 and 0, and no non-
trivial super-Belnap logic is 0-assertional.

Summing up, the top right-most side of Figure 3 is composed exclusively
by assertional (hence truth-equational) logics, while the top left-most side of
Figure 3 is composed exclusively by truth-equational logics (but not asser-
tional). Furthermore, all truth-equational and 1-assertional super-Belnap
logics fall into one of these intervals.

The classification of super-Belnap logics within the Frege hierarchy is
rather straightforward in the finitary case given the results seen in Section 2
about semilattice-based logics. A proof of the theorem which does not rely
on Theorem 2.13 was also given in [38].

Theorem 5.5. The only (fully) selfextensional super-Belnap logics are CL,
B and K≤. The logics B and K≤ are non-Fregean.

Proof. The logics B, K≤, and CL are known to be (fully) selfextensional
by virtue of their connection to the varieties of De Morgan, Kleene, and
Boolean algebras, respectively, see Theorem 2.13 (i). It was proved by Font
[23, Theorem 2.11] that the logic B is non-Fregean, and his counterexample
applies equally well to K≤, taking into account that p, ¬p �K≤ q.

There are only three non-trivial varieties of De Morgan algebras, therefore
by Theorem 2.13 (iii) each non-trivial finitary selfextensional super-Belnap
logic is one of the logics B, K≤, CL. Clearly, a logic S is selfextensional if and
only if its finitary companion Sω is, where Γ 	Sω

ϕ if and only if Γ′ 	S ϕ
for some finite Γ′ ⊆ Γ. But by Theorem 4.3 each proper extension of B is an
extension of LP ∩ ECQ, therefore B cannot be its finitary companion. The
same holds for K≤ and CL by Corollary 4.4.

5.2. The Class Alg(S) of Super-Belnap Logics

We shall now focus our attention on the classes of algebras Alg∗(S) and
Alg(S) of a super-Belnap logic S, with a particular interest in the super-
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Belnap logics in Figure 3. As it turns out, apart from CL, every super-
Belnap logic S is such that Alg∗(S) � Alg(S) (Proposition 5.12). This is
a typical phenomenon of non-protoalgebraic logics, although there are of
course examples of non-protoalgebraic logics S such that Alg∗(S) = Alg(S).

Let us start with Belnap’s logic B and Kleene’s logic K, whose algebraic
counterparts were already determined in [23]. We improve on these two
results as follows:

Proposition 5.6. For every logic S ∈ [B, ETL], Alg(S) = DMA.

Proof. Since B ≤ S ≤ ETL, it is clear that Alg(ETL) ⊆ Alg(S) ⊆ Alg(B) =
DMA, where the equality follows by Theorem 2.13 (iii). On the other hand,
observe that the subdirectly irreducible De Morgan algebras DM4, K3

and B2, all belong to Alg∗(ETL). Indeed, since the three algebras are sim-
ple, it follows that 〈DM4, {t}〉, 〈K3, {t}〉, 〈B2, {t}〉 ∈ Mod∗(ETL). Apply-
ing a classical result of Birkhoff, we have DMA = IPS{DM4,K3,B2} ⊆
IPSAlg

∗(ETL) = Alg(ETL).

Proposition 5.7. For every logic S ∈ [K≤, K], Alg(S) = KA.

Proof. Since K≤ ≤ S ≤ K, it is clear that Alg(K) ⊆ Alg(S) ⊆ Alg(K≤).
On the one hand, it follows by Theorem 2.13 (iii) that Alg(K≤) = KA. On
the other hand, similarly to the proof of Proposition 5.6, observe that the
subdirectly irreducible Kleene algebras K3 and B2 belong to Alg∗(K). So,
KA = IPS{K3,B2} ⊆ IPSAlg

∗(K) = Alg(K).

The algebraic counterpart of Priest’s Logic of Paradox LP can be estab-
lished in a similar way.

Proposition 5.8. Alg(LP) = KA.

Proof. Since K≤ ≤ LP, the inclusion Alg(LP) ⊆ Alg(K≤) = KA holds. As
for the converse inclusion, since the subdirectly irreducible Kleene algebras
K3 and B2 belong to Alg∗(LP), it follows that KA = IPS{K3,B2} ⊆
IPSAlg

∗(LP) = Alg(LP).

We next prove that the bottom two chains of logics in Figure 3 have the
same algebraic counterpart, modulo n.

Proposition 5.9. For every n ∈ ω + 1, Alg(LP ∩ ECQn) = Alg(ECQn).
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Proof. The inclusion Alg(ECQn) ⊆ Alg(LP ∩ECQn) is clear, because LP ∩
ECQn ≤ ECQn. For the converse inclusion, notice that

Alg∗(LP ∩ ECQn) = Alg∗(LP) ∪ Alg∗(ECQn)

⊆ Alg(LP) ∪ Alg(ECQn)

= KA ∪ Alg(ECQn)

= Alg(ECQn),

where the first equality holds by Corollary 2.15 and because KA = Alg(K) ⊆
Alg(ECQn). Hence we have Alg(LP ∩ ECQn) = IPSAlg

∗(LP ∩ ECQn) ⊆
IPSAlg(ECQn) = Alg(ECQn).

We do not know whether for every n ∈ ω + 1, Alg(ECQn) = Alg(ETLn).
It is however easy to see that Alg(ETLm) �= Alg(ETLn) and Alg(ECQm) �=
Alg(ECQn), for m �= n.

Proposition 5.10. For every n ∈ ω,

(i) Alg(ETLn+1) � Alg(ETLn),

(ii) Alg(ECQn+1) � Alg(ECQn).

Proof. (i) Let n ∈ ω. Suppose for the sake of contradiction that
Alg(ETLn+1) = Alg(ETLn). Since ETLn+1 is the 1-assertional logic of
Alg(ETLn+1) and ETLn is the 1-assertional logic of Alg(ETLn), it follows
that ETLn+1 = ETLn, which is absurd.

(ii) Let n ∈ ω. Suppose for the sake of contradiction that Alg(ECQn+1) =
Alg(ECQn). We know by Theorems 2.12 and 6.8 (iv) that ETLn =
(ECQn)+ is the 1-assertional logic of Alg(ECQn) and ETLn+1 =
(ECQn+1)+ is the 1-assertional logic of Alg(ECQn+1). So, it must be
the case ETLn+1 = ETLn, and we reach a contradiction again.

Other strict inclusions involving the classes Alg(S) of particular super-
Belnap logics can be established. We next provide two such examples, which
share an interesting feature in common, as we shall see.

Proposition 5.11. (i) Alg(ETLω) � Q(DM4 × K3).

(ii) Alg(LP ∨ ECQ) � NIKA.

Proof. (i) It follows by Theorem 3.7 (v) that Alg∗(ETLω) ⊆ Q(DM4 ×
K3). So clearly, Alg(ETLω) = IPSAlg

∗(ETLω) ⊆ Q(DM4 ×K3). To see
that this inclusion is strict, let A be the subalgebra of DM4 ×K3 with
universe A = {0, 1, a, ¬a, b, ¬b}, following the notation of [44, Figure 1]
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(here, DM4 × K3 is denoted by D12). Clearly, A ∈ S(DM4 × K3) ⊆
Q(DM4 × K3). We claim that A /∈ Alg(ETLω). It is easy to check that
the only ETLω-filters on A are the sigleton {1} and the universe A.
Hence,

∼
Ω A

ETLω

(
{1}

)
= ΩA

(
{1}

)
∩ ΩA(A) = ΩA

(
{1}

)
. But, 〈a, ¬a〉 ∈

ΩA
(
{1}

)
. Hence,

∼
Ω A

ETLω

(
{1}

)
�= idA. Moreover,

∼
Ω A

ETLω
(A) = A×A �=

idA. Thus, A /∈ Alg(ETLω).

(ii) We know by Theorem 3.7 (vi) that Alg∗(LP ∨ ECQ) ⊆ NIKA, hence
IPSAlg

∗(LP ∨ ECQ) = Alg(LP ∨ ECQ) ⊆ IPSNIKA = NIKA. To see that
the inclusion is strict, notice that K4 ∈ NIKA, however the system of
LP ∨ ECQ-filters on K4 is not reduced, i.e. K4 /∈ Alg(LP ∨ ECQ).

Notice that DM4 × K3 ∈ Alg∗(ETLω) ⊆ Alg(ETLω), and therefore the
algebra A above witnesses that Alg(ETLω) is not closed under subalgebras.
Likewise, K3 × B2 ∈ Alg(LP ∨ ECQ), however K4 which is a subalgebra
of K3 × B2 is not in Alg(LP ∨ ECQ). So neither Alg(ETLω) nor Alg(LP ∨
ECQ) are quasivarieties. Since moreover Alg∗(ETLω) � Alg(LP ∨ ECQ) and
Alg∗(LP ∨ ECQ) � Alg(ETLω), as we shall see in the next theorem, we
are here in the presence of two examples of logics S such that Alg∗(S) �

Alg(S) � V(S). The existence of such a logic was posed as an open problem
in the first edition of [26]. To the authors’ knowledge, the only examples in
the literature are a (subintuitionistic) logic due to Bou [14], and an ad hoc
example due to Babyonyshev [7].

Since all super-Belnap logics S under study are non-protoalgebraic, the
class Alg∗(S) can be very difficult to characterize. In [23], it is proved that
Alg∗(B) � Alg(B). We now generalize this result to arbitrary super-Belnap
logics.

Proposition 5.12. For every non-trivial super-Belnap logic S except CL
we have Alg∗(S) � Alg(S).

Proof. Let S ∈ Ext(B) such that S �= CL. Suppose for the sake of contra-
diction that Alg∗(S) = Alg(S). We know that (LP, K) is a splitting pair of
Ext(B), by Theorem 4.5. Then either LP ≤ S or S ≤ K. In the latter case,
KA = Alg(K) ⊆ Alg(S) = Alg∗(S) ⊆ Alg(B). In particular, K4 ∈ Alg∗(B).
We reach a contradiction, since the only chains in Alg∗(B) are B2 and K3,
by [23, p. 16]. In the former case, since LP is truth-equational, it follows by
Proposition 2.3 that S is truth-equational. It now follows by Proposition [3,
Corollary 6.12] that S is protoalgebraic, which contradicts Proposition 5.1.
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5.3. Algebraic Semantics of Truth-Equational Super-Belnap Logics

We finish our algebraic study of super-Belnap logics by looking at some
distinguished algebraic semantics. Recall that if S is a truth-equational logic
with defining equations τ (x) ⊆ Eq, then the class Alg(S) is a τ -algebraic
semantics for S, by Proposition 2.7 (i). However, it turns out that some of our
truth-equational super-Belnap logics also admit as algebraic semantics some
quasivarieties of De Morgan algebras which are well studied in the literature,
witnessed by very simple equational translations. In order to demonstrate
this, let us fix the following two equational translations:

τ0 := {x ∨ ¬x ≈ x} and τ1 := {x ≈ 1}.

Theorem 5.13. (i) The class NIDMA is a τ1-algebraic semantics for the
logic ETLω.

(ii) The class NIKA is a τ0-algebraic semantics for the logic LP ∨ ECQ.

(iii) The classes KA and NIDMA ∪ KA are τ0-algebraic semantics for the
logic LP.

(iv) The classes KA, RKA, NIKA, and NIDMA∪KA, are τ1-algebraic seman-
tics for the logic K.

(v) The class DMA is a τ1-algebraic semantics, as well as a τ0-algebraic
semantics, for the logic ETL.

Proof. (i) Since Log 〈DM4, {t}〉 × 〈B2, {t}〉, by Theorem 3.6 (iii), and
{t} = τ1(DM4×B2), it follows by Proposition 2.5 that ETLω is the τ1-
assertional logic of {DM4 × B2}, hence of Q(DM4 × B2) as well. The
result now follows because Q(DM4 × B2) = NIDMA, by Theorem 2.1.

(ii) Since LP∨ECQ = Log 〈K3, {n, t}〉×〈B2, {t}〉 = Log〈K3×B2, {¬a, t}〉,
by Theorem 3.6 (iv), and {a, t} = τ0(K3 × B2), it follows by Proposi-
tion 2.5 that LP ∨ ECQ is the τ0-assertional logic of {K3 × B2}, hence
of Q(K3 × B2) as well. The result now follows because Q(K3 × B2) =
NIKA, by Theorem 2.1.

(iii) Since LP = Log〈K3, {n, t}〉, by Theorem 3.4 (ii), and {n, t} = τ (K3),
it follows by Proposition 2.5 that LP is the τ0-assertional logic of {K3},
hence of Q(K3) as well. Having in mind that Q(K3) = KA, the first
part of the result follows. Next, since LP ≤ LP ∨ ECQ, it follows that
LP = Log

{
〈K3, {n, t}〉〉, 〈K3, {n, t}〉 × 〈B2, {t}〉

}
= Log

{
〈K3, {n, t}〉,

〈K3 × B2, {¬a, t}〉
}
. Now, since {n, t} = τ0(K3) and {a, t} = τ0(K3 ×

B2), LP is the τ0-assertional logic of {K3,K3×B2}. Since Q(K3,K3×
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B2) = NIDMA∪KA, by Theorem 2.1, the second part of the result also
follows.

(iv) Using Theorem 3.4 it is not difficult to see that K = Log〈K3, {t}〉 =
Log〈K4, {t}〉 = Log〈K3, {t}〉 × 〈B2, {t}〉. Since moreover {t} =
τ1(K3) = τ1(K4) = τ1(K3 × B2), the result follows as before, having
in mind that Q(K4) = RKA and Q(K3×B2) = NIKA, by Theorem 2.1.
Finally, since K = Log

{
〈K3, {t}〉×〈B2, {t}〉, 〈K3, {t}〉

}
= Log

{
〈K3×

B2, {t}〉,
〈K3, {t}〉

}
, K is also the τ1-assertional logic of Q(K3,K3 × B2) =

NIDMA ∪ KA, by Theorem 2.1.

(v) Given the previous items, just notice that ETL = Log〈DM4, {t}〉 and
τ1(DM4) = {t} = τ0(DM4).

Theorem 5.13 provides new examples of several phenomena that may
occur when dealing with algebraic semantics. For instance, we see that the
same class of algebras can be an algebraic semantics for two different logics
(witnessed by different equational translations, of course); the same logic
can have different algebraic semantics, witnessed by the same equational
translation; and finally, two algebraic semantics for the same logic need not
generate the same quasivariety.

Using the terminology of [12], items (iii) and (iv) above tell us that the
quasivarieties KA and NIDMA ∪ KA are τ0-assertionally equivalent, while
the quasivarieties KA, RKA, NIKA, and NIDMA ∪ KA, are τ1-assertionally
equivalent.

Another consequence of Theorem 5.13 is that KA � Q(DM4 × K3) �

DMA. Indeed, since ETLω = Log〈DM4 × K3, {1}〉 and {1} = τ1(DM4 ×
K3), ETLω is the τ1-assertional logic of {DM4 ×K3}, hence of Q(DM4 ×
K3) as well. Therefore, if KA = Q(DM4 × K3), then ETLω would coincide
with K; and if DMA = Q(DM4 × K3), then ETLω would coincide with
ETL.

6. Leibniz Filters and Strong Versions

In this last section, we examine the logics in Figure 3 from the point of
view of AAL, using some of its recent developments on non-protoalgebraic
logics. Namely, the strong version of a sentential logic and its Leibniz filters,
a theory that is developed in full generality in [2], extending that of [25] for
protoalgebraic logics.
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6.1. The Strong Version of an Explosive Extension

We first undertake a small a detour in order to prove some general results
concerning the strong version of an explosive extension. Throughout the
present subsection, B denotes an arbitrary (base) logic, not necessarily the
Belnap–Dunn logic, and Sexp denotes an arbitrary explosive extension of B.
In Section 6.2 we will instantiate the results here obtained for the explosive
extensions ECQn and ECQω of B.

Our strategy to determine the strong version of Sexp is to prove that the
least Sexp-filter and least B-filter always coincide, for algebras in Alg(Sexp)
(Corollary 6.2). The key observation to establish it is the next proposition.

Proposition 6.1. If 〈A, F 〉 ∈ Mod(Sexp) is a non-trivial model of Sexp,
then for every 〈A, G〉 ∈ Mod(B) with G ⊆ F , 〈A, G〉 ∈ Mod(Sexp) is a
(non-trivial) model of Sexp.

Proof. If 〈A, G〉 is a model of B but not of Sexp , then some explosive rule
Γ 	 ∅ which is valid in S fails in 〈A, G〉. There is therefore a valuation
v : Fm → A such that v[Γ] ⊆ G. Since G ⊆ F , we have v[Γ] ⊆ F . The rule
Γ 	 ∅ thus fails in the matrix 〈A, F 〉, hence 〈A, F 〉 is not a model of Sexp .

Corollary 6.2. Let A ∈ Alg(Sexp). The least Sexp-filter of A coincides
with the least B-filter of A.

Proof. Let A ∈ Alg(Sexp). Taking G =
⋂

FiBA in Proposition 6.1, it
follows that either A has no non-trivial S-filters, or the least B-filter of A is
an S-filter, in which case

⋂
FiSexp

A = FiBA. In the latter case we are done.
In the former case, we have

⋂
FiSexp

A = A. So, idA =
∼
Ω Sexp

( ⋂
FiSexp

A
)

=
∼
Ω Sexp

(
A) = A×A. But then it must be the case that A is a trivial algebra,

say A = {a}. Hence
⋂

FiSexp
A = {a} =

⋂
FiBA.

We are now ready to characterize the strong version of an explosive exten-
sion in terms of the strong version of its base logic (Theorem 6.4).

Lemma 6.3. B+ ≤ S+
exp.

Proof. On the one hand, Alg(Sexp) ⊆ Alg(B), because B ≤ Sexp . On the
other hand, for every A = Alg(Sexp) we have

⋂
FiSexp

A =
⋂

FiBA by
Corollary 6.2. Having in mind that B+ is the logic induced by the class of
matrices {〈A,

⋂
FiBA〉 : A ∈ Alg(B)} and that S+

exp is the logic induced by
the class of matrices {〈A,

⋂
FiSexp

A〉 : A ∈ Alg(Sexp)}, the result follows.

Notice that the operator ( )+ : S �→ S+ is not monotonic in general. For
instance, K≤ ≤ LP, but as we shall see (K≤)

+
= K �≤ LP = LP+.
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Theorem 6.4. S+
exp = (B+ ∨ Sexp)+.

Proof. Let A ∈ Alg(B+ ∨ Sexp). Since A ∈ Alg(B+ ∨ Sexp) ⊆ Alg(Sexp),
and Sexp is an explosive extension of B, it follows by Corollary 6.2 that⋂

FiSexp
A =

⋂
FiBA =

⋂
FiB+A. So,

⋂
FiSexp

A is both an Sexp-filter
of A and a B+-filter of A, hence

⋂
FiB+∨Sexp

A =
⋂

FiSexp
A. Having in

mind that (B+ ∨ Sexp)+ is the the logic induced by the class of matrices
{〈A,

⋂
FiB+∨Sexp

A〉 : A ∈ Alg(B+∨Sexp)} and that S+
exp is the logic induced

by the class of matrices {〈A,
⋂

FiSexp
A〉 : A ∈ Alg(Sexp)}, and moreover

Alg(B+ ∨ Sexp) ⊆ Alg(Sexp), it follows that S+ ≤ (B+ ∨ Sexp)+. Together
with Lemma 6.3, we get B+ ∨ Sexp ≤ S+

exp ≤ (B+ ∨ Sexp)+. The result now
follows by Lemma 2.9, having in mind that in general (S+)+ = S+.

By imposing equational definability over the Leibniz B-filters, we can
obtain a refined version of Theorem 6.4. To this end, let us first see that
equational definability of Leibniz filters is preserved from the base logic to
explosive extensions.

Proposition 6.5. Let τ (x) ⊆ Eq. If the Leibniz B-filters are equationally
definable by τ , then the Leibniz Sexp-filters are equationally definable by τ .

Proof. Assume that the Leibniz B-filters are equationally definable by τ .
Let A ∈ Alg(Sexp). Since A ∈ Alg(Sexp) ⊆ Alg(B), it follows by assumption
that

⋂
FiBA = τ (A). Since A ∈ Alg(Sexp), it follows by Corollary 6.2 that⋂

FiSexp
A =

⋂
FiBA. Hence τ (A) =

⋂
FiSexp

A, and by Proposition 2.11
the Leibniz Sexp-filters are equationally definable by τ .

Putting together Theorem 6.4 and Proposition 6.5, we obtain:

Theorem 6.6. If B has equationally definable Leibniz filters, then S+
exp =

B+ ∨ Sexp.

Proof. The inclusion B+∨Sexp ≤ S+
exp hols in general, by Theorem 6.4. As

for the converse inclusion, since the Leibniz B-filters are equationally defin-
able, it follows by Theorem 2.12 (iii) that for every algebra A, FiB+A =
Fi∗BA. Hence FiB+∨Sexp

A ⊆ FiB+A ∩ FiSexp
A = Fi∗BA ∩ FiSexp

A ⊆
Fi∗Sexp

A ⊆ FiS+
exp

A for every algebra A. Thus S+
exp ≤ B+ ∨ Sexp .

6.2. Strong Versions of Super-Belnap Logics

In our setting of super-Belnap logics, matters are fairly well-behaved, due to
the fact that all non-truth-equational logics considered in Figure 3 have their
Leibniz filters equationally definable by the set of equations τ1(x) = {x ≈ 1}.
We proceed to prove this fact.
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Theorem 6.7. Fix τ1(x) := {x ≈ 1} ⊆ Eq.

(i) The Leibniz B-filters are equationally definable by τ1.

(ii) The Leibniz K≤-filters are equationally definable by τ1.

(iii) The Leibniz K≤ ∨ ECQ-filters are equationally definable by τ1.

(iv) The Leibniz ECQn-filters are equationally definable by τ1 for n ∈ ω + 1.

(v) The Leibniz LP ∩ ECQn-filters are equationally definable by τ1 for
n ∈ ω + 1.

Proof. (i) and (ii) Having in mind that B and K≤ are the semilattice-based
logics of DMA and KA, respectively, and since moreover 1 is a theorem of
both logics, the results follow by Theorem 2.13 (iv).

(iii) Just notice that, for every A ∈ Alg(K≤ ∨ ECQ) = KA, {1} =⋂
FiK≤A ⊆

⋂
FiK≤∨ECQA ⊆

⋂
FiKA = {1}, using Theorem 2.13 (ii). So,

FiK≤∨ECQA = {1}. The result now follows by Proposition 2.11 (iv) follows
by (i) and Proposition 6.5.

(v) follows by (iv) and Proposition 2.11, having in mind that Alg(LP ∩
ECQn) = Alg(ECQn), by Corollary 5.9.

Theorem 6.7 enables us to determine the strong version of all non-truth-
equational super-Belnap logics under study. As for the truth-equational ones,
recall that these coincide with their respective strong versions.

Theorem 6.8. (i) B+ = ETL.

(ii) K≤+
= K.

(iii) (K≤ ∨ ECQ)+ = K.

(iv) ECQ+
n = ETLn, for every n ∈ ω + 1.

(v) (LP ∩ ECQn)+ = ETLn, for every n ∈ ω + 1.

Proof. (i) and (ii) Having in mind Theorem 3.4 (iii) and (iv), the results
follow by Theorem 2.13 (v).

(iii) follows by (ii) and Lemma 2.9.
(iv) Since B has it Leibniz filters equationally definable, it follows by

Theorem 6.6 that, for every n ∈ ω + 1, (ECQn)+ = B+ ∨ ECQn = ETL ∨
ECQn = ETLn.

(v) Since LP ∩ ECQn has its Leibniz filters equationally definable by τ1,
it follows by Theorem 6.8 (i) that (LP ∩ ECQn)+ is the τ -assertional logic
of Alg(LP ∩ ECQn). But Alg(LP ∩ ECQn) = Alg(ECQn), by Corollary 5.9,
therefore (LP ∩ ECQn)+ = ETLn.
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In the light of Theorem 6.8 (i), an immediate consequence of Lemma 2.9
is that we are able to find the strong version of every logic in the interval
[B, ETL].

Corollary 6.9. For every S ∈ [B, ETL], S+ = ETL.

Interestingly, all the strong versions considered here turn out to be truth-
equational logics. This need not hold in general, as proved in [2].

Since each non-truth-equational super-Belnap logic S shown in Figure 3
has equationally definable Leibniz S-filters, it follows by Theorem 6.8 (iii)
that the Leibniz S-filters coincide with the S+-filters on arbitrary algebras.

Corollary 6.10. For every algebra A,

(i) Fi∗BA = FiETLA,

(ii) Fi∗
K≤A = Fi∗

K≤∨ECQ
A = FiKA,

(iii) For every n ∈ ω + 1, Fi∗ECQn
A = Fi∗LP∩ECQn

A = FiETLn
A.
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