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Abstract

In this paper we describe a framework for the construction of entities�

that can serve as interpretations of arbitrary contiguous chunks of text�

An important part of the paper is devoted to describing stacking cells�

the proposed meanings for bracket�structures�

� Introduction

Motto� Sentence structure and text structure are di�erent� but not in kind�

��� Dynamic brackets in action

Let�s start with an example� Consider the sentence

A dog sees a cat�

To give a logical semantics for this sentence� we have to produce a meaning
for the sentence� Such a meaning could be �given by� the following sentence of
predicate logic�

�x�DOG�x���y�SEES�x� y��CAT �y���

Even if this result were a satisfactory meaning representation� we should not be
content� We do not just want correct meanings to be produced in an oracular
way� We want the process of producing a meaning from a sentence to be system�
atic� Being systematic involves precise speci	cation of the interpretation process
and satisfaction of certain constraints� One such constraint is compositionality�
Another such constraint is maximizing the number of meaningful components�
Yet another one 
subordinate to� but not a consequence of compositionality
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is uniformity of the way the meanings interact� In its usual formulation Mon�
tague grammar does not meet the uniformity constraint� but we could try to
set it up function application as the fundamental mode of meaning interaction�
Traditionally the process of interpretation has two stages� The 	rst stage


parsing
 is still at the syntactical level� It consists of enriching the input
sentence with syntactical structure� We analyse what the appropriate compo�
nents are and the way in which these components depend on each other� For
example our sentence could be parsed as one of�

�i� ��a dog� �sees �a cat��� �ii� ��a dog� n sees � �a cat��
�iii� �a�dog�sees�a cat��� �iv� �sees�a dog� a cat��

The second stage is semantical interpretation proper� Grammatical structure
steers this process� It is what makes the compositionality constraint meaning�
ful� We interpret componentwise and the meaning of the whole is obtained from
the meaning of the parts� by applying the appropriate function to the mean�
ings of the parts in the way prescribed by the grammar� E�g�� the meaning of
sees in our example �iii� above could be a binary function which is applied to
the meanings of a dog and a cat� where the slashes are indicative of argument
location� Grammar is syncategorematic in this approach to semantics� i�e�� no
semantical objects are ascribed to the symbols 	xing grammatical structure� In
our examples
 the brackets and the slashes get no meanings�
Why do we arrange the interpretation as we do� A number of the ideas 
like

compositionality
 that go into it� can be viewed as general design constraints�
They do not re�ect anything out there� but just 	x a format for describing
things� Other things could be dictated by the idea that we want to model some�
thing� Dynamic semantics as we view it is shaped by one such idea� We want
the way the logical semantics is produced to model the interpretation process in
humans and machines� This programmatic idea will cause us to diverge from the
received idea of the role of grammar as syncategorematic steering� �Note that
�modelling the interpretation process� is not among the classical aims of model
theory� which are rather to gain understanding of validity and de	nability� Thus
nothing we say should be constructed as criticism of model theory��
Does the interpretation process as programmed by the grammatical analysis

of� say� example �i� re�ect the actual temporal interpretation process� This
analysis prescribes that we 	rst interpret �a dog� and �a cat�� Then we process
�sees �a cat�� and 	nally ��a dog� �sees �a cat���� Suppose we are hearing
someone saying very slowly
 a � � � dog � � � sees � � � a � � � cat� Our �theory� predicts
that after hearing sees we cannot combine the meaning of sees with the meaning
of a dog� But� surely� we can� The point can be strengthened by looking at very
long sentences�
If we accept this argument� there are two ways to go� First we may search for

a grammar that re�ects the process of interpretation over time more adequately�
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But in our example� what else could such a grammar yield than

����a dog� sees� a� cat�

Is this really convincing� We also would understand something� if we missed the
speakers 	rst words and just heard
 � � � sees � � � a � � � cat� Surely� interpretation
satis	es the Break in Principle
 we can break into a piece of ongoing text at
any place and still gain a measure of understanding� The second possibility is
to drop the treatment of grammar as syncategorematic� Grammar is not what
steers the interpretation process� It does something else� which is re�ected at
the semantical level� For� where else could it be re�ected�
In this paper we will consider the idea that grammar is there for categore�

matical steering� In other words� yes� grammar plays the role of guiding the
way we process information� but� no� grammar�s role is not well placed at the
transition from syntax to semantics�
The semantics that we want to develop is a version of Heim�s 	le change

semantics for inde	nites �see �Hei��� and �Hei������ In our version the meaning of
� is going to be introduce a new �le for storing the subsequent information� The
action that � means will be modelled by an appropriate mathematical object� In
the style of program�semantics� Analogously� a right bracket is going to mean
eliminate the current �le�
To understand the idea of brackets as actions or program�instructions bet�

ter� it helps to consider an analogy� The 	rst one is existential quanti�cation�
In dynamic semantics the existential quanti	er �x is usually interpreted as the
instruction introduce a new �le labelled x �see e�g� �GS����� Vermeulen in his
�Ver���� modi	ed this to
 push a new �le onto the stack labelled x� The stack�
ing way of viewing the existential quanti	er opens the way for introducing a
companion of exists x� viz�� exit x� meaning
 pop the current �le from the stack
labelled x� Vermeulen�s alternative predicate logic is called DPLE� By way of
example� we produce a sentence in DPLE�language� written with four di�erent
notational conventions� each suggestive in its own way�

�a� �x�P �x���y�Q�x� y��Ex�R�y��Ey
�b� pushx�P �x��pushy�Q�x� y��popx�R�y��popy
�c� nbeginfxg�P �x��nbeginfyg�Q�x� y��nendfxg�R�y��nendfyg
�d� �x�P �x���y �Q�x� y��x��R�y��y�

In contrast to predicate logic� where the existential quanti	er is standardly
associated with scoping brackets� exists and exit are their own brackets� As
suggested by �d�� �x and x� are brackets enclosing a stretch a text in which the
information stored under x goes to a certain 	xed 	le� But if we can view exists
and exit as brackets� where these brackets are given instructions as meanings�

�Our semantics is also closely related to Kamp�s DRT �see �Kam���� �KR	
�� and to
Seuren�s Discourse Semantics �see �Seu����


�See also �HV	��
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why should we not seriously consider to give the usual brackets also such a
semantics�
Our 	rst programmatic point was the idea of modelling the interpretation

process� With the example of the existential quanti	er a second theme has been
silently introduced� The aim of the dynamic interpretation of the existential
quanti	er was to provide a better simulation of the way anaphoric phenomena
are handled in natural language� Anaphoricity is typically a text phenomenon�
which exceeds the scope of individual sentences� Thus dynamic semantics aims
at describing not just interpretation of sentences� but primarily interpretation
of texts� Sentence interpretation just appears as a subproblem� Note that�
because texts can be arbitrarily long� there is no temptation to interpret �text�
brackets� like a man or suppose syncategorematically�� If we treat grammar
categorematically� and if the syntax�to�semantics interpretation process is not
guided by grammatical structure� what is the syntax�to�semantics interpretation
process going to look like� Setting apart all kinds of hybrid approaches� let�s just
look at the most radical one� The radical answer is simply that we can interpret
any stretch or chunk of text and that the interpretation of the concatenation
of chunks is a function of the interpretation of the chunks� We will call this
function the merger� We will use ��� to designate the merger�
Let�s look at an example� We are going to parse a dog sees a cat as


����sub�ax�dog���sees���ob�ay�cat����

This formula is a formula of the fragment of predicate logic we are going to
develop� sub and ob are markers for the argument places� We can both in�
terpret ����sub�ax�dog���sees� getting as meaning� roughly� a dog sees something�
and sees���ob�ay �cat����� getting as meaning� roughly� something sees a cat� Ob�
viously� to make this all work out well� we should demand that the result of
merging the meaning of ����sub�ax�dog���sees with the meaning of ��ob�ay �cat����
is the same as the result of merging the meaning of ����sub�ax�dog�� with the
meaning of sees���ob�ay �cat����� Thus we demand that � is associative� We will
conveniently add an empty meaning or tabula rasa� This tabula rasa will act as
the identity for �� So therefore our meanings will form a monoid with tabula rasa
as the identity� We call the interpretation process� as described� monoidal pro�
cessing� Note that monoidal processing includes the possibility of incremental
processing� i�e�� processing strictly from left to right�
In the most radical case� where we interpret all syntax categorematically�

there will be no syncategorematic syntax at all� Thus our approach has as
consequence a radical unburdening of the speci	cation language� All sentences
of this language are grammatical and can be assigned meanings� Of course�
some meanings are more equal than the others � � � �

�If we say� suppose � � � � we introduce an imagined world
 Thus� supposing opens a stretch
of discourse which is interpreted with respect to this new imagined world
 The idea that
suppose is �pushing into fantasy� comes from a suggestive discussion by Douglas Hofstadter
in his �Hof�	�� p���
 It was studied by Lysbeth Zeinstra in �Zei	��
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In this paper we will address the problem of interpretation from parsed
sentence to semantical object� We will not consider the problem of run�time
parsing� We will� however� in designing our speci	cation language� pause to
consider variants that would make the parsing easier� �See e�g� subsection ���
on the use of lazy brackets�� Some of the work on incremental grammars �see
e�g�� �Mil���� �Mil���� is close in spirit to what we are aiming at�

��� Context and content

In the previous subsection we introduced the 	rst design feature of our ap�
proach
 grammatical structure is treated as meaningful� In this subsection�
we describe the second feature
 the DRT�style representation of meanings as
context�content pairs�
In Groenendijk � Stokhof�s DPL �see �GS����� dynamic meanings are ac�

tions� which are in their turn mathematically represented as input�output rela�
tions� This approach has the advantage of mathematical simplicity� It has as
disadvantages that one cannot associate a good notion of information growth to
it and that one cannot easily separate the statical and the dynamical aspects�
We follow another dynamic tradition� DRT or File�change Semantics� in taking
our meanings to be static objects �relational databases� sets of assignments��
enriched by dynamic contexts �see e�g�� �Zee��� and �KR����� We claim the
following advantages�

� There is a good separation between the static and the dynamic� We keep
the classical ideas of a meaning as a database and of a meaning as a set
of assignments�

� Our approach supports a good notion of information growth�

� We do not throw away the relational way� From a DRT�style meaning a
DPL�style relational meaning can be �extracted�� The �extraction��function
will be morphism of monoids� mapping � to relational composition� ��

� In a way similar to the one of the previous item� we can associate update
functions to our meanings��

The main novelty of this paper is the machinery we develop to build the
dynamic contexts� We will begin the development of our tool�kit in section ��

��� The local and the global

In subsection ���� we already mentioned the structure of larger�than�sentence
discourses� Evidently� anaphoric phenomena belong to this structure� In the

�Both relations and update functions can be associated to our meanings in a mathemati�
cally elegant way
 We will substantiate these claims elsewhere
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present paper we will give a treatment of anaphoric phenomena� which can be
viewed� very roughly� as a DRT�version of Vermeulen�s DPLE� We will� on the
other hand� treat local sentential structure in a new way� The most salient
property is that our speci	cation language embodies a di�erent� more natural
language like� strategy to handle argument places than Predicate Logic� In
Predicate Logic terms get into the correct argument place by occurring at rigidly
prescribed places after atomic predicate symbols� In our approach terms get into
place by carrying the appropriate place markers �argument handlers�� These
place markers are analogous to prepositions in� say� Dutch or to the casi in� say�
Latin� In our language� the following items will be essentially equivalent�

� ����hex�sub���cut���they �bread�ob�����with�az �knife����

� ����with�az �knife�����they �bread�ob�������hex�sub���cut��

The role of sub and ob is the same as the role of with� E�g�� sub is like the casus
nominativus in Latin�
By a mechanism to be explained in subsection ���� we will see that hex func�

tions as a link between the global discourse structure �which involves a discourse
referent labelled x� and the local sentential structure �which involves a discourse
referent that fuses with the dicourse referent associated to the argument han�
dler sub�� We submit that in this way our semantics for the 	rst time correctly
describes one major aspects of anaphors
 that they function as places where a
local and a global machinery link up� Standard DRT and DPL could not do
this since their specifation language uses the mechanism of Predicate Logic for
handling arguments� In Predicate Logic there is nothing like the role of bringing
an argument to its proper place� There an argument simply is in place by being
written in the proper place�

��� On the use of categories

One obstacle to reading the paper for the reader whose roots are in linguistics
probably is our use of Category Theory� We feel that the use of this machinery
was forced on us by the material� The categorical framework seems tailor�made
for the description of the �ow of 	les� To be more precise� we do not just
want descriptions� we want descriptions such that objects described that way
have certain desirable properties� the most important one being that our objects
interact as the elements of a monoid� Moreover� our monoids will be monoids
only modulo isomorphism� Again� Category Theory is the appropriate medium
to describe these isomorphisms in a systematic way� So there is no way to escape
Categories� Let�s stress� however� that Category Theory in our paper functions
just as a de	nitional format� We do not really use any deep or hard theory� We
have added a brief introduction to categories �section �� to ease the pain� We
have tried to keep the paper readable by suppressing certain� essentially trivial�
but lengthy computations�
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� Monoids and structure� simple stacking cells

Motto
 Don�t be afraid of �atness�

Introduction

One of the problems that one might expect for our set up� is the representation
of �hierarchical�constituent�component�recursive�bracket� structure
 since we
have set out to describe the whole interpretation process in terms of monoids�
there seems to be little room to account for the hierarchical structure that is so
abundantly present in most syntactic and semantic phenomena� After all� the
monoidal operation is associative� which means that the elements of a monoid
are insensitive to structure�
However� it turns out that the notion of a stacking cell comes to rescue here��

We will see that stacking cells form a monoid� as required� But at the same time
they allow us to encode the structural properties of objects� This means that
we can introduce structure in the monoidal set up by using stacking cells as
contexts�
As an example we will consider the following sentence


The quick brown fox that jumped over the lazy dog wanted the
rabbit that ran�

Before we can start to interpret this sentence� it will be necessary to make some
of the information about its syntactic structure explicit� Here we focus on the
constituent structure of the sentence� which we make explicit by adding brackets�
as follows


��the quick brown fox ��that� jumped �over the lazy dog��� wanted
�the rabbit ��that� ran���

This is not the representation of constituent structure as it will be produced by
the ultimately correct theory of syntax� But that is not the point here� The
point is that even the ultimately correct representation will encode information
about constituent structure in some way or other� And we will use stacking
cells in the processing of that ultimately correct representation� As we do not
wish to wait for that ultimately correct representation� we illustrate the use of
stacking cells using the naive representation� with brackets�

Now we 	nd ourselves confronted with a bracketed string in which di�erent
items convey di�erent kinds of information� We have isolated the structural in�
formation in the brackets� � and �� The other elements of the string convey other
kinds of information� that� for now� we will group under a common heading


�Stacking cells were introduced by Visser in �Vis	��� �Vis	��
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�truth conditional� content� In our �left�to�right� interpretation of this string
we keep score of the di�erent kinds of contribution of the string components at
the same time� The content�like contributions will be �added up� according to
their location in the contexts
 this corresponds to our view on the role of gram�
mar in categorematic steering� Therefore we work with objects which consist of
a context component� which serves to keep score of the structural information
that we meet� and a content component� in which we add up the content�like
information according to its place in the context� These context�content pairs
have to form a monoid�
It 	ts into our program �as explained above� to try and construct this monoid

of complex objects from simple�r� monoids
 the monoid of contexts and the
monoids of contents� Here we 	rst discuss the monoid of contexts� i�e� the
monoid which we will use to represent the structural� constituent�like informa�
tion� In section � we show how simple monoids can be combined into complex
ones� Then� in section �� we will discuss the content components in some detail�
so that we will have all the ingredients required for the interpretation of our
example�
We have used brackets to mark the boundaries of the constituents in the

sentence� Thus the brackets are the elements in the example that give the
information about the structure of the expression� The other elements give
other kinds of information altogether� Therefore we may 	rst concentrate on
the string


�������������������������������������������������������������

instead of the complete example above� This string is obtained from the example
by replacing everything but the brackets with �� some tabula rasa element that is
structurally neutral� This way we can concentrate on the structural information
in our example��

��� Pair representation of simple stacking cells

We now have to develop a suitable monoidal representation the kind of strings
that we saw above �cf� page ��� For each substring its representation has to
encode the impact of the substring on the structure in which it occurs� As a
	rst attempt we consider the following method of representation�
We imagine ourselves working on a stack of constituents in each stage of the

interpretation� The stack shows how deep the constituent that we are currently
working on is nested in the overall structure� For example� if our string starts
with ���� we will obtain a stack consisting of three constituents� It is clear that
a left bracket� �� indicates the beginning of a new constituent� Each left bracket
causes an increase in the depth of nesting of constituents by one
 it is a push

�Note that we write � here between each of the elements of the strings
 This is our o�cial
notation� but� as usual� we will allow ourselves to omit � if no confusion can arise
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action� So it seems that the contribution of each left bracket can be described
by the integer  �� to indicate that it adds one new constituent to the current
stack of constituents�
For the right bracket � the situation is dual
 the right bracket indicates a

decrease in the nesting depth by one
 it is a pop action� So it seems that the
contribution of the left bracket can be indicated by the integer ��� Also the stacks
themselves can be represented as integers
 we can map each stack to the number
of levels on the stack� So the monoid of integers addition seems a suitable
candidate for the representation of bracket strings
 stacks get represented by
the number of push levels that they contain and strings get represented as the
sum on the contributions of the brackets in the string
 ����� corresponds to
� � � ���� ����!�� �� to � ����!� etc� But this representation of bracket
strings will not work� Let�s compare the following two strings
 �� and ��� If we
apply the method of representation indicated above� we 	nd that both strings
correspond to �� Thus this method of representation suggests that both strings
are structurally neutral� It will be clear that this is not true
 although both
strings leave the amount of constituents intact� they do not have the same e�ect
on the structure at all� The string �� really does have a neutral contribution to
the overall structure
 if we add �� to some string s� then we will 	rst start a new
constituent with � and then 	nish this constituent with �� As a result we end
up in the same constituent where we were after s� But if we add �� to a string
s� things are di�erent� Now we will 	rst 	nish a constituent �of s� with � and
then start a new one with �� So �� will cause us to switch from one constituent
to the next�
Clearly such switches will be important for the interpretation of our example�

Therefore the representation of the structural contribution of bracket strings by
integers is too naive
 it is not only the amount of brackets that matters� but
also their order�
Fortunately it is possible to get away with an almost equally natural rep�

resentation
 we will not represent bracket strings by one integer� but by two
natural numbers�� One number will be used to indicate the number of con�
stituents that are closed o� by the string� the other number gives the number
of new� nested constituents that the string introduces� By keeping these two
e�ects separate� we will be able to distinguish the e�ect of �� and ��


� � can now be represented as h�� �i�

� � as h�� �i�

� �� as h�� �i and

� �� as h�� �i�

We can go on and interpret arbitrary strings built up from ��s� ��s and ��s as
such pairs hn�mi� To get a �monoidal� picture of this interpretation of strings

�There is a strong analogy with the construction of the integers as pairs of natural numbers�
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we have to supply an operation of adding up �or
 merging� the pairs� This is
achieved by the following de	nition
�

hn�� n�i � hm��m�i ! hn�  �m�
�� n���m�  �n�

�� m��i

Some examples


� ���� � �� � ��� since h�� �i � h�� �i ! h�� �i

� �� � ����� ������� since h�� �i � h�� �i ! h�� �i

� �� � ���� � ��� since h�� �i � h�� �i ! h�� �i

The examples show how the second string will 	rst pop all the constituents
that the 	rst string has introduced� Then� if the second string still has some
��brackets left� these are simply added to those of the 	rst string
 this is why
we have n� �m�

�� n�� in the de	nition� Dually� if any ��brackets are left of the
	rst string� then these are simply added to the second string
 m�  �n�

�� m���
This turns out to be the suitable view on the role of the brackets in our set
up
 we will represent each bracket string by two natural numbers which can
be added�merged as indicated above� The 	rst number represents the negative
e�ect of the string� the second number its positive contribution�
It is not hard to check that this gives us a monoid� We 	nd that the operation

�� as de	ned above� is associative and the tuple h�� �i is a unit element of the �
operation �and hence we can use it as the � that we needed in our example��

Proposition ��� h� � �� �� h�� �ii is a monoid�

We call such tuples hn�� n�i simple stacking cells �SSC�s� and we will use
them to encode the structural properties of expressions�	 This monoid is called
SSCpair� the simple stacking cells represented as pairs�

��� Stacking cells as partial functions

There is a slightly di�erent way of looking at SSC�s� which will turn out to
be quite convenient later on
 we can look at SSC�s as partial injections on the
natural numbers�

�Here �� stands for cut�o� substraction� x
�� y � x� y if y � x and x

�� y � � else

	The reader may wish to verify that the monoid of simple stacking cells is in fact the free

monoid over two generators � and � with equation ����
 We will prefer to work with the more
concrete representations in this paper


��



0

1

2

3

4

5

6

0

1

2

3

4

5

6

7

8

ω:

ω:

Figure �
 Simple stacking cell

De�nition ���

� A simple stacking cell represented as a partial injection �SSCinj� a is a
partial function a 
 � ��� � such that


dom�a� ! fna� na  �� � � �g for some na � �

a�na  k� ! a�na�  k for all k � �

� The monoid of simple stacking cells as partial injections� SSCinj � is de	ned
as SSCinj ! hSSCinj � �� idi� where � stands for composition of �partial�
functions and id is the identity function on ��

Note that such a partial function a is completely 	xed by the choice of na
and a�na� �which are equal to � and � resp� in the picture above�� In this way
we get a correspondence between the partial injections as de	ned here and the
pairs of natural numbers as introduced above�

Fact ��� The mapping � 
 SSCinj � � � �� de	ned by ��a� ! hna� a�na�i
induces an isomorphism of monoids � 
 SSCinj � SSCpair�

Now that this isomorphism has been established it is no longer necessary to
distinguish carefully between SSCinj and SSCpair � In what follows we simply
talk about SSC� �the� monoid of simple stacking cells�
One clear advantage of the functional representation of simple stacking cells

is the elegant de	nition of the monoidal operation
 it is simply composition
of partial functions� This is not only an advantage because it is an extremely
familiar operation� but also because it is immediately clear that it is associative�

We see� for example� that the 	rst cell maps � to �� the second cell maps � to ��
Therefore in the resulting cell � is mapped to �� We can also read o� that the
	rst number in the domain of the resulting cell is � and that � will be sent to �
�via ���

��
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Figure �� Merging simple stacking cells

��� Excursion� L�monoids

Above we have constructed several representations of simple stacking cells� In
the constructions involved we have used the natural numbers with the usual
notions of addition and cut�o� substraction as a starting point� But it turns
out that the constructions can already be carried out in a slightly more general
situation� they work for any L�monoid�

De�nition ��� An L�monoid is a structureM � hM� ���� idi such that hM� �� idi
is a monoid and the following additional requirements are met�

De�ne� x � y � for some u � u � y � x�

L	 x � z � y � z � x � y

L� x � y � id � y � id

L
 x � y � z � x � z � y

An L�monoid is a monoid with an additional operation �� Condition L

says that � is a left�implication� whence the L in L�monoid� In the literature
�
Pra�	��
MO���� the operation is also known as left residuation� It is closely
related to the notion of an adjoint in category theory �cf� 
Mac�	��� The analogy
with implication becomes clear as soon as we consider a Boolean �or Heyting�
algebra B � hB� ���i as a monoid� now the � is the Boolean implication���

If we regard the ��operation in the monoid as an operation for the addition
of information� then the operation � can also be seen as a sort of directed
substraction operation� if we take the monoid � � h���� �i� then the left�
implication is cut�o� substraction� So in general one can try to think of �m� n�
as m minus n�

One important example of an L�monoid is h���� �� � �i� And the next
example is not far away� we obtain an L�monoid M� � hM� ���� idi for any
limit ordinal � if we set���

� M � f�j � � �g

��By the symmetry of � the Boolean implication also is a right implication�
��Recall that addition of ordinals is not in general commutative�
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� � � � � � � �

� id � �

We then �nd that � �M � i� � �ord �� This results in the following de�nition
for the left implication� which we will write as �� � a generalisation of cut�o�
substraction for arbitrary ordinals�

� � �� 	 � �

� ��� 	� �� 	 � �� �� 	� � 	 if 	 �ord �

� ��� 	� �� 	 � �� �� 	� if � �ord 	

� 
 �� 	 � supordf� �� 	 j � �ord 
g for limit ordinals 


We can see our pair representation of simple stacking cells introduced above as
a special case of the construction of stacking cells over an arbitrary L�monoid�

De�nition ��� 
SSCM� For any L�monoid M we de�ne the simple stacking
cells over M� SSCM� as follows�

SSCM � hM 	M� �� hid� idii

where hx�� xi � hy�� yi � h�y� � x� � x�� �x� y�� � yi

The de�nition of � can be understood by direct analogy with the example of
the bracket strings �substitute � for � and �� for ��� but we can also try to
get a more general feeling for what is going on in terms of substraction and
addition of information� Recall our remark above that � can be seen as addition
of information and� as substraction of information� The pairs hx�� xi tell us to
�rst substract information x� from the context and then add information x to it�
In hx�� xi � hy�� yi we perform such an operation twice� �rst for hx�� xi and then
for hy�� yi� This has the overall e�ect that we will substract at least x� from the
context� Then we will provisionally add information x� but immediately after
that we will substract y�� Finally we add information y�

In case the M we start out with is a linear order �as in the examples above��
we know that either �x� y�� � id or �y� � x� � id� Then we can compute the
overall e�ect of these actions by distinguishing two situations�

� either �y� � x� � id� Now x provides all the information that y� wants
to substract� In that case some information will remain after substracting
y� from x and the remaining information �x � y�� can be added to the
information y� We end up with hx�� �x� y�� � yi�

� otherwise �x � y�� � id� Now x does not provide everything that y� asks
for� In that case there is an additional request for �y� � x� from the
context� Then we get the overall e�ect of h�y� � x� � x� yi�

	




If M is not a linear order� a third case remains in which neither �x � y�� � id

nor �y� � x� � id� The de�nition above simply summarises all situations�
It is left to the industrious reader to check that SSCM is in fact a monoid�

Thus we obtain a pairing construction which makes monoids out of L�monoids�
It is easy to check that the simple stacking cells are indeed what we get if we
take M �M� as a starting point�

So we see that the pairing construction generalises to arbitrary L�monoids�
Also the representation of stacking cells as partial functions can be generalised to
arbitrary L�monoids� Each SSC hx� yi in SSCM gives rise to a partial mapping
�x�y � M 
M as follows�

dom��x�y� � fzj z � xg � fzj �u � u � x � zg and

�x�y�u � x� � u � y

�Here it has to be checked that the u such that u�x � z is unique� which follows
immediately from L	��

We leave it to the reader to verify that�

Proposition ��� The mapping � � SSCM 
 f�x�yj x� y �Mg de�ned by�

��hx� yi� � �x�y

induces an isomorphism between SSCM and hf�x�yj x� y �Mg� 
� �id�idi

��� Lazy vs tiresome bracketing

All this may seem an example of generalising for the sake of generality� but it
turns out that there are some nice ideas about the management of �linguistic�
structure that can be captured in this way� As an example we discuss the idea of
lazy bracketing which will amount to the use of SSC�� instead of SSC�� Let�s
reconsider our example�

The quick brown fox that jumped over the lazy dog wanted the
rabbit that ran�

Above we have explained that we have to add some information about the man�
agement of constituents if we want to interpret this sentence and we have used
brackets to make the constituent information explicit� The brackets correspond
to very explicit operations on constituent structures� each bracket corresponds
to pushing or popping exactly one constituent� Thus the use of brackets as
indicated above gives the following tiresome picture of the left�to�right interpre�
tation of a sentence� �rst we decide �or� guess� at run�time exactly how many
levels we have to push� �In the example this turns out to be three�� We push

	�



these levels one by one� Then we go on to interpret the sentence� Finally we
pop the remaining levels one by one�

But we can also give a more easy�going picture of how things work��� At
the beginning of each sentence� indicated by the use of a capital letter� we know
that we are at a new starting point� At such a point we do not have to count
the exact number of constituents required� we simply introduce �su�ciently
many� constituents� Then we go on to interpret the sentence� At the end of
the sentence� indicated by the use of a full stop� we know that we have reached
an end point� So there is no need to be very careful in popping the remaining
constituents one by one� we can simply throw away all remaining constituents
in one full sweep�

To represent this picture of the lazy management of constituents we do not
bracket the example as before� but instead use the following bracketing�


the quick brown fox ��that� jumped �over the lazy dog��� wanted
�the rabbit ��that� ran�

Here 
 indicates the introduction of �su�ciently many� constituents and �
stands for throwing away whatever remains� We call 
 and � lazy brackets� In
the monoid containing lazy brackets we would expect equalities such as 
��
�

���
� 
���� 
 etc� to hold� indicating that 
 does indeed introduce su�ciently
many constituents� Dually we would like to have ����� ������ ������ etc� Of
course we also want 
�����	�

It turns out that we can adapt our de�nitions to model these ideas about
lazy constituent management quite easily� we simply set up the whole machinery
starting with the L�monoid based on �� instead of �� Then it turns out that
the following way of looking at the brackets works���

� �� h�� 	i

� �� h	� �i

� 
� h�� �i

� � � h�� �i

Thus the general construction of stacking cells from L�monoids allows us to
look at constituent management in non�standard ways� Lazy brackets are just
a �rst example of an interesting kind of variation on the operations that we
may want to consider for linguistic applications� starting from other suitable
L�monoids may very well generate other interesting views on the management of
�linguistic� structure� But at this point there is no time to speculate more in this
direction� In what follows we will concentrate on the �rst kind of stacking cells�

��We were led to this view on things by remarks of Henk Zeevat on �discourse popping��
��In fact this gives us the free monoid over four generators ����	 and 
 satisfying the additional

equations� 
��
��
� �	��	�	 and 
	����
�
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stacking cells on �� Lazy brackets will not pop up again until our treatment of
�himself� on page ���

��� Levels of stacking cells

The stacking cells will be our way of coding up structural information in a
monoidal setting� Our overall goal is to use this structural information in the
interpretation of �structured� expressions� These expressions do not only con�
tain information about their structure� but typically also contain other sorts of
information� which we have called �truth� content above� It is important that
we are able to locate this content in the correct way in the �structural� content�
the content information has to be stored in the constituents of the stacking cell�

As a �rst step� we show how we can associate with each simple stacking cell
a set of levels �or� constituents� in such a way that we keep control over their
location in the simple stacking cell� Then we can store the content items in
the stacking cell by linking them to the appropriate level of the simple stacking
cell� We will only be able to complete this task properly after section �� when
we will have seen the Grothendieck construction� but already at this point we
can already go some way towards explaining the idea and showing what the
problems are�

First we present a mapping L that associates to each SSC its set of levels�

De�nition ��� For each SSC a we de�ne the set L�a�� the levels of a� as follows�

L�a� � a � fh�� nij n � nag � fhn� �ij n � a�na�g � fh�� �ig

�Here � is some �xed new entity��

Among the levels of a we distinguish the following types�

� h�� �i� h�� 	i� h�� �i� 
 
 
 h�� na � 	i� the pop levels �in chronological order�

� ha�na�� 	� �i� ha�na�� �� �i� 
 
 
 � h�� �i� the push levels �in chronological
order�

� a� the stem levels

� h�� �i� a garbage level

We will store the content information that we �nd in the constituents on these
levels� The pop levels correspond to the constituents that our stacking cell will
close o�� The push levels correspond to the constituents that the stacking cell
introduces� Note that the location of a level hn�mi is �xed by n and m� For
example in the representation of the string�

lazy dog ��� wanted �the rabbit ��that
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lazy dog

wanted

the rabbit

that

Figure 
� An inhabited stacking cell

we will �nd the SSC h
� 
i� We will attach the information �lazy dog� to the
level h�� �i� the �rst pop level� The information �the rabbit� will end up at level
h�� �i� a push level� and the information �that� will go to h�� �i� another push
level���

The stem levels are levels that are structurally neutral� In this example
the information �wanted� will be stored on such a level� the example tells us
�wanted�� and we know that this information lives in the constituent in which
all the pop and push levels are nested� But the string does not give this level
any structural status� it may become a push or pop level depending on the
context in which the whole string occurs� Therefore we store the information
that �wanted� conveys on a structurally neutral stem level� h
� 
i�

In our set up we have provided a rather large number of stem levels� The
example above does not make clear why we would ever need more than one
such level� but we will see that there are cases where several stem levels are
required� Although in practice we will always only use �nitely many stem lev�
els� we have chosen to add ��many such levels� mainly for technical convenience�

Sofar all levels correspond directly to one of the constituents of an expres�
sion� In addition we will allow ourselves to have some extra levels� where we can
store information that is not located in any of the constituents� but still belongs
to the stacking cell� We will call these extra levels� garbage levels� Here we have
just one such level� h�� �i� but later �nite sets of garbage levels will occur� At
this point it is hard to be precise about the exact use of garbage levels� The real
reason for introducing them is that it will considerably smoothen the de�nitions
later on� when we want to merge two simple stacking cells a and b in which we
have stored information� some of the push levels of a may be popped by b� This
means that these levels will not show up in the merger a � b� But if we are
not careful this will also mean that all the information that we stored on those
levels is lost� It will be easy to prevent such disasters by �temporarily� storing

��In fact �that� will be interpreted as a link between levels �cf� last section�� so strictly
speaking we cannot say that �that� is located on one particular level�
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the information of these levels in a garbage level�

In fact the use of garbage levels is just one example of a general issue in the
de�nition of the merger of stacking cells once they are enriched with additional
information� As we pointed out above� we want to add information content to
the context that a simple stacking cell provides by attaching this information
content to the levels of a simple stacking cell� So� as a �rst step� we will have to
be able to work with tuples ha�Xai where L�a� gives us the constituent levels
of a and Xa stands for the garbage levels of a� We want to de�ne the monoidal
operation � in this situation� This means that� apart from producing the right
SSC a � b� we also have to make sure that the information that we have stored
on some level of a or b ends up on the right level of a � b� In slogan�

we have to keep track of how levels travel

To do this correctly we will borrow some techniques from category theory�
which will be presented in section 
 and section ��

� Categories for monoidal updating

For the development of our tool�kit for building meanings� we need categories�
How nice it would have been if monoids were su�cient� The reason they are
not is as follows� Consider simple stacking cells or SSC�s� SSC�s interact with
reassuring monoidal simplicity� But how can we use SSC�s to describe more
complicated objects� We need some way to talk about the individual �levels�
of an SSC and we need some way to describe what happens to the levels when

two SSC�s interact� In such interactions levels merge with other levels� are
sent into the garbage limbo� etcetera� To describe the �ow of the levels� the
category�theoretical machinery is tailor�made�

��� Basics

This section introduces the basic concepts of category theory� The reader is
referred to 
Mac�	�� 
MA���� 
BW��� for more information�

A category A is a structure hOb�Ar � id � dom � cod � 
i� where�

� Ob is a non�empty class� the class of objects

� Ar is a class� the class of arrows or homomorphisms

� id is a function from Ob to Ar� We will write ida for id �a�

� dom and cod are functions from Ar to Ob

� dom�ida� � cod�ida� � a
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� 
 is a partial function from Ar	Ar to Ar

� f 
 g is de�ned i� cod �f� � dom�g�

� If f 
 g is de�ned� then dom�f 
 g� � dom�f� and cod�f 
 g� � cod�g�

� iddom�f� 
 f � f 
 idcod�f� � f

� If �f 
 g� 
 h is de�ned� then �f 
 g� 
 h � f 
 �g 
 h�

In what follows� identity between partial terms means� either both sides are
de�ned and equal� or both are unde�ned� Thus we have� quite generally� �f 

g� 
 h � f 
 �g 
 h�� We go against mainstream tradition in category theory�
by reading 
� in the order of the depicted arrows� Thus our f 
 g �means� �rst
f� then g� The reason for this deviation is that our morphisms often represent
�updates�� For representing updates� it is most natural to read composition in
the order of application� �See below for more conventions in a similar spirit��
We will call the set of morphisms between a and b� Hom�a� b�� or� if we want to
emphasize the dependence on the category� HomA�a� b�� A morphism f � a
 b
is an isomorphism if there is a g � b
 a� such that f 
 g � ida and g 
 f � id b�

A Functor � between A and B is a morphism of categories between A

and B� I�e�� � a function mapping ObA to ObB� and ArA to ArB� which
preserves all categorical structure� So� for example� ��idA�a� � idB���a� and
��f 
A g� � ��f� 
B ��g��

Example 	�
 An important example of a category will be the category Set�
where we take�

� Ob is the class of all sets�	

� Ar is the class of all functions from sets to sets

� idX is the identity function on X

� dom�f� is the domain of f and cod �f� is the range of f �

� 
 is function�composition� read in order of application

In this category the elements of the sets are treated as featureless objects� Their
incidental features are divided out by the isomorphisms present in the category
and isomorphism in the category is the intended notion of object identity� So
just the �sizes� of the sets are counted relevant�

��The distinction between large categories� in which the objects or the arrows do not form
a set and small ones in which objects and arrows do form sets� plays no role in this pa�
per� Categories like Set could� in our applications� always be replaced by appropriate small
categories�
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Example 	�� Another important example of a category is given by a partial
�weak� preorder or ppo� hD��i� Here the Ob � D and the arrows are the
�inclusions�� inca�b� witnessing that a � b� A prominent example of a category
based on a ppo is the category Setsub � where the ppo is formed by sets with the
subsetordering� Note that Setsub is a subcategory of Set� The notion of identity
in Setsub � however� is completely di�erent� Isomorphism in this category is
ordinary identity of sets� So� every incidental feature of an element counts�
Another example is the category Nat of the natural numbers f�� 	� �� � � �g� with
their natural ordering�

This point is as good as any to introduce an important convention� We want
to think about updating and interpretation of language fragments� Composi�
tion will re ect concatenation at the level of surface syntax� Thus� as already
mentioned above� we read composition in order of application� For the same
reason we should use post�x notation to describe function application� How�
ever� as so often� it turns out that jede Konsequenz zum Teufel f!uhrt� The
post�x notations indiscriminately applied look peculiar� certainly in case of bi�
nary functions� Moreover� not all functions that appear need to be considered
as update functions� So a hybrid notation seems best� We will write f�x�� when
using pre�x notation� and x
f �� when using post�x notation� So for example if
� is a functor from A to Set� if f � a
 b is a morphism in A� and if x � ��a��
then� ��f��x� � x
��f�� � x
f 
���� In a suitable context� functions from sets
to sets could represent updates� whereas the functor � does not� So� here we
would prefer the notation� x
��f��� Another convention that we will use is�
hx� hy� zii � hx� y� zi�

The objects of our categories are supposed to be informational items� The
arrows ful�ll two important roles� The �rst one is that they represent ways in
which one piece of information is part of another� The second one is that the
isomorphisms present �x what objects and arrows we will count as the same��


We also need an operation merge or � that enables us to glue some pieces of
information together� To describe the operation or �� we again need some extra
morphisms� To motivate our choices� we �rst look at an example�

Example 	�	 We consider what is involved in adding the the monoidal oper�
ation disjoint union to Set� In one sense this example is the ur�example of a
monoidal operation on a category� In another sense it is somewhat misleading�
disjoint union is a bifunctor� Moreover it is the direct sum or co�product of
the category we are considering� These features will not be incorporated in the
general case� We start by �xing a representation of disjoint union�

X � Y � �f�g 	X���f	g 	 Y �


��It could be argued that to assign to the morphisms this double task� is in some sense
impure� The point is strengthened by the fact that our monoidal operation is a bifunctor
w�r�t� the categories restricted to isomorphisms� but not w�r�t� the full categories� The reason
that we have the two roles in one and the same category� is pragmatic� things seem to work
out well this way�
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The elements of X will have descendants in X � Y � This descendancy relation
can be described by a morphism� say in�� For x � X � we take� x
in��X�Y �� ��
h�� xi� Similarly y
in��X�Y �� �� h	� yi� The inclusion morphisms keep track
of how levels travel when objects are fused� Disjoint union does not give us a
monoid in the strict sense� We have� for example�

�fxg � fyg�� fzg � fh�� �� xi� h�� 	� yi� h	� zig

fxg � �fyg � fzg� � fh�� xi� h	� �� yi� h	� 	� zig

However� we wish to view the coding machinery we introduced to keep elements
out of each other�s way in taking disjoint unions as �inessential�� The elements
of �X � Y � � Z are the same as those of X � �Y � Z� modulo some coding�
To make this idea explicit we introduce a standard isomorphism ��X�Y� Z�
between �X � Y � � Z and X � �Y � Z�� In our example we would have�
h�� �� xi
��fxg� fyg� fzg�� � h�� xi� It is not su�cient that there is some isomor�
phism� we want the correct isomorphism� For one thing� � and the in�functions
will have to cooperate in appropriate ways� For example� we expect the following
diagram to commute�

fxg
in�

� fxg � fyg

�

in�

�

in�

fxg � �fyg � fzg� �
�

�fxg � fyg�� fzg

An easy check shows that the diagram commutes� Our monoid has a unit id�
This is of course the empty set� We see that in� is an isomorphism between X
and X � � and that in� is an isomorphism between Y and � � Y � The richer
structure built on Set� that we have described is an m�category according to
the de�nition given below� We will call the enriched Set again� Set�

After this motivating example we turn to the main de�nition� Our framework is
quite similar to the usual notion of monoidal category� the main di�erences be�
ing the fact that the monoidal operation is not a functor and the presence of the
in�functions� A structure A � hOb�Ar � id � dom � cod � 
� �� id� in�� in�� �i� is an m�

category if �i� hOb�Ar � id � dom � cod � 
i is a category and �ii� �hOb� �� id� in�� in�� �i
describes a monoid relative to the category�� Our phrase �ii�� means that we
only have a monoid modulo the isomorphisms of our category� We spell �ii� out
in some detail�

� � � Ob 	Ob 
 Ob

� id � Ob

�	



� ini � Ob 	 Ob 
 Ar � where in i�a�� a�� � ai 
 a� � a�� The ini tell us in
which way the ai are embedded in a� � a� by the operation ��

� � � Ob 	Ob 	Ob 
 Ar � where ��a� b� c� � �a � b� � c
 a � �b � c�� Here�

	� in��a� b� 
 in��a � b� c� 
 ��a� b� c� � in��a� b � c�

�� in��a� b� 
 in��a � b� c� 
 ��a� b� c� � in��a� b� 
 in��a� b � c�


� in��a � b� c� 
 ��a� b� c� � in��b� c� 
 in��a� b � c�

� in��a� id� is an isomorphism between a and a � id� Similarly� in��id� a� is
an isomorphism between a and id � a� Finally in��id� id� � in��id� id��

��

How nice it would have been� if these were all the conditions we need to impose�
However� to guarantee that everything works smoothly we need some conditions
of a more technical nature� For the record� we give them here�

� We need everything to behave well w�r�t� isomorphisms� If� for i � 	� �� bi
is isomorphic to b�i� then b��b� is isomorphic to b

�
��b

�
�� The full formulation

is as follows� Suppose �i � bi 
 b�i is an isomorphism �i � 	� ��� Then
there is a unique isomorphism �� � �� � b� � b� 
 b�� � b

�
� such that�

in i�b�� b�� 
 ��� � ��� � �i 
 in i�b
�
�� b

�
��


� The conditions on � are not su�cient to ensure that the correct isomor�
phisms are generated after repeated applications of associativity� To guar�
antee correct behaviour ��coherence��� we have to add an extra condition�
We ask that the ini are jointly surjective� i�e�� if� for i � 	� �� ini
f � ini
g�
then f � g���

A functor � between m�categories is an m�functor if it preserves the addi�
tional structure� E�g� ��in��a� b�� � in����a����b���

Example 	�� 	� We add the monoidal operation plus to Nat� The further
details are �xed by this choice�

�� Consider an upper semilattice U� i�e�� a structure hD��� ���i� Here D
is a non�empty set and � is a partial order� which is closed under tak�
ing suprema of �nite sets of elements� � is the operation of taking the
supremum of two elements� and � is the bottom� U can be viewed as an
m�category� by viewing hD��i as a category as in example 
��� We take �
as the monoidal operation and � as id� An important special case of this
example is Setsub � with union and empty set�

Par abus de langage we will call the resulting m�categories again Nat� U and
Setsub �

��Thus in��a� id� and in��id� a� have the role of ���
a

� respectively �
��
a

of 
Mac�
	� p
���
�	Our conditions imply that an m�category is a monoidal category� when we restrict it to

isomorphisms and� thus� that it is coherent� See 
Mac�
	� pp
���
��� for further explanation�
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We are now ready to introduce the last ingredient� Our semantics is intended
to be �le change semantics in the sense of Heim� The objects of our categories
are dynamic whatshallwecallthems� Using the category we can describe their
interactions� We will need some way to talk about the �les and the information
stored there� The solution is to extend our categories with a functor R to
Set� For each object a� R�a� wil give the set of �les �contained in� a� Thus
in our example above we could take R to be the identity functor in �	�� the
standard inclusion of Setsub in Set in the special case of �
�� and we can take
R�n� �� fm�� j m � ng in ���� We do not require that R is an m�functor�
In fact� since we want to view the elements of the category under consideration
as coordinating possible uni�cations of referents� it is� in general� essential that
R is not an m�functor� The choice of Set as category of sets of �les� re ects
that we view a �le as a featureless object� but for its connection via R with the
dynamic machinery�

� The Grothendieck Construction

The Grothendieck Construction can be viewed as a de�nitional format� It is a
way of constructing objects� which carries with it the guarantee� that objects
so constructed have such�and�such properties� In a sense one could say that
the Construction constitutes a functional role de�nition of what it is to be
a context�s content and what it is to be a content�s context� The most salient
ingredient here is that contexts transform independently of the content� but that
the transformation of contents is guided by the context��
 A good discussion of
the Grothendieck Construction can be found in 
BW��� and in 
Jac�	��

Consider an m�category A and a functor � from A to the category m�Cat of
m�categories� The Grothendieck construction allows us to make a new category
of pairs� ha� ti� where t is an object of ��a�� The intuition is this� A is a category
of contexts� ��a� is the category of contents above a� A pair ha� ti will be a
content at a context� A morphism f from a to b� will be viewed as an embedding

of contexts� When we take the �a�object�� t� under our arm� when travelling
via f from a to b� t will be �transformed� into a b�object t� �� ���f���t�� So
���f���t� is the canonical image of t via f �

Before giving the de�nition let us give a kind of ur�example� that well conveys
the  avour of what is going on�

Example ��
 Consider a model of predicate logic with domain D� Usually the
meanings of formulas are de�ned as sets of assignments from the set of variables
VAR to D� However we could also wish to work with local assignments acting
only on the �free� variables that are �present�� Meanings now will be pairs of a

�
The Grothendieck Construction is� thus� reminiscent of the �central dogma of molecular
genetics�� viz�� that information can �ow from nucleic acids to proteins� but cannot �ow from
protein to nucleic acid�
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�nite set of variables V and a set� F � of assignments from V to D� Thus� e�g��
the meaning of P �v�� � � � � vn� would be hV� ff�DV j hf�v��� � � � � f�vn�i � I�P �gi
where V � fv�� � � � � vng and I is the interpretation function associated with the
model� The �rst component� V � of such a pair is viewed as the context� the
second component� F � as the content� The m�category of contexts here has as
objects �nite sets� V � of variables� and as arrows the inclusion functions incV�V � �
signalling that V � V �� The monoidal operation is union� Above each context
V we have a category� ��V � of contents� The contents above V are the sets
of assignments from V to D� The arrows of this category are the opposites
of the inclusion functions� say� cniF�F � � signalling that F � F �� The monoidal
operation is intersection�

Suppose V � V � and F is a set of assignments on V � How is F going to
appear if we transport it to V �� Well� we want F to decribe the same constraint
at the new context� In other words� we want F �s �successor� to be the least
informative object in the new context� which is constrained in the same way
with respect to the old variables� Thus we take�

F 
��incV�V ��� �� hV �� ff�DV �

j f�V � � Fgi

How are we going to de�ne the meaning of A�B� say kA�Bk� Suppose kAk
is hV� F i and kBk is hW�Gi� If the contexts V and W were the same this would
be simple� kA�Bk � hV� F�Gi� If V andW are unequal� however� F and G live
in di�erent worlds and cannot be intersected in a sensible way� What we do is
take them under the arm and take them to the nearest world where both can
breathe� the world above context V �W � In this world we can intersect� So our
new conjunction will be as follows�

kAk�kBk �� hV �W�F 
��incV�V�W ��G
��incW�V�W ��i

De�nition ��� Let an m�category A and an m�functor � � A 
 m�Cat be
given� Then we de�ne a new m�category B ��

P
a�A��a� as follows�

� The objects of B are the pairs ha� ti where t is an object of ��a�

� The morphisms between ha� ti and hb� si are the pairs hf� ui such that
f � ArA and f � a
 b and u � Ar��b� and u � t
��f��
 s

� Composition of arrows is de�ned as follows� if hf� ui � ha� ti 
 hb� si and
hg� vi � hb� si 
 hc� ri� then hf� ui 
 hg� vi � ha� ti 
 hc� ri is the pair
hf 
 g� u
��g�� 
 vi�

� idB � hidA� id��idA�i
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Figure �� The Grothendieck construction

We introduce the new monoidal operator and the new in�functions� We want
to de�ne ha� ti � hb� si� On the �rst components� we take the obvious operations�
sending a and b to a � b� In going from a via in��a� b�� to a � b� the object
t is transformed to t� �� t
��in��a� b���� Similarly s is transformed to s� ��
s
��in��a� b���� Finally "on the second component" we take t� � s�� Thus�

� ha� ti � hb� si� � ha � b� t� � s�i

� ini�ha� ti� hb� si� � hin i�a� b�� ini�t�� s��i

The new � is de�ned in a similar way�

It requires quite a bit of tedious work to check in detail that the Grothendieck
construction really preserves m�categories�

Example ��	 Consider any two m�categories A and B� We confuse B with
the following functor from A to m�Cat� B�a� �� B and B�f� �� IDB� where
IDB is the identity functor on B� Then

P
a�AB�a� is �isomorphic to� A	B�

A somewhat larger example is worked out in Appendix A� An important point
is the fact that the m�category A reoccurs as a sub�m�category of

P
a�A��a��

Consider the following mapping #�

� #�a� �� ha� id��a�i

� #�f� �� hf� id id��b�i

��



1in 2in

1in 2in

m n

m n

m’ n’

1 2in’ in’

Θ Θ

Θ Θ

Θ

.

Figure �� m�structure under the Grothendieck construction

It is not di�cult to see that # is an injective m�functor� Thus we are licenced
to identify objects and morphisms of A� with their images under #�

We give three particularly useful specializations of the Grothendieck con�
struction�

��� Adding contents to contexts

Let an m�category A� a functor R from A to Set and a non�empty domain
D be given� Remember that R need not be an m�functor� We generalize the
construction of the meanings of example ��	� De�ne the functor Ass as follows�

� Ass�a� is the following m�category�


 The objects are sets of functions from R�a� to D�


 The arrows are given by the partial ordering ��


 The monoidal operation is intersection of sets�


 The rest of our category is �xed by the above�

� Let f � a
 b be an A�morphism� We de�ne the functor Ass�f� as follows�


 G
Ass�f�� �� fh�DR�b� j �g�G�r�R�a� h�r
R�f��� � g�r�g�


 The application of R�f� on the morphisms is �xed by the preceding
item�

It is easy to verify that Ass is a functor� We put�

��



� Cont�A�R� D� ��
P

a�A Ass�a��

We de�ne a new R on the new category by� R�hu� vi� �� R�u���� It is not
di�cult to see that our example ��	 can be obtained by taking A the category
of �nite sets of variables� with the inclusion functions as morphisms and union
as monoidal operator� The functor R of this m�category is the standard in�
clusion in Set� Note that via the standard embedding of the contexts into the
context$content pairs we can identify a �nite set of variables V with hV�DV i�

One could think of all kinds of variants of our construction� E�g�� instead of
working with sets of assignments� we could work with relational databases over
the given set of referents�

��� Synchronic identi	cation

It will happen often that we want to say of two inhabitants of di�erent parts
of the �linguistic� structure that they are really the same� A familiar example
is formed by re�entrancies in feature structures� where we want to express that
two distinct expressions share some feature� We have not included any feature
information in our linguistic examples� but already in our naive example a sim�
ilar phenomenon pops up� in the interpretation of the relative �that�� We want
to say that �that� shares its denotation with an expression that lives in some
other constituent� Consider�

wanted �the rabbit ��that� ran���

Here �that� points to the same object as �the rabbit�� We keep score of informa�
tion concerning such identities by working with an equivalence relation on all
the objects that occur somewhere in the relevant stacking cell�

So we will have� in the semantics� as one of the informational items an
equivalence relation on a set of objects� The Grothendieck construction can be
used to describe the dividing out of equivalence relations� Let R be any binary
relation on a set X � We write R� for the transitive� re exive� symmetric closure
of R �in X�� Thus R� is the least� or �nest� equivalence relation containing R�
Let A be an m�category and let R be a functor from A to Set� We describe the
functor E�

� E�a� is the following category�


 The objects are the equivalence relations on R�a��


 The morphisms are given by the subset ordering on equivalence re�
lations considered as sets of pairs� So� we have arrows from �ner to
coarser equivalence relations�


 E �E� �� �E�E����

��In a more de�nitive treatment we should expect to derive the new R systematically� In
this paper we will content ourselves by introducing them ad hoc�
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 The other data on the category are �xed by the preceding items�

� Let f � a
 b be an A�morphism� We put� E
E�f�� �� �E
R�f����� where
E
R�f�� �� fhr
R�f��� r�
R�f��i j hr� r�i � Eg

We may check that E is� indeed� an m�functor� Take� Eq�A�R� ��
P

a�A E�a��
We may chose the new R as follows�

� R�ha�Ei� �� R�a��E �

� Let hf� f �i�ha�Ei
ha�� E�i� then� �r�E�
R�hf� f �i�� �� �r
R�f����E� �

It is easy to see that this de�nition is correct�

Example ��� Let A and B be m�categories and let RA and RB be the corre�
sponding functors� The Cartesian product of A and B is de�ned in the obvious
way� E�g�� ha� bi�ha�� b�i � ha�a�� b�b�i� Take� RA�B�ha� bi� �� RA�a��RB�b��
Here � stands for disjoint union� The RA�B�hf� gi� are de�ned in the obvi�
ous way� Now the Cartesian product can be viewed as two forms of dynamic
machinery A and B running in parallel� without any connection� Now we may
de�ne AkB �� Eq�A 	B�RA�B�� The new R is de�ned in the obvious way�
The result of our construction enables two di�erent machineries to contribute
to the identi�cation of the same �les� We will use this construction to link the
global anaphoric way of identifying referents and the local grammatical way�

��� Storing dynamic objects on levels

We turn to our �nal subconstruction� The idea here is to store the elements
of an m�category in the �les of another m�category� Let A and B be two m�
categories and let R and S be the corresponding functors� Suppose that for all
A�morphisms f � R�f� is injective� We specify the functor Q� Let a � ObA�

� Q�a� is the following category�


 The objects are functions from R�a� to the objects of B� We will use
�� � � 
 
 
 for the objects�


 A morphism � � � 
 � is a function from R�a� to the morphisms of
B� such that� ��r� � ��r� 
 ��r��


 � � ��r� �� ��r� � ��r��


 The further de�nitions are similar�

� Suppose f � a
 a�� We de�ne Q�f� � Q�a�
 Q�a���


 ��
Q�f����r� ��

�
��r
�R�f������ if r is in the range of R�f�
idB otherwise
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� ���Q�f����r� ��

�
��r��R�f������ if r is in the range of R�f�
id idB otherwise

Note that in these de�nitions the injectivity of R is essential�

We de�ne Store�A�R�B�S�	 or	 brie
y	 B�A	 as
P

a�AQ�a�� In the last nota�
tion we take R and S to be given with the m�categories��� The construction
gives us pairs ha� �i	 where � stores an object of B on each referent in R�a��
We de�ne the new functor	 say T	 to Set	 as follows�

� T�ha� �i� �� fhr� si j r�R�a� and s�S���r��g

� Suppose hf� �i � ha� �i � ha�� ��i� Let�s put r� �� r�R�f��� Then we may
de�ne� hr� si�T�hf� �i�� �� hr�� s�S���r����i

Thus T�ha� �i� gives the disjoint union of the S���r�� for r � R�a�� A variant of
this construction is the �nitized version	 Store�n �A�R�B�S�	 where we restrict
the � to functions that are almost everywhere	 i�e�	 for all but �nitely many
arguments	 equal to idB and the � to functions that are almost everywhere
equal to id idB �

Example ��� We give a useful application of our construction� The referents or
�les in our applications sometimes only have an 
internal� or 
virtual� function�
They function as indicators of places in a structure or whatever	 but they are
not used for further storage� It is often pleasant and even necessary to make
such �les invisible in the �nal stage� The following construction	 Pres	 does just
this� We will use the construction in the next section�

Consider the m�category True� This is the m�category based on the upper
semilattice h�f�g����� �i	 where � is an arbitrary object� RTrue is the standard
inclusion of our m�category in Set� Consider an m�category A	 with associated
functor R� De�ne� Pres�A� �� True�A� The objects of this m�category are
pairs ha� �i� Here � is a function from R�a� to f�� f�gg� Thus � functions as a
characteristic function on R�a�	 representing a set X� � R�a�� Here X� is the
set of elements of R�a� that are 
present�� We have� T�ha� �i� � fhx��i jx �
X�g� We will also write A� for Pres�A�� If we want the �nitized version of our
construction we add the subscript �n in the obvious way�

Example ��� Let True be as in example ���� Consider A�True� The objects
are of the form h�� �i or hf�g� �i� Since	 in the second case	 dom��� � f�g	 we
may identify �	 with ����� Hence	 the objects can be viewed as pairs h�� ai�
Thus	 the result of our construction is adding a new unit to A�

Example ��� Let A be a �nite set of items� We de�ne multisets of the items in
A	 as follows� We associate an m�category A to A� A is the category consisting
of A as its single object	 with as unique morphism the identity witnessing the

��Note that the operation is not exponentiation� even if there are some similarities�
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standard inclusion of A in itself� Our monoidal operation we cannot but choose

union�� The functor R is the obvious inclusion of A in Set� We take as
category of multisets of items from A� Store�A�Setfin�� The objects of our
new category are in essence functions f from A to �nite sets� �We may omit the
context	 since it is �xed�� Moreover	 e�g�	 f � g�a� is the disjoint union of f�a�
and g�a�� The new functor	 say T	 sends f to fha� xi j a � A� x � f�a�g�

In table � we repeat the most important constructions introduced in this
section�

Cont�A�R� D� This operation was introduced in subsection ���� It
puts sets of assignments from R�a� to D above each
context a�

Eq�A�R� This operation was introduced in subsection ���� It
adds equivalence relations on R�a� above each con�
text a� The new referents assigned to a are equiva�
lence classes of the old ones�

AkB This operation was introduced in subsection ���	 ex�
ample ���� The new objects are pairs ha� bi	 where a	
b are from A	 respectivelyB	 together with an equiv�
alence relation E on the disjoint union of R�a� and
R�b�� The new referents are the equivalence classes
of E�

Store�A�R�B�S� This operation was introduced in subsection ���� It
stores an element of B above each r�R�a��

Store�A�B� The same as Store�A�R�B�S�	 where we assume R
and S to be given with A and B�

B�A The same as Store�A�B��
Pres�A� This operation was introduced in subsection ���	 ex�

ample ���� It stores f�g	 for present	 or �	 for absent	
on each r�R�a��

Table �� Special cases of the Grothendieck construction

� Category of stacking cells

In this section we look at stacking cells once again� But this time we look at
them in a �m��categorical setting	 adding the appropriate notions of morphism
and embedding�

Recall that it is necessary�handy to enrich simple stacking cells with garbage
levels� Adding the garbage levels is one of the things we have to do in order

��



to keep track of how levels travel� So	 instead of working with SSC�s we will
have to work with pairs ha�Xi consisting of a SSC a and an appropriate set of
garbage levels X � The resulting objects will then have as levels the levels of the
SSC	 as we introduced them above	 as well as the garbage levels that we have
added to them�

But before we de�ne the m�category of stacking cells �with garbage�	 we �rst
introduce the m�category of simple stacking cells	 without garbage�

��� The category of simple stacking cells

In what follows it will be convenient to use the following notation�

we write a � b for a � b �as partial functions � ��� �� and a� for
the converse of a �as a partial function�� id is the unit of SSC�

We collect the following useful facts �notation as on page ����

Fact ���

� a � b i� na � nb � a�na�� b�nb� 	 �

� na� � a�na� and a��na�� � na

� ���� is monotonic �w�r�t� �� and

� is monotonic in both arguments �w�r�t� ��

� �a � b�� � b� � a�

� a�� � a

� a � a� � id and a� � a � id

Now we are ready to introduce SSC	 the category of simple stacking cells� We
already know the objects of this category	 the simple stacking cells	 and also the
merger has been discussed above� So the crucial thing to add is an appropriate
notion of morphism� Here we are led by the following minimal requirement� we
want to know how levels travel when simple stacking cells are merged	 so we
will need to keep trace of the way that stacking cells get merged in between
other stacking cells� This means that whenever a stacking cell a gets embedded
in some context b� � � � b�	 then we want to have a morphism from a to the
resulting stacking cell b� � a � b� that witnesses this embedding� Therefore we
will at least need a morphism�

�a�b��b� � a� b� � a � b�
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for any choice of b� and b�� We will denote such a morphism �a�b��b� by hb�� � b�i
to limit the use of subscripts in our notation��� The morphisms hb�� � b�i will be
the only morphisms in the category of simple stacking cells SSC� Now we can
de�ne�

De�nition ��	 SSC	 the m�category of simple stacking cells	 has as objects
the simple stacking cells and as morphisms � � a � a� pairs hb� b�i such that
b� � a � b� � a�� Composition and identities are as follows�

� for each a hid� idi � a� a is the identity on a

� for hb� b�i � a � a� and hc� c�i � a� � a��	 hb� b�i � hc� c�i � a � a�� is given by
hb � c� b� � c�i�

� in��a� a
�� � hid� a�i

� in��a� a
�� � ha�� idi

� ��a� a�� a��� � hid� idi � �a � a�� � a�� � a � �a� � a���

We leave it to the reader to check in detail that this does indeed de�ne an m�
category� As an example we consider the composition of morphisms� given
hb� b�i � a � a� and hc� c�i � a� � a��	 we know that a� � b� � a � b� and
a�� � c� � a� � c�� Substitution now gives� a�� � c� � b� � a � b� � c�� By fact
��� this can be written as �b � c�� � a � b� � c� as required�

It may be useful to note that � � a� a� is an isomorphism of SSC i� a � a�

and � � hid� idi� So SSC has very few isomorphisms�
In what follows we will use � as a variable over morphisms in SSC�

��� How some levels travel

Before we go on to extend the stacking cells with garbage levels	 we take some
time to check how the non�garbage levels travel when we merge two stacking
cells� For each morphism hb� b�i � a � a� we give a corresponding mapping
L�hb� b�i� � L�a� � L�a�� as follows�

for an arbitrary level hn� n�i � L�a� we set

hn� n�i�L�hb� b�i�� � hb�n�� b��n��i	

where we read b�n� � 	 if n 
� dom�b� and b��n�� � 	 if n� 
� dom�b��

Of course it has to be checked that this does indeed de�ne a mapping L�a� �
L�a��� This is a matter of case�checking�

Intuitively L�hb� b�i� has to describe what happens to the levels of L�a� when
a gets merged with b� and b�� In this process lots of things can happen� for

��This notation is very convenient� but please keep in mind that there is a di�erence between
hb�
�
� b�i � a � a� and hb�

�
� b�i � c� c��
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example	 a push�level h	� ni � L�a� could simply become a push�level h	� b��n�i �
L�a � b�� and then stay a push�level h	� b��n�i � L�b� � a � b��� But it can also
happen that a push level h	� ni � L�a� gets popped in a � b�� Then it will be
mapped to the garbage level	 h	� 	i	 of a � b� and then to the garbage level of
b��a�b�� For stem� and pop�levels we have to distinguish similar cases� It turns
out that the formula hb�n�� b��n��i �with the notation convention as indicated�
gives a concise presentation of all the cases���

Note that all the levels that �disappear� in the merger b� � a � b� are sent
to the garbage level h	� 	i� If we had not added this garbage level	 we would
not know where to send such �disappearing levels� which would force us to work
with partial functions at this point� But by the introduction of h	� 	i we can
keep all the functions total� Now it is easy to check that�

Fact ��
 L as de�ned above is a functor from SSC to Set	 the category of sets
�with arbitrary mappings as morphisms��

��� Travelling with garbage

Now we come to the crucial step of adding more garbage �levels� to the picture�
By adding a set of garbage levels we make a real stacking cell out of a simple
stacking cell�

Above we have already smuggled in one garbage level	 which enabled us to
keep working with total mappings in the category of sets� The trick was to map
all levels that were in danger of getting lost to the garbage level� This way no
information needs to get lost	 since it can all be sent to the garbage level� So
in a sense information can be preserved	 but as all the information ends up on
the same level	 we will get confused as to which information belongs together�
In order to keep the information from di�erent �disappearing levels� separate we
need more than one garbage level�

So we start using pairs ha�Xi where a is a simple stacking cell	 as before	
and X is a �nite set of garbage levels� We simply call such pairs �not�so�simple�
stacking cells�

Important examples of such stacking cells will be�

� push � hh�� �i� �i

� pop � hh�� �i� �i

� garb � hid� fh�� �igi

These three are about the most basic stacking cells one can think of� push

consists of just one push level and no garbage� Similarly pop consists of just
one pop level without any garbage� garb is the stacking cell that just has one
garbage level and no real �structural� contribution� We have called the garbage

��Note that the convention ensures that b��� and b���� are read as ��
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level of garb h�� �i	 a pair consisting of the empty string � and the natural
number �� Later on it will become clear why it is convenient to assume that
garbage levels have this kind of shape�

Whenever we merge two stacking cells ha�Xi and ha�� X �i	 the result is of
the form ha � a�� Y i� Here Y contains �i� the garbage levels X 	 �ii� the garbage
levels X � and �iii� new garbage levels that are produced by the merger a � a��
The new garbage levels are the levels that �disappear� in the merging process�
This happens when a push level h	� ni of a meets a pop level hn� 	i of a�� Each
time this happens	 we introduce a new garbage level and call it h�� ni�

Since it is essential that we keep distinct garbage levels distinct	 we will
always have to take the disjoint union of garbage sets� There are	 of course	
several implementations of disjoint union around	 each of which would do equally
well for our purposes� But to keep things readable we prefer an implementation
that does not introduce a lot of confusing brackets� To achieve this we assume
that all garbage levels are pairs h�� xi	 where � is some string of ��s and ��s� We
introduce the two shift operations Sh� and Sh� on sets of such elements� These
operations are de�ned by�

Shi�X� � fhi�� xij h�� xi � Xg

The shift operations allow us to discriminate between elements of di�erent origin
without introducing lots of brackets� This is a clear advantage in the examples
that follow later� Now we can implement disjoint union of garbage sets X and
Y as follows�

X � Y � Sh��X��Sh��Y �

This gives us all the �notational� ingredients we need to introduce the garbage
levels properly�

De�nition ��� For each a	 a� we de�ne G�a� a��	 the garbage introduced by
merging a and a��

G�a� a�� � fh�� nij h	� ni � L�a� � hn� 	i � L�a�� � n � �g

For a morphism � � hb�� � b�i � a � b� � a � b� we de�ne G���	 the garbage
introduced by � as�

G��� � G�b�� a � b�� � Sh��G�a� b���

Note that in de�ning G��� we have �as it were� chosen a bracketing for
b� � a � b�� Here we see why we need to worry about the presence of suitable
isomorphism� the existence of a �coherent� isomorphism � implies that such
choices do not really matter in the end���

��We have chosen to take the garbage produced by the merger as the basic notion and to
de�ne the garbage introduced by a morphism as a derived notion� But this is merely a matter
of choice� it can be checked that G��� consists of all the levels that are sent to h�� �i by L����
To be precise� there is a bijection between G��� and h�� �i	L���
��nfh�� �ig� This suggests an
alternative way of introducing garbage formally� where the garbage produced by a morphism
is the basic notion and the garbage introduced by the merger is de�ned in terms of it�
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<σ,  >l

Figure �� Merging with garbage

Throughout this section it will be helpful to keep �gure � in mind� There
we see three stacking cells ha�Xi	 ha�� X �i and ha��� X ��i� The sets X 	 X � and
X �� are indicated by the little clouds below the simple stacking cells� Now when
we merge ha�� X �i and ha��� X ��i	 for example	 this will produce as new garbage
fh�� �ig�

Now we can take as morphisms in the category of stacking cells	 SC	 pairs�

h�� fi � ha�Xi � ha�� X �i

such that � � a � a� is a morphism of SSC and f � G��� � X � X �� The
identity arrows simply are�

hida� 
��Xi � ha�Xi � ha�Xi

where 
��X � � �X � X is de�ned by 
��X�h��� xi� � h�� xi

and composition of arrows is de�ned as�

h�� fi � h�� gi � h� � �� hi

where h � G�� � ���X � X �� is speci�ed as follows�
We may assume that � �� hb�� � b�i � a � b� � a � b� and � � hc�� � c�i �

b��a�b� � c��b��a�b��c�� SoG����� � G�c��b�� a�b��c�� � Sh��G�a� b��c����
Now we distinguish the following cases�

� h�h��� xi� � g�h���� x�i�

Here we write� h��� x�i � f�h��� xi�

�in this case h�� xi � X�

� h�h�� ni� � g�h���� x�i�

in case h�� ni � dom�f�
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Here we write� h��� x�i � f�h�� ni�

�in this case h�� ni � G�b�� a � b���

� h�h�� ni� � g�h�� ni� in case h�� ni 
� dom�f�

�in this case h�� ni � G�c� � b�� a � b� � c��nG�b�� a � b���

� h�h��� ni� � g�h���� x�i�

in case h��� ni � dom�f�

Here we write� h��� x�i � f�h��� ni�

�in this case h�� ni � G�a� b���

� h�h��� ni� � g�h��� ni� in case h��� ni 
� dom�f�

�in this case h�� ni � G�a� b� � c��nG�a� b���

Here the �rst case de�nes h on levels that initiate from X 	 the second and third
clause consider garbage levels that are produced in the merger of c� � b� and
a � b� � c�� The fourth and �fth clause take care of the garbage that originates
from merging a with b� � c�� Basically what we have to do is to keep in mind
what could happen if we merge the �ve ��� simple stacking cells a	 bi and ci in
two di�erent ways� either we �rst merge a with the bi�s and then later add the
ci�s� This is what happens if we do � �rst and then �� Or else we �rst merge
the bi�s with the ci�s and then merge the result with a� This is what happens if
we compute � �� �right away�� The de�nition is hard to read and perhaps it is
good advice to skip it and concentrate on our discussion of �gure � in section
���	 where we see a case where three stacking cells are merged� However it can
be checked that our de�nition does indeed produce a category�

Fact ��� We have de�ned a category of stacking cells SC�

It is important to note that the isomorphisms h�� fi � ha�Xi � ha�� X �i
of this category are of the form� h�� fi � hida� fi	 where f is a bijection f �
Sh��X� � X �� This shows that isomorphism conditions ��coherence�� in this
category only arise at the level of the garbage sets� we only have to check that
appropriate canonical bijections of garbage sets can be de�ned �cf� section ���
for more details��

To extend this category into an m�category we have to specify the merger	
the embeddings and the appropriate isomorphisms� We will not do this in full
detail here� we just specify the merger of stacking cells and leave the other
details to section ����

ha�Xi � ha�� X �i � ha � a�� G�a� a�� � �X �X ��i
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��� Levels again

Now all that remains to be done is to extend the level functor L � SSC� Set

to a level functor SC � Set� We will use L as notation for both functors� On
objects we simply take�

L�ha�Xi� � X � �L�a�nfh	� 	ig�

So we collect the �real� levels of a and the garbage levels X of ha�Xi�
On morphisms h�� fi � ha�Xi � ha�� X �i we take�

L�h�� fi� � L�ha�Xi� � L�ha�� X �i�

� h�n�mi�L�h�� fi�� � h�n��m�i

in case hn�mi � L�hai� and hn�mi�L�h�i�� � hn��m�i 
� h	� 	i

� h�n�mi�L�h�� fi�� � h���� k�i

in case hn�mi � L�hai�	 hn�mi�L�h�i�� � h	� 	i Now hn�mi gives rise to a
tuple h�� ki � G���	 where h�� ki�f � � h��� k�i

� h��� xi�L�h�� fi�� � h���� x�i

in case h�� xi � X and h�� xi�f � � h��� x�i

It can be checked that this does indeed make L into a functor SC � Set� In
other words	 we can check that�

Fact ��� h�� fi � h�� gi�L� � h�� fi�L� � h�� gi�L� and idha�Xi�L� � idha�Xi�L�

Note that both ha�Xi and h�� fi are determined by their L�images� So we
can regard SC as a subcategory of Set�

��� How levels really travel

Finally we look at our example again to see in some more detail how levels really
travel when three stacking cells are merged in the category SC� We recall the
following observation about SC�

Fact ��� The isomorphisms h�� fi � ha�Xi � ha�� X �i of SC are of the form�
h�� fi � hida� fi	 where f is a bijection f � Sh��X�� X ��

So to check that suitable isomorphisms are present	 we only have to look at the
mappings of the garbage levels� This can be illustrated with our example ��

There are two di�erent ways of merging these three stacking cells	� We can
either �rst merge the two leftmost stacking cells and then merge the result
with ha��� X ��i	 or we can �rst merge the two rightmost stacking cells and merge
the result with ha�Xi� In the stacking cell component we will not notice any
di�erence between the two approaches	 since a � �a� � a��� � �a � a�� � a��� But
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there will be a di�erence in terms of the garbage sets produced� To ensure the
presence of suitable isomorphisms ��coherence��	 we need a canonical bijection
between the two garbage sets that the two di�erent bracketings produce� �Recall
that hb� Y i�hb�� Y �i � hb�b�� G�b� b����Y �Y ��i�� Let�s say that Xl is the garbage
set obtained by left association of the brackets and Xr the set obtained by right
association� We need a bijection � � Xl � Xr�

Here it helps to distinguish the following four cases�

�� x � Xl originates from one of the garbage sets X 	 X � or X ���

�� x � Xl originates from a push level of a� that becomes garbage when a�

and a�� are merged

�� x � Xl originates from a pop level of a� that becomes garbage when a and
a� are merged

�� x � Xl originates from a stem level of a� that does not become garbage
popped until the second merge step

An example of case � is given in the picture by the element h�� li � X � This
will end up as h���� li � Xl	 but as h��� li � Xr� So the bijection � will have to
map h���� li to h��� li� The general prescription for levels of type � is�

h���� li �� h��� li
h���� li �� h���� li
h��� li �� h���� li

An example of an element of type � is given in the picture by h	� �i� This
will end up in Xl as h�� �i	 but in Xr it will appear as h�� �i� So � will have to
map h�� ni to h�� ni in such a case�

By duality we need not consider � as a separate case�
The fourth case arises for the level h�� �i in the picture� This will end up as

h�� �i � Xl	 but as h�� �i � Xr� So � will have to map elements of the form
h�� ni to h�� a��n�i in these cases�

This gives a complete description of � � Xl � Xr� We will not go into the
business of proving that this does indeed induce all the isomorphisms that are
required�

� Constructing meaningful monoids

In this section we will put the machinery to work to construct some useful
monoids� Remember that the Store�construction only works if the R�images
of the morphisms of the context category are injective� Let�s say that such
categories have the injectivity property� We will start our constructions with
Sc and with categories of sets where the morphisms correspond to the subset
ordering� The images of the morphisms of these categories are surely injective�
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It is not di!cult to check that Cont	 and Store preserve the property� On the
other hand Eq does not preserve the injectivity property� Thus	 we have to take
care not to apply Store after Eq�

��� Managing variables

In this subsection we study a semantics for toy languages corresponding to the
���fragment of Predicate Logic� In particular	 we indicate how to use this se�
mantics both to simulate the ���fragment of of Vermeulen�s Sequence Semantics
and of Vermeulen�s Referent Systems � See �Ver���	 �Ver��� and �HV���� We
start by introducing some auxiliary objects and some useful notational conven�
tions� Consider the m�categorySc�n�� of stacking cells where only �nitely many
levels are present� Remember that	 via the standard embedding	 we consider
the objects of Sc as occurring in Sc�n��� Note that for a � Sc	 we have that
RSc�a� is an in�nite set	 but that RSc�n ��

�a� � �� We de�ne �suppressing the

obvious subscripts�� id� �� hid� �i	 where ��h�� �i� �� f�g and ��hn� ni� �� �
for n 
� ��

In the de�nitional format we use the foregoing de�nition looks like this�

id� �� h
s
id� fh�� �i � f�gg

s
i�

The salient points are these� First we indexed our brackets to indicate the
relevant instance of the Grothendieck Construction� We use c for Cont	 e for
Eq	 and s for Store� Secondly we use an alternative notation for pairing in the
description of the function �� Finally we suppress both the constructions that
add a unit of the relevant category and the function assignments of units� they
are the default� De�ne further�

� push� �� push � id�

� pop� �� id� � pop

� garb� �� push � id� � pop

� block �� pop � push

Note that garb� is id plus one garbage level	 where the garbage level is the only
level present� We proceed by considering the category

Varstack �� �Sc�n ���
�Var�n �

Here Var�n is the m�category of �nite sets of variables with the subsetordering
and union and as associated functor the obvious inclusion in Set��	 For any

��There is a slight inelegance to using Var�n in the de�nition of Varstack� It is that a
variable v can be �absent� in two ways in hV� �i� viz�� either if v �� V or if v � V � but if
��v� 
 id� We can get around this defect as follows� Start with as contexts the m�category
having the set of all variables as single element� with subset and union and with as associated
functor the usual inclusion in Set� Then apply the Store�n construction with as single

context the set of variables and as stored objects the elements of Scfin���
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Figure �� An object of Varman

a�Sc�n ��	 de�ne ax �� h
s
fxg� fx � ag

s
i� Let x� �� �id��x� Finally we

introduce the category of meanings for our fragment of Predicate Logic� Let D
be any non�empty set� We take� Varman �� Cont�Varstack� D�� This category
is designed to handle variable management� Its elements are of the form ha� F i	
where a is an element of Varstack and where F is a set of assignments from
R�a� to D� The ��nitely many� referents of ha� F i are located above variables
x in the outer context of a� They occur at levels of a stacking cell	 which forms
the inner context� The general form of the referents �in our standard way of
coding� is hx� hhu� vi��ii or	 brie
y	 hx� hu� vi��i	 where x is a variable and u	
v are in ��f
g	 so that hu� vi is the level of a stacking cell�

We describe the language of the ���fragment corresponding to Sequence
Semantics� To simplify inessentially	 we only consider a language with a binary
predicate symbol P and a unary predicate symbol Q� The atomic formulas
are �x	 x�	 P �x� y� and Q�x�	 where x and y are variables� The language L is
the smallest set containing the atomic formulas	 such that if A�L and B�L	
then A�B�L� An example of a formulas is� �x�Q�x���y �P �x� y��x��Q�y��y�� Let a
standard �rst order model M � hD� Ii for our language be given� �x	 the 
left
square bracket for x�	 is going to mean� create a discourse environment in which
an occurence of a �le labeled x will be counted as new� Counting as new	 here	
means that the �le is not going to be identi�ed with the current �le �if there
is one� labeled x� To put it in a di�erent way� �x means declare x� Similarly

x� will mean end the discourse environment in which the current �le �if any�
for x is active� We specify the DRT�style meanings corresponding to Sequence
Semantics for our fragment� Remember our convention that ha� hb� cii � ha� b� ci	

��



etcetera� We put rx �� hx� h�� �i��i� Thus rx is the unique discourse referent
of x��

� ���x�� �� pushx

� ��x��� �� popx

� ��P �x� y��� �� h
c
x� � y�� ff�Dfrx�ryg j hf�rx�� f�ry�i � I�P �g

c
i

� ��Q�x��� �� h
c
x�� ff�Dfrxg j hf�rx�i � I�Q�g

c
i

� ��A�B�� �� ��A�� � ��B��

Note that where pushx represents declare x	 push�x 	 would rather represent de�
clare and initialize x� We will not give the precise correspondence of our seman�
tics as presented here to Sequence Semantics as de�ned in �Ver�����
 Sequence
Semantics as de�ned there cannot make the distiction between declaring and
initializing	 so in one respect our present semantics is more re�ned� We give
two examples of interpretations� Let gx �� hx� h�� �i��i� Thus gx is the unique
discourse referent of garb�x � We have

���x�Q�x��x��� � h
c
garb�x � ff�D

fgxg j hf�gx�i � I�Q�g
c
i

Note that gx	 the �le 
containing� possible witnesses for the truth of our formula
is a hidden	 non interactive level for possible texts surrounding the formula�
Thus we simulate the usual hiding of quanti�ed formulas� Still in our set�up the
information stored in gx is not really thrown away��� We turn to our second
example� Let�

� ry �� hy� h�� �i��i

� sx �� hx� h
� �i��i

� tx �� hx� h
� �i��i

� �push��� �� push� � push� � h
s
hh�� �i� �i� fh
� �i�f�g� h
� �i�f�gg

s
i

We have�

���xQ�x��xP �x� y��� �
h
c
h
s
fx� yg� f x��push���� y�id� g

s
i�

ff�Dfry�sx�txg j hf�tx�i�I�Q� and hf�sx�� f�ry�i�I�P �g
c
i

��We hope to elaborate on this elsewhere� In fact� one can show that under quite general
conditions the Cont construction yields a semantics from which a relational DPL�style se�
mantics can be derived in a natural way� To do this we need the additional notion of state�
which is developped in 	Vis��
�
��A garbage disposal construction would be a useful addition to our framework�
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We close this subsection with a brief look at Referent Systems �see �Ver�����
Referent Systems can be simulated by replacing �x and x� in our language
by a single symmetric bracket kx� The semantics is as before	 except that�
��kx�� �� blockx� So	 when using ��kx�� to declare x	 we simultaneously pop the
current discourse environment �if any� in which x may have a value� Thus in the
Referent Systems semantics	 stacking never happens� We leave it to the reader
to compute	 e�g�	 ��kx�Q�x��kx�� and ��kxQ�x�kxP �x� y��� � In the last example
the �le�discourse referent corresponding to the �rst occurrence of kx will be a
garbage level� This in contrast to the second example for Sequence Semantics	
where the �le corresponding to the �rst occurrence of �x was tx	 a visible �le�

��� Managing argument structure

In this subsection we treat a version of the ���fragment of Predicate Logic that
looks suspiciously like a fragment of English� We call our fragment� Semantics
for Argument Management	 or	 brie
y	 SAM� Suppose we would like to represent
the meaning of a natural language like anaphor	 say hex�shex�itx 	 in our version
of Sequence Semantics as described above� It would seem that x� is the perfect
candidate for the job� It is a 
free 
oating� variable	 that signals the presence
of an object labelled x� On closer inspection	 however	 this object would not
really have a sensible role to play� How could x� ever interact in an interesting
way with the meanings of a text" We have for example�

x� � ��Q�x��� � ��Q�x��� � x� � ��Q�x��� �

One could say that �the interpretation of� the internal x of Q�x� already does
the work� Note also that x� � ��x � x�� � Thus	 naively	 we seem to be close
to providing anaphor like meanings	 but we just cannot reach our goal� This
malaise is shared by theories like DPL and DRT� It is curious that	 where these
theories are advertized as providing a semantics for anaphoric reference	 they
fail to give a semantics that represents the role of anaphors	 like hex�shex�itx �
The reason they cannot do it is simple� The speci�cation language takes its
format for handling arguments from Predicate Logic� This format itself is al�
ready a solution of the problem that anaphors solve in natural language� namely
to link up local and global information management� Since in Predicate Logic
the problem is already solved	 one cannot well represent an alternative solution
in the same language� In predicate language the arguments of a predicate are
always speci�ed in �xed places immediately following it� There can be no inter�
vening material or changes of order �salva signi�catione�� The meaning of	 e�g�	
P �x� y� is speci�ed as one package� There is no further analysis of the way P 	
x and y interact in terms of representable semantical operations� Thereby we
miss the chance to tell the story about anaphors	 about how they provide a link
between the local and the global � � � � We will now give a semantics in which the
way arguments are treated is more like the way it happens in natural language�
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Let a �nite set AH be given� The elements of this set are the argument
handlers� sub� ob� val� with� of � � � � Let AH be the m�category of subsets
of AH with subset and union� It�s associated functor is the inclusion in Set�
We build up our target category in steps� First we make� AH�Sc in which
sets of sets of argument handlers are stored on levels of stacking cells� This
category represents the local grammatical structure of sentences together with
the arguments present at the various sentential levels� The discourse referents
are arguments on levels� De�ne for X � AH �

idX �� h
s
id� f h�� �i�X g

s
i

Sometimes �as discussed in the introduction� the same object occurs on dif�
ferent levels� Thus we need the category Loc �� Eq�AH�Sc�� This category will
be su!cient to handle local	 sentential structure� To handle global	 anaphoric	
structure we use Varman� Finally local and global have to be linked� To do this
we work in the category� Sam �� VarmankLoc �see example �������

The language L is de�ned as follows� The atomic formulas are�

Brac �	 �

Link who	 that	 sub	 ob	 of	 with	 � � �

Phor ax	 thex	 hex	 shex	 itx	 Maryx	 � � � �for x�VAR�

CN mother	 father	 child	 horse	 knife	 � � �

Adj angry	 brown	 � � �

Verb cuts	 sees	 walks	 is	 � � �

Formulas are the smallest class containing the atomic formulas and closed under
the rule� if A and B are formulas	 then so is A�B� In other words	 formulas are
strings of atomic formulas with separating dots� To increase readability we will
often omit the dots� Let an ordinary �rst order model M � hD� Ii	 be given� I
assigns relations to the elements of CN	 Adj and Verb� E�g�	 I�mother� could be
a binary relation	 representing x is the mother of y� I�cuts� could be a ternary
relation	 representing x cuts y with z� We could as well take I�cuts� to be a
��ary relation	 representing x cuts y with z in place p at time t	 etcetera� The
elements of Brac	 Phor and Link are treated as logical constants� their meanings
are at most dependent on the domain of the model��


Before we can proceed to specify the interpretations of the CN	 the Adj and
the Verb	 we have to introduce some notational conventions and simpli�cations�
If one of the components of a pair from the Cartesian product underlying the

�	In fact� it su�ces to apply the construction Eq only once� We prefer the current set�up�
because it allows us to consider the local identi�cations in isolation of the global anaphoric
machinery�
�
We will also treat is as a logical constant�
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k�construction is a unit of the appropriate kind	 then we will omit it and just
exhibit the other component� This cannot lead to confusion	 since the 
inner
context� of the �rst component always is a set of variables and the 
inner�
context of the second component always is a stacking cell� Moreover	 �in virtue
of the speci�c categories going into this product� if a component is a unit	 then
its contribution to the ultimate set of referents is empty� Thus	 a fortiori	 Eq
restricted to this contribution to the referents can only be trivial� We will assume
that an element x�X 	 goes to h�� xi�X � Y � Similarly y�Y goes to h�� yi� We
will often omit singleton parentheses� Finally fr � sg �� fhr� sig�	 where we
take the ���� in the appropriate set� fr � s� t � ug	 etcetera	 is similarly de�ned�
We give sample interpretations of the atoms of our language in table �� The

� push

� pop

who h
e
h
s
id� fh�� �i�val � h�� �i�valg

s
i� fr� � r�g e

i

r� �� hh�� �i� val i� r� �� hh�� �i� vali
of h

e
h
s
id� fh�� �i�val � h�� �i�of g

s
i� fr� � r�g e

i
r� �� hh�� �i� of i

ax h
e
hpush�x � id

fvalgi� fr� � r	g e
i

r� �� h�� x� h
� �i��i� r	 �� h�� h�� �i� vali

thex h
e
hid�x � id

fvalgi� fr
 � r	g e
i

r
 �� h�� x� h�� �i��i

mother h
c
idf��of g� ff�Dfr��r�g j hf�r	�� f�r��i � I�mother�g

c
i

r� �� h�� h�� �i� of i

knife h
c
idfvalg� ff�Dfr�g j hf�r	�i � I�knife�g

c
i

angry h
c
idfvalg� ff�Dfr�g j hf�r	�i � I�angry�g

c
i

cuts h
c
idfsub�ob�withg� ff�Dfr��r��r��g j hf�r��� f�r
�� f�r���i � I�cuts�g

c
i

r� �� h�� h�� �i� subi� r
 �� h�� h�� �i� obi� r�� �� h�� h�� �i�withi

is h
c
idfsub�obg� ff�Dfr��r�g j f�r�� � f�r
�g c

i

Table �� SAM�s atomic interpretations

recursive clause for interpretation is as expected� ��A�B�� �� ��A�� � ��B�� �
We explain the de�nitions of table �� The brackets are easy� they push or pop

levels of the local grammatical structure� Let�s look atmother� ��mother�� 	 has no
links to the global anaphorical machinery and doesn�t change local syntactical
structure� Thus the set of variables in the �rst component of the context is
empty and the stacking cell in the second is the unit��� The argument handlers

�� Sam�meanings of which all embedded simple stacking cells are the unit �i�e�� the embedded
stacking cells are unit plus garbage� are called conditions� Sam�expressions� whose meanings
are conditions are likewise called conditions� Thus mother is a condition� but � is not� When
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val and of are stored at the top level of the unit stacking cell in the second
component of the context� These argument handlers give the roles of things
standardly associated with motherhood� First there is the value� mother herself�
tagged val� Then there are her children� tagged of��� E�g�� the discourse referent
h�� h�� �i� of i can be understood as follows� The �rst component � signals that
we are in the second� the �local� component of the context� The h�� �i signals
that we are at the top level of the unit� The of shows that we are looking at the
argument of� stored at the top level�
Using the meanings introduced so far� we can already interpret a child recit	

ing consecutively things she sees�


�horse���
�mother���
�dog���
�cat��

The interpretation will have the e�ect of there is a horse� there is a mother� there
is a dog� there is a cat� We don
t analyse the deixis present in the child
s words in
our interpretation �our framework is too poor for that�� but just the fact that
she notes the existence of the consecutive items� The argument of� associated
with mother� does not occur in the childs utterance� In the interpretation this
has the e�ect of existentially quantifying out the argument� Thus�mother means
mother of someone� If we would have omitted the brackets� separating the items�
the e�ect would have been to identify the items� E�g� ��mother�horse��� says
that something is both a mother and a horse�
The interpretations of knife and angry do not bring anything new� In the

interpretation of cuts and is� we have the special roles sub and ob of subject and
object� We turn to the interpretations of the links� These interpretations serve
to identify �les across syntactical levels��� that is like who� and sub� ob� with�
etcetera� are like of� We illustrate the way the linking works by means of an
example�

Example ��� We assume that runs corresponds to a unary predicate� Let
s
consider the term U���man ��who sub� runs��� who occurs in a term T���who
sub�� T occurs inside the sentence S����who sub� runs�� S occurs� in its turn�
in U� To each of these components correspond �levels� of the stacking cell in
the interpretation� These levels are introduced by the three left brackets and
popped into garbage by the corresponding right brackets� Let
s call these levels�

the embedded simple stacking cell of a �rst component is the unit� we speak of a global
condition and when the embedded simple stacking cell of a second component is the unit of a
local condition� Thus� sentences and terms are�stand for local conditions�

��A disadvantage of our framework in its present form is that we have to choose the argu�
ments associated with a given word in advance� E�g�� not every horse has an owner� but to
make sense of the horse of Sir John� we would have to add an argument of to the interpreta�
tion of horse� But� adding the argument licences the inference of the existence of an owner�
whenever we speak of a horse� We feel con�dent that it will be possible to manufacture more
�exible versions of our framework lacking this defect�

��The meaning of e�g� who is a condition according to the de�nition of footnote �	� Note
that this usage does not quite correspond to the usual idea of a condition as a test�
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t� corresponding to T � s� corresponding to S� and u corresponding to U � On
t� a referent val is stored� This referent is the result of the dynamic fusing of
the referent val stored on the upper level of ��who�� and the referent val stored
on the upper level of ��sub�� � On s we �nd the referent sub� It is the result of
fusing the referent sub on the level h�� �i of ��sub�� with the referent sub of the
top level of ��man�� � In ��sub�� the referent val of the top level is �synchronically�
identi�ed with the referent sub one level below� So the referents val on t and sub
on s are identi�ed� On the level u� we �nd again a referent val� It is the result
of fusing the referent val of the top level of ��man�� � with the referent val of the
level h�� �i of ��who�� � Moreover by synchronic identi�cation� the referent val on
h�� �i in ��who�� is identi�ed with the referent on h�� �i in ��who�� � Hence val on
t� sub on s and val on u are identi�ed� We give the result of computing the
meaning of U incrementally from left to right� Remember that di�erent ways
of computing the semantics of our sentence will give di�erent representations of
the discourse referents� The existence of the isomorphisms � guarantees that
this is harmless� De�ne�

� r� �� h���� �i� r� �� h�� �i� r� �� h�� �i

� X �� fr�� r�� r�g

� � �� fr��fvalg� r��fsubg� r� � fvalgg

� r� �� hr�� vali� r� �� hr�� subi� r� �� hr�� vali

� E �� fr� � r�� r� � r�g

� r� �� fh�� fr�� r�� r�gig

� F �� ff�Dfr�g j f
r�� � I
man��I
runs�g

We have� ��U �� � h
c
h
e
h
s
hh�� �i� Xi� �

s
i� E

e
i� F

c
i� By our conventions we

suppressed the �rst component of the context� If we would have alternatively
computed ��U �� as ��
man 

who sub�� � ��� runs���� � the result would have been
the same� but for the fact that� for i������� ri would have been h�� i� �i�

The phores operate like the links� only they link �les or discourse referents
of the global machinery to �les or discourse referents of the local machinery�
On the global side the machinery is simply Sequence Semantics� The meaning
of hex� shex and itx is taken the same as the meaning of thex� Our choice of
treating the as an anaphor is not undisputed� There are plenty of examples that
seem to undermine this theory��� We will not go into that discussion here� How
do we treat names� In fact our semantics provides various options� The one we
prefer is viewing names as �frozen anaphors�� So the meaning of a name is like
the meaning of he� Our present framework is too poor to model the frozenness

��For example
 the winner will get one thousand guilders�

��



of names fully� For that we would need the notion of state� which is not treated
in this paper� We can� however� make one simple adaptation to get part of the
desired e�ect� We set aside some labels for variables to function as subscripts
of names� We exclude these labels from occurring as subscripts of a and the�
They can occur as subscripts of he� she and it���

Claim We submit that we are the �rst to describe correctly in the semantics
the role of the phores as links� This does not mean� however� that we claim that
our solution is a fully correct representation of the meanings of phores in natural
language� First� it seems that Sequence Semantics allows lots of structure one
never meets in natural language� For example� nothing seems to correspond to
the stacking under x in� 

sub ax dog� sees 
ob ax cat��� Secondly� it could well
be that fusing in natural language happens more by higher order inference than
by label� These defects are a problem for all approaches we know�

We have described the various meanings provided by our semantics and we
have touched brie�y on some further topics such as the problem of de�nite
descriptions and the proper treatment of names� It is time to have a look at
some sample sentences in our language�


a� 

sub Maryx� cuts 
they ob bread� 
with az sharp knife��


b� 

with az knife sharp� cuts 
ob they bread� 
Maryx sub��


c� 

sub Maryx� cuts 
they ob bread��


d� 

sub Maryx� cuts 
with az sharp knife��


e� 

ax woman sub� sees 
ay horse ob�� 

shex sub� beats 
ity ob��


f� 

thex sub man 

who sub� sees 
they ob brown horse�� cuts 
thez ob
bread��


g� 

Maryx sub� 

shex sub� is 
ob angry�� 

shex sub� is 
hungry ob�� cuts

they bread ob��

Example 
a� illustrates one advantage of our approach� the interpretation of
such a sentence can proceed in the order in which it is given� 
a� and 
b� are
equivalent in meaning� since we may interchange� salva signi�catione 
modulo
some speci�able isomorphism�� the order of items as long as no bracket 
local
or global� intervenes to which these items are sensitive� Leaving out argument
places as in 
c� or 
d� has the e�ect of having a hidden existentially quanti�ed
argument� Thus 
c� means something like� Mary cuts the bread with something�

��Note that the meaning of ��sub Hesperusx� is �ob Hesperusx�� is di�erent from the mean�
ing of ��sub Hesperusx� is �ob Phosphorusy ��� since fusion of discourse referents is di�erent
from contentual identity�
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Note that we can as well suppress the subject� which is less usual in English

but it is in Latin�� 
e� works like the usual DPL�DRT	example of anaphoric
reference� E�g�� in the interpretation� the horse will be fused with it� Example

g� illustrates the fact that in our approach sentences can be interrupted for
other sentences� These will be �laid over� the interrupted sentence�
We end this section with a brief remark on one possible extension of the

fragment and its problems��� We could try to add a semantics for himself�
One possible interpretation of himself could be to make it just a link between
subject and object� So� ��himself�� �� h

s
id� fh�� �i�fsub� obgg

s
i� Under this

analysis� we would represent Johns cuts himself as� 

Johnx sub� cuts himself��
Alternatively� we could make himself a term� Thus� we could take� ��himself�� ��
��sub�� � Under this analysis� we would represent our sample sentence by� 

Johnx
sub� cuts 
himself ob��� However� consider such sentences as John sees a picture
of himself and John sees a picture of a picture of himself� Here it seems that the
meaning of himself is able to search for the appropriate level for linking� Our
approach in its present form allows us only to build links across a speci�ed �xed
number of levels� One possible way out is as follows� We change our semantics
in such a way that we can put sentences always between lazy brackets 
see
subsection ����� Thus we would rewrite the above example 
f� as�

� �thex sub man �who sub� sees 
they ob brown horse� cuts 
thez ob bread�

Obviously� we should make adaptations for e�g� the meaning of who� 
The
second term	label val should be stored on h�� �i instead of on h�� �i�� We treat
himself as a term and store sub in its interpretation on all levels hi� ii for i���
Moreover by Eq� we identify these subs� Obviously� our operation will cause
spurious subs to occur on various term levels� but these can do harm� since they
will not fuse with other labels on the term levels� Consider the sentence�

� �Johnx sub� sees 
ay picture ob 
of az picture 
of himself�

We obtain the e�ect that we search on each lower level for something to fuse
with sub until we reach the sentence level� Hence we will correctly identify John
with himself� Note that our �theory� predicts that himself is always fused with
the subject of the nearest sentence level below� E�g� himself will be fused with
the man in� the woman� whom the man gave a picture of himself� smiled� The
point of our elaboration is� however� not that this theory is correct but� rather�
that such a theory can be implemented in our framework�

� Concluding Remarks

This paper describes some techniques to construct meaning	objects for monoidal
processing� One starts with simple objects �like �nite sets or stacking cells� By

��We were made aware of the problems concerning himself by Claire Gardent�
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iterating the Grothendieck construction more elaborate objects are constructed�
The great advantage of the Grothendieck construction is that the appropriate
monoidal behaviour is automatically preserved� We introduced stacking cells
as an interpretation of bracket structures� Subsequently� we outlined the in	
terpretation of a fragment using the construction methods of the paper� This
fragment incorporates a linking mechanism to describe what anaphors do� We
claim that only some such mechanism can pretend to truly constitute a seman	
tics of anaphoric reference� If this claim is correct� we have given an example
that monoidal semantics can provide faithful modeling of meanings�
The purpose of our paper is more to point in the right direction� than to

establish a de�nitive� rigid framework once and for all� More questions are
evoked than answered� We distinguish three kinds of extension of our work�

i� mathematical improvement of the framework as it stands� 
ii� extending
the fragment developped here within the boundaries of the present framework
and 
iii� extending the framework with essentially new elements both to increase
expressive power and to incorporate some further philosophical ideas� We brie�y
sketch some ideas for extensions of the three di�erent kinds�
We mention some directions of local improvement of the framework as it

stands� First� one would like to incorporate a smooth construction of the ��le	
set functor� R� Secondly� it would be good to be able to construct stacking
cells from even simplerobjects� One of the authors 
Albert Visser� is currently
working on a proposal to represent stacking cells as multisets of morphisms of
an appropriate category�
We mention some ideas for extending the fragment that seem to be in the

scope of the methods developped so far� There are many interesting phenomena
that we would like to include� For example� we would like to have a way of
working with an expandable number of argument places 
cf� the horse of Sir
John in subsection ����� Currently we are working on a uniform treatment of
the semantics of and in sentences such as John eats the bread with a fork and the
pudding with a spoon and John hates and Mary loves Marc� etcetera� Another
extension of the fragment could consist of a treatment of error messages to
ensure the propagation of information about local errors in the syntax� e�g�� in
cases where term levels are erroneously fused with sentence levels�
Finally� we discuss some possible extensions of the framework� The present

paper is a study in Dynamics� Therefore we would like to include into our frame	
work more of the salient ingredients occurring in the literature on Dynamics�
First� and foremost� we can extend our framework with a good notion of state
and state transition so that a formulation of our semantics in update style 
cf�
�Vel���� and in the relational format 
�GS���� becomes available� There is an
elegant way to do this� which will be presented elsewhere� Another important
ingredient we intend to include is a rational reconstruction of dynamic implica	
tion� It is our prejudice that 
dynamic� implication should be an adjunction in
an appropriate category of partial information states� We suspect that �nding
this category will become possible once a proper notion of presuppositional or	

��



dering 
in which presuppositions are counted as negative information� has been
added to the framework 
cf� �Vis��� for preliminary investigations��
Clearly� our work is just an initial step towards the grand aim of a theory

of monoidal processing� But� we think that it exhibits very well the sort of
thing one has to do and the sort of question one has to answer� We submit
that we have shown �by means of examples� that such a theory can provide a
powerful setting in which the phenomena of discourse processing can be fruitfully
discussed�
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A Semantics for binary notations

In this appendix we show how to use the Grothendieck construction to give a
semantics for binary notations��� Binary notations are the usual designations
of numbers in binary� like ������ which stands for �ve� Our problem is that we
want to assign meanings to these notations that make concatenation of notations
a meaningful operation� So consider a language containing binary notations plus
a symbol � for concatenation� Let
s �rst consider the option of interpreting a
notation as the number it designates� E�g�� ������� � �� The problem is that we
would have to put� e�g�� ������ � ����� � �� But�

���� � ���� � �������� � �� �� � � ������� � ���� � ��� �

So we cannot interpret � compositionally under this semantics� At the other
extreme we could interpret binary strings autologically� as themselves� This
would surely lead to a compositional semantics� Only we would lose the central
idea that these notations are supposed to stand for numbers� Our solution is to
interpret notations as pairs hm�ni� where m is the length of the notation and
where n is its customary value� We show how this semantics can be assembled
using the Grothendieck construction�
We start by specifying our m	category of contexts� This is the m	category

Natloc of located unary strings or located tally numbers�

� The objects are natural numbers f�� �� �� � � �g� These can be viewed as
unary strings or tally numbers�

� The morphisms are tripels hm�n� ki� withm n � k� A morphism hm�n� ki
tells us that m is embedded in k at location n� Here n is the number of
�
s in k occurring after m� Like this�

� � � � �

m
z �� �

� � � � �

n
z �� �

� � � � �
� �z �

k

�

��The appendix is our answer to a question posed by Theo Janssen�
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� dom
hm�n� ki� � m� cod
hm�n� ki� � k� idm � hm� ��mi

� hm�n� ki 	 hk� p� qi � hm�n p� qi

� � � � � � � � � �

m
z �� �

� � � ��

n
z �� �

� � � � �
� �z �

k

p
z �� �

� � � � �

� �z �

q

� m � n � m n� in�
m�n� � hm�n�m ni� in� � hn� ��m ni

m
z �� �

� � � � �

n
z �� �

� � � � �
� �z �

m�n

�

� � is just the appropriate identity� since  gives us a standard monoid�

� id � �

Take !
n� � Nat and p�!
hn�m� ki�� � p � �m� It is easy to see that this
de�nes an m	functor� We get�

hi� ni � hj�mi � hi j� n�!
in�
i� j���  m�!
in�
i� j���i
� hi j� n�!
hi� j� i ji��  m�!
hj� �� i ji��i
� hi j� n � �j  mi

A good alternative way of representing the objects we constructed is as
follows� Consider the pair hi� ni� Write n in binary and precede it by in�nitely
many �
s� Put a pointer above the place followed by i digits� We represent�

for example� h�� ��i by� � � � �����
�

����� Note that� e�g�� h�� �i � h�� ��i can be
computed by�

�

� � � � � � � � �
�

� � � � � � �
�

� � � � � � � � � �

Thus the context of the second component of the merge has the e�ect of a
shift� We interpret binary notations by the pair of their length and their value�
The second component is the classical content� the �rst a dynamic context that
causes a shift in interaction� Evidently� ��� � � �� � ����� � ��� �� � So our semantics
produces the desired e�ect� Note that id � h�� �i �� h�� �i � ����� �
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