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Abstract  

 In this paper, a complex non- linear programming problem with the two parts (real and imaginary) is considered. The efficient and proper 

efficient solutions in terms of optimal solutions of related appropriate scalar optimization problems are characterized. Also, the Kuhn-Tuckers' 

conditions for efficiency and proper efficiency are derived. This paper is divided into two independently parts: The first provides the 

relationships between the optimal solutions of a complex single-objective optimization problem and solutions of two related real programming 

problems. The second part is concerned with the theory of a multi-objective optimization in complex space. 

Keywords: Optimization; Complex multi- objective programming; Efficient solution; Kuhn-Tuckers' conditions; Optimal 
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1. Introduction 

Multi-objective optimization problems arise when more 

than one objective function is to be minimized over a given 

feasible region. Unlike the traditional mathematical 

programming with a single-objective function, an optimal 

solution in the sense of one that minimizes all the objective 

functions simultaneously does not necessarily exist in 

multi-objective optimization problems, and whence, we are 

troubled with conflicts among objectives in decision-

making problems with multiple objectives.  The review of 

the most important fundamentals in multiobjective 

optimization (MOO) is introduced by (Emmerich and 

Deutz, 2018; Gunantora and Ai, 2018) (2018). Jiang and 

Fan (2020) proposed a method to design thin- film stacks 

consisting of multiple material types. Roussel et al. (2021) 

investigate multiobjective Bayesian optimization to find 

the full pareto front of an accelerator programming 

problem efficiently.  

In the last three decades, many authors have extended a 

numerous aspects of mathematical programming to 

complex space, which lead to the importance of this field 

in many applications as Resistive Network with Sinusoidal 

Sources, Impedance Matching of Circuits in the Sinusoidal 

Steady State and Jury- Lee Criterion of Absolute Stability 

(Abrams and Ben Israel, 1971 and Hanna and Simaan, 

1985). Applications of complex programming may be 

found in Mathematics, engineering, and in many other 

areas. In earlier works in the field of complex programming 

problem, all the researchers have considered only the real 

part of the objective function of the problem as the 

objective function of the problem neglecting the imaginary 

part of the objective function, and the constraints of the 

problem have considered as a cone in the complex space 

ℂ𝑛  . Abrams (1972) established sufficient conditions for 

optimal points of the real part of the objective function 

neglecting the imaginary part. Duca (1978) formulated the 

vectorial optimization problem in complex space and 

obtained some necessary and sufficient conditions for a 

point to be the efficient solution of a problem. Smart and 

Mond (1991) have shown that the necessary conditions for 

optimality in polyhedral- cone constrained nonlinear 

programming problems are sufficient under the assumption 

of particular form of invexity. Ferrero (1992) considered 

the finite dimensional spaces making use of separation 

arguments and the one- to- one correspondence between 

ℂ𝑛 , and ℝ2𝑛 .  Malakooti (2010) developed complex 

method with interior search directions to solve linear and 

nonlinear programming problems. Youness and Elborolosy 

(2004) formulated the problem in complex space taking 

into account the two parts of complex objective function 

(real and imaginary together) and introduced an extension 

to necessary optimality conditions in complex 

programming. Zhang and Xia (2018) proposed two 

efficient complex- valued optimization methods for 

solving constrained nonlinear programming problems of 

real functions in complex variables. Khalifa et al. (2020) 

characterized the solution of complex nonlinear 

programming with interval- valued neutrosophic 

trapezoidal fuzzy parameters. A neuromas authors are 

studied complex multi- objective programming problem 

where they are established the optimality conditions, 

introduced several properties, constructed and provide the 

weak, strong and strictly converse duality theorems and 

introduced being a necessary conditions of local weak 

efficient solution for optimistic optimization problems 

(see, Huang and Ho, 2021; Huang and Tanaka, 2022; and 

Hsu and Huang, 2022; Lv et al., 2022). 
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This paper aims to study the necessary and sufficient 

conditions for a point to be an efficient or a properly 

efficient solution of a multi-objective complex 

programming problem, when the ordering is taken with 

respect to a pointed closed convex cone. 

The outlay of the paper is constructed as follows: In the 

next sections, some preliminaries needed in this paper is 

introduced. Section 3 formulates the complex multi- 

objective programming problem. Section 4 introduces 

some of theorem, which described and derived the 

necessary and sufficient conditions for the complex 

programming involving Section 5 introduces the Kuhn- 

Tucker' conditions for existing the efficient and proper 

efficient solutions.  Finally, in section 6 some concluding 

remarks are reported.  

2. Preliminaries  

In this section, some definitions, and theorems needed in 

this paper are recalled. 

      Definition 1. A non- empty set 𝑈 in ℂ𝑚 (complex × 𝑛 

) is a convex if it is closed in a convex combination, i,e., 

θU + (1 − θ)U ⊆ U, for 0 ≤ θ ≤ 1.  
     Definition 2. (Berman, 1973). A non- empty 𝑈 in ℂm is 

a cone if it is closed in a non- negative scalar multiplication, 

i.e.,  𝜃U ⊆ U for θ ≥ 1. 
      Remark 1. Let the cone {(𝑤1, 𝑤2) ∈ ℂ2𝑚: 𝑤2 = 𝑤1} is 

denoted by 𝑃. 
      Definition 3.( Berman, 1973). A hyperplane H in ℂm is 

a set of the form  

       H = {x ∈ ℂm ∶ Re vHx = α} , where v  non- zero 

vector in ℂm and α ∈ ℜ.  

       Definition 4. (Berman, 1973). A polyhedral cone 𝑈 in 

ℂm is a convex cone generated by many vectors finitely, 

i.e., a set of the form 𝑈 = 𝐴ℜ+
𝑘 = {𝐴𝑥: 𝑥 ∈ ℜ+

𝑘 }, for some 

𝑘 ∈ ℤ and 𝐴 ∈ ℂn×k. 

       Definition 5. (Berman, 1973).  The dual 𝑈∘ of a non- 

empty set 𝑈 ⊂ ℂm is defined as 

        U∘ = {y ∈ ℂm: x ∈ U ⇒ Re yHx ≥ 0}. 

      Proposition 1.   Let U ⊂ ℂm be a closed convex cone, 

then Ũ = {0} if and only if U is a  real  linear space of 

ℂm,i.e., 𝑈 is a closed under real linear combination. 

      Theorem 1. (Berman, 1973).  Let  U  be a closed 

convex cone in ℂm,then U  is a pointed cone if and only if  

U∘ is solid. In this case 𝑖𝑛𝑡 U∘   (interior of U∘ ) is given by 

       int U∘ = {y ∈ U∘: 0 ≠ x ∈ U ⇒ Re yHx > 0}. 

       It is clear that, for a closed convex cones U, U is solid 

iff  U∘ is pointed. In this case, 

             int U = {x ∈ U: 0 ≠ y ∈ U∘ ⇒ Re yHx > 0}. 

Definition 6.  Let 𝑀 be a closed convex cone in ℂm, the 

largest subspace which is contained in M  is 𝑀⋂(−𝑀) , 

while the smallest subspace contains 𝑀  is 𝑀 − 𝑀 . A 

convex cone is pointed if 𝑀⋂(−𝑀) = {0}.  

Corollary 1. (Berman, 1973).  Let  𝑀  and 𝑈  be closed 

convex cones in ℂ𝑛, then  

               𝑐𝑙(𝑀° + 𝑈0) = (𝑀⋂𝑈)°. 

Theorem 2. (Mond and Craven, 1977).  Let 𝑀  be a 

closed convex cone in ℂ𝑚  and 𝑎 ∈ 𝑀 . Then 𝑦 ∈
(𝑀(𝑎))° iff 𝑦 ∈ 𝑀° and 𝑅𝑒 𝑦𝐻 = 0. 

Theorem 3. (Mond and Greenblatt, 1975; Rockafellar, 

1970 ).  

1. A set 𝑀  is a polyhedron cone in ℂ𝑚  if 

and only if it is the intersection of finite number 

of closed half spaces in ℂ𝑚, each containing the 

origin on its boundary, i.e., 𝑀 = ⋂ 𝐻𝑢𝑘

𝑝
𝑘=1 , 

where 𝐻𝑢𝑘
= {𝑧 ∈ ℂ𝑚: 𝑅𝑒 𝑧𝐻𝑢𝑘 ≥ 0} , for 

some vectors 𝑢1, 𝑢2, … , 𝑢𝑝 ∈ ℂ𝑚  and integer 

𝑝 > 0. This is equivalent to 𝑀 is a polyhedron 

cone if there is a positive integer 𝑝 and a matrix 

𝐵 ∈ ℂ𝑝×𝑚  such that 

 M = {z ∈ ℂm: Re z ≥ 0}  and in this case M∘ =
{w ∈ ℂm: ∃ u ∈ ℂ+

m, w = BHu}, 

2. A polyhedral cone is a closed convex 

cone, 

3. 𝑀 is a polyhedral cone if and only if 𝑀∘ 

is a polyhedral cone, 

4. The sum of polyhedral cones is 

polyhedral, and 

5. The Cartesian product of polyhedral 

cones is a polyhedral cone.  

      Definition 7. (Craven and Mond, 1973).The functions 

𝑓: 𝑃 → ℂ and 𝑔: 𝑃 → ℂ𝑛 are said to be differentiable at the 

point (z∗, z
∗
) ∈ 𝑃, if  for every (𝑧, 𝑧) ∈ 𝑃, 

      𝑓(𝑧, 𝑧) − 𝑓(z∗, z
∗
) = ∇z𝑓(z∗, z

∗
)(𝑧 − z∗) +

∇z𝑓(z∗, z
∗
)(z −  z

∗
) + 𝑜(‖𝑧 − 𝑧∗‖), and  

     𝑔(𝑧, 𝑧) − 𝑔(z∗, z
∗
) = ∇z𝑔(z∗, z

∗
)(𝑧 − z∗) +

∇z𝑔(z∗, z
∗
)(z − z

∗
) + 𝑜(‖𝑧 − 𝑧∗‖),  where ∇z𝑓(z∗, z

∗
) 

and ∇z𝑓(z∗, z
∗
) are the lower vectors of partial derivatives 

𝜕𝑓(z,z
∗

)

𝜕𝑤1
𝑖  and 

𝜕𝑓(z,z
∗

)

𝜕𝑤2
𝑖  respectively, While 𝐷𝑧g(z∗, z

∗
)  and 

𝐷𝑧g(z∗, z
∗
)  are the matrices 𝑚 × 𝑛  whose elements are 

𝜕𝑔(z,z
∗

)

𝜕𝑤1
𝑖  and 

𝜕𝑔(z,z
∗

)

𝜕𝑤2
𝑖  respectively, and 

𝑜(‖𝑧−𝑧∗‖)

‖𝑧−𝑧∗‖
→ 0𝑎𝑠   𝑧 →

𝑧∗. 

Defintion 8. (Craven and Mond, 1973). Let f: ℂn → ℂ and 

E ⊂ ℂn , then 𝑓(𝑧)  is called analytic  in E , if in some 

neighborhood of every point E, it may be represented by an 

absolutely convergent power series about that point   in the 

𝑛 complex variable. 
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Theorem 4. (Craven and Mond, 1973).  Let M  be a 

polyhedron cone in ℂm, f: ℂ2n → ℂ, 𝑎𝑛𝑑 g: ℂ2n → ℂm  be 

two analytic functions in a neighborhood of a qualified 

point   (z∗, z
∗
). Then a necessary condition for (z∗, z

∗
) to 

be a local minimum of problem(2) is that there is a vector 

𝑢 ∈ (𝑀(z∗))
°

⊂ 𝑀° such that  

     ∇zf(z∗, z
∗
) + ∇z𝑓(z∗, z

∗
) − uHDzg(z∗, z

∗
) −

uTDzg(z∗, z
∗
) = 0,    and 

𝑅𝑒 𝑢𝐻𝑔(z∗, z
∗
) = 0. 

  3. Complex programming Problem statement 

Consider the following multiobjective complex 

programming problem 

     min f(z, z) = (f1(z, z), f2(z, z), … , fp(z, z) ) 

     Subject to                                                              (1) 

                (z, z) ∈ G = {(z, z) ∈ Q: g(z, z) ∈ M }. 
Where, fi: ℂ

2n → ℂ, i = 1, 2, … , p, p ≥
2, as well as g: ℂ2n → ℂm are differentiable functions, and 

M is a closed convex cone on ℂm. 

      The concept of the efficient solution, for the above 

complex problem, with respect to a complex domination 

structure of the decision maker is introduced, and a 

characterization of those solutions is given. Also, Kuhn-

Tucker conditions for efficiency and proper efficiency of 

problem (1) are derived. 

4. Efficient Solutions Concept in Complex Space 

As we have mentioned, in a single-objective optimization 

problem, the meaning of optimality is clear. Whereas, in 

contrast, an optimal solution that minimizes all the 

objective functions simultaneously, can rarely be expected 

to exist in multi-objective optimization problems, since the 

objectives usually conflict with one another. Instead of 

optimality, the notion of efficiency.  

Definition 9.  A feasible point (z∗, z
∗
)  is said to be an 

efficient solution of problem (1) with respect to a pointed 

closed convex cone (domination structure) 𝑈 ⊂ ℂ𝑝 if there 

is no other feasible (𝑧, 𝑧) such that 

f(z∗, z
∗
) − f(z, z) ∈ U\{0}.  

In other words, (z∗, z
∗
) is an efficient solution if and only 

if 

(f(G) − f(z∗, z
∗
)) ⋂(−U) = {0}. 

In addition, the efficient set of a non- empty set 𝑄 ⊂ ℂ𝑝 

with respect to a cone 𝐸 ⊂ ℂ𝑝 is given as in the following 

definition. 

Definition 10.  Let 𝐸 ⊂ ℂ𝑝  be a cone, then the set of 

efficient elements of a set 𝑄 ⊂ ℂ𝑝with respect to 𝐸 is given 

by 

𝐷(𝑄, 𝐸) = {�̌� ∈ 𝑄: 𝑡ℎ𝑒𝑟𝑠 𝑖𝑠 𝑛𝑜 𝑞 ≠ �̌�  ∈
𝑄 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 �̌� ∈ 𝑞 + 𝐸}. 

From this definition, it follows that a point (z∗, z
∗
) is an 

efficient solution of problem (1) with respect to U if and 

only if (z∗, z
∗
) ∈ D(f(G), U). 

Proposition 2.  Let 𝐸 ⊂ ℂ𝑝  be a non- empty pointed 

convex  cone, then 

 𝐷(𝑄, 𝐸) = 𝐸(𝑄 + 𝐸, 𝐸). 

Proof  (Smart and Mond, 1991).  

4.1. Characterization of efficient solutions 

In this subsection, we characterize the efficient solutions in 

terms of optimal solutions of related appropriate scalar 

optimization problems. A method of characterizing 

efficient solutions is via secularization by vectors in the 

polar cone  𝑈°of  a domination structure cone 𝑈. 

 Consider the following scalar optimization problem  

   min 𝑅𝑒 𝜁𝐻𝑓(𝑧, 𝑧) 

    Subject to                                                               (2) 

          (𝑧, 𝑧) ∈ 𝐺,  for some 𝜁 ∈ 𝑈° . 

Now, let us introduce the state with proof for the two 

theorems in order to study the relationships between the 

efficient solutions of the complex multi- objective problem 

(1) with respect to 𝑈   and the optimal solutions of the 

related scalar optimization problem (2). 

Theorem 5.  Let 𝑈 ⊂ ℂ𝑝 be a pointed closed convex cone 

and f(G) + 𝑈  be a convec set. If (z∗, z
∗
)  is an efficient 

solution of problem (1) with respect to U, then there is a 

0 ≠ 𝜁 ∈ 𝑈°  such that (z∗, z
∗
)  is an optimal solution of 

problem (2). 

Proof.  Assume that (z∗, z
∗
)  be an efficient solution of 

problem (1) with respect to U, i.e., 𝑓(z∗, z
∗
) ∈ D(f(G), U), 

it follows that  

𝑓(z∗, z
∗
) ∈ D(f(G) + U, U)   (Proposition 2). So, (f(G) +

U − 𝑓(z∗, z
∗
)) ⋂(−𝑈) = {0}.  Since from the convexity of 

the two sets   f(G) + U  and U , there is a hyperplane 

separating between them, i.e., there is a non- zero vector 

𝜁 ∈ ℂ𝑝 such that: 

𝑅𝑒 𝜁𝐻 (𝑓(𝑧, 𝑧) + 𝑠 − 𝑓(z∗, z
∗
)) ≥ 0; ∀ (𝑧, 𝑧) ∈ 𝐺, 𝑠 ∈ 𝑈, 

and                                                                             (3) 

𝑅𝑒 𝜁𝐻(−𝑠′) ≤ 0; ∀𝑠′ ∈ 𝑈.                                        (4)   

 From (4), it follows that 𝜁 ∈ 𝑈°, and by setting 𝑠 = 0 in 

inequality (3), we have 

𝑅𝑒 𝜁𝐻𝑓(𝑧, 𝑧) ≥ 𝑅𝑒 𝜁𝐻𝑓(z∗, z
∗
); ∀ (𝑧, 𝑧) ∈ 𝐺.  

We conclude that,  (z∗, z
∗
)  is an optimal solution of 

problem (2).  

Theorem 6.  A point  (z∗, z
∗
) is an efficient solution of 

problem (1) with respect to a pointed closed convex cone 

𝑈 ⊂ ℂ𝑝   if there is a 𝜁 ∈ 𝑈° such that (z∗, z
∗
) is an optimal 
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solution of problem (2) and one of the following two 

conditions holds: 

1. 𝜁 ∈ 𝑖𝑛𝑡 𝑈°, or 

2. (z∗, z
∗
) is a unique  optimal solution of 

problem (2). 

Proof. Since (z∗, z
∗
) solves problem (2) for some 0 ≠ 𝜁 ∈

𝑈°, then 

𝑅𝑒 𝜁𝐻 (𝑓(𝑧, 𝑧) − 𝑓(z∗, z
∗
)) ≥ 0; ∀ (𝑧, 𝑧) ∈ 𝐺.                                                                                     

(5) 

Suppose that (z∗, z
∗
)  is not an efficient solution for 

problem (1) with respect to U, then there is (�̌�, �̌�) ∈ 𝐺 such 

that: 

  𝑓(z∗, z
∗
) − 𝑓(�̌�, �̌�) ∈ 𝑈\{0}.  

If the condition 1  satisfied, then 

Re ζH (f(z, z) − f(z∗, z
∗
)) ≥ 0, which contradicts (5). 

If the condition2  holds, then inequality (5) becomes 

𝑅𝑒 𝜁𝐻 (𝑓(𝑧, 𝑧) − 𝑓(z∗, z
∗
)) ≥ 0; ∀ (𝑧, 𝑧) ∈ 𝐺.   While   

(z∗, z
∗
)  is not efficient, which implies to the existence of  

(�̌�, �̌�) ∈ 𝐺  such that: 

     𝑅𝑒 𝜁𝐻 (𝑓(z∗, z
∗
) − 𝑓(�̌�, �̌�)) ≥ 0 , contradiction.                           

  4. 2. Kuhn- Tucker's conditions for efficiency  

As we observe, the objective function of problem (2) is the 

real part of the objective function of problem (1) and the 

optimality conditions of them have discussed by many 

authors. Therefore, necessary  and sufficient conditions for 

efficiency due to the Kuhn- Tucker are as in the   same 

analogous to those for optimality of a single objective real 

objective functions.    

Theorem 9. Assume that 𝑀 is a polyhedron cone in ℂ𝑛; 

f: ℂ2n → ℂ, g: ℂ2n → ℂ are analytic functions at a feasible 

point (z∗, z
∗
)  at which the Kuhn- Tucker constraint 

qualification holds, and f(G) + U is convex set. Then, a 

necessary condition for (z∗, z
∗
) to be efficient solution for 

problem (1) with respect to a pointed closed convex cone 

𝑈 ⊂ ℂ𝑝  is there is 0 ≠ 𝜁 ∈ 𝑈°and u ∈ (M(z∗, z
∗
))

°

⊂ M° 

such that 

 (ζHDzf(z∗, z
∗
) + ζHDzf(z∗, z

∗
) − uHDzg(z∗, z

∗
) −

uHDzg(z∗, z
∗
)) ≥ 0,  and                                      (6) 

Re uHg(z∗, z
∗
) = 0.                                               (7)                                      

Proof.  Since (z∗, z
∗
) is an efficient solution for problem 

(1) with respect to 𝑈, then from Theorem 3, there is a 0 ≠

𝜁 ∈ 𝑈° such that (z∗, z
∗
) solves problem (1). Consequently 

from Theorem4, there is 𝑢 ∈ (𝑀(z∗, z
∗
))

°

 such that 

∇zζHf(z∗, z
∗
) + ∇zζHf(z∗, z

∗
) − uHDzg(z∗, z

∗
) −

uHDzg(z∗, z
∗
) = 0, and                                            

(Re uHg(z∗, z
∗
) = 0.    

Since   𝜁  is a constant vector, then equations (6) and (7) 

yield.   

Theorem 10.  Assume that f: ℂ2n → ℂ, g: ℂ2n → ℂ  are 

analytic functions, f  is convex with respect to a point 

closed convex cone 𝑈 ⊂ ℂ𝑝  and 𝑔  is concave with 

respect to a closed convex cone ⊂ ℂ𝑚 . Then a sufficient 

condition for (z∗, z
∗
)  to be an efficient solution for  

problem (1) with respect to 𝑈  is the existence of 𝜁∗𝐻 ∈

𝑖𝑛𝑡 𝑈°and 𝑢∗ ∈ (𝑀(z∗, z
∗
))

°

⊂ 𝑀° such that 

     𝛇∗𝐇𝐃𝐳𝐟(𝐳∗, 𝐳
∗
) + 𝛇∗𝐇𝐃𝐳𝐟(𝐳∗, 𝐳

∗
) − 𝐮𝐇𝐃𝐳𝐠(𝐳∗, 𝐳

∗
) −

𝐮𝐓𝐃𝐳𝐠(𝐳∗, 𝐳
∗
) = 𝟎, and                                           (8)     

  Re uHg(z∗, z
∗
) = 0.                                                   (9)    

Proof.  At first, since f(z, z) is convex with respect to 𝑈, 

that is  for any (z, z) ∈ 𝑃,  

f(z, z) − f(z∗, z
∗
) − Dzf(z∗, z

∗
)(z − z∗) −

𝐷𝑧𝑓(z∗, z
∗
)(z − z

∗
) ∈ 𝑈.                                            (10) 

Since 𝜁∗ ∈ 𝑖𝑛𝑡 𝑈°, then from (9) and for any (z, z) ∈ 𝑃, we 

have  

Re (ζ∗Hf(z, z) − ζ∗Hf(z∗, z
∗
) − ∇zζ∗Hf(z∗, z

∗
)(z − z∗) −

∇zζ∗Hf(z∗, z
∗
)(z − z

∗
)) ≥ 0.                                  (11) 

This means that  

    Re 𝜁∗𝐻f(z, z) = 0 is convex with respect to ℜ+. 

At second, equation (8) is equivalent to 

∇zζHf(z∗, z
∗
) + ∇zζHf(z∗, z

∗
) − uHDzg(z∗, z

∗
) −

uHDzg(z∗, z
∗
) = 0.                                                   (12) 

Hence, from (9) and (12) , (z∗, z
∗
)  is an optimal solution 

for the problem  

  min Re ζ∗Hf(z, z) 

   Subject to 

          (z, z) ∈ G. 

Consequently, Theorem 5 implies to (z∗, z
∗
)  is an efficient 

solution for problem (1) with respect to 𝑈. 

5.  Proper Efficiency  

In this section, strengthened efficient solutions; called 

properly efficient solutions is introduced. In real multi-

objective optimization problems, a number of various 

definitions to proper efficiency with respect to a 

domination cone( For instance,  Geoffrion's concept 

(Chankong and Haimes, 1983)  and Geoffrion, J. Borwein's 

notion of propernes (Borwein, 1977) . Henig (1982) 

introduced the concepts of local and global properness; the 

first is equivalent to Benson's definition and the second to 

Borwein's. D. Duca (1980) formlated a vectorial 

programming problem in complex space as 

 min Re f(z, z) = (Re f1(z, z), Re f2(z, z), … , Re fl(z, z) ) 

     Subject to                                                                       (13) 

  (z, z) ∈ G = {(z, z) ∈ Q: g(z, z) ∈ M }. 
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Definition 11. (Proper efficient). A point (z∗, z
∗
)is said to 

be a properly efficient solution of problem (13) if it is 

efficient and there is a real N > 0 such that for each i ∈
{1, 2, … , l}  and each (z, z) ∈ G satisfying 

Re (fi(z∗, z
∗
) − fi(z, z)) > 0,  there exists at least j ≠ i 

such that 

Re (fi(z, z) − fi(z∗, z
∗
)) ≤ NRe (fj(z, z) − fj(z∗, z

∗
)) 

Remark 2. An efficient solution which is not proper is said 

to be improperly efficient. 

Remark 3.  The proper efficiency of the problem (1) in the 

case that  𝑈 is a complex polyhedral cone. In fact, if 𝑈 is 

polyhedral, i.e., 

𝑈 = {𝑧 ∈ ℂ𝑝: 𝑅𝑒 𝑏𝑖𝑧 ≥ 0, 𝑖 = 1, 2, … , 𝑙; 𝑏𝑖 ∈ ℂ𝑝 },       (14) 

Then 

f(z, z) − f(z∗, z
∗
) ∈ U , for  (z, z)  and (z∗, z

∗
) ∈ G  is 

equivalent to 

Rebif(z, z) ≥ Rebi f(z∗, z
∗
), for i=1, 2,…, l 

Therefore, by putting fi(z, z) = bifi(z, z), i = 1, 2, … , l, the 

problem (1) can be identified with the p -real objective 

optimization problem (13) 

Definition 12.  Let U = {z ∈ ℂp: Re biz ≥ 0, i =

1, 2, … , l; bi ∈ ℂp }  . A point (z∗, z
∗
)   is said to be a 

properly efficient solution of problem (1) with respect to U 

if it is efficient with respect to U  if it is efficient with 

respect to U and there is a real N > 0 such that for each i ∈
{1, 2, … , l} and each (z, z) ∈ G satisfying 

f(z, z) − f(z∗, z
∗
) ∈ Ui = {z ∈ ℂp: Re biz ≥ 0, i =

1, 2, … , l; bi ∈ ℂp} there exists at least j ≠ i such that  

f(z, z) − f(z∗, z
∗
) ∈ Uij = {z ∈ ℂp: Re (bi + Nbj)z ≥

0, i = 1, 2, … , l; bi ∈ ℂp}. 

Proposition 3. Let U  defined in (14) , then the point 

(z∗, z
∗
)is a properly efficient solution of problem (13) with 

𝑓(𝑧, 𝑧) = (fi(𝑧, 𝑧)), fi(𝑧, 𝑧) = bi𝑓(𝑧, 𝑧), i = 

1, 2, … , l                       (15) 

If and only if (z∗, z
∗
)  is properly efficient solution of 

problem (1) with respect to U. 

5.1. Characterization of Properly efficient solutions 

Now, in the case of  U is polyhedron which is defined as in 

(14), and  from theorem3  it follows that  for any 𝜁 ∈ 𝑈°, 

there exists 𝜗 ∈ ℜ𝑙 , 𝜗 ≥ 0  such that 𝜁 = 𝑏𝐻𝜗 , 𝑏 =
[𝑏1  𝑏2 … 𝑏𝑙]𝑇. Therefore, problem (14) can be rewritten ad 

follows 

   min 𝑅𝑒 𝜗𝑇𝑏𝑓(𝑧, 𝑧)  
    Subject to                                                              (16) 

                   (𝑧, 𝑧) ∈ 𝐺, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝜗 ∈ ℜ𝑙 , 𝜗 ≥ 0. 
Theorem 7.  Let U defined in (14), 𝑓 be a convex function 

with respect to U  on P  and g  be concave function with 

respect to a closed convex cone M  on P. If (z∗, z
∗
) is a 

properly efficient solution for problem (1) with respect to 

U , then there is 𝜗 ∈ ℜ𝑙 , 𝜗 = (𝜗1  𝜗2 … 𝜗3)𝑇 > 0 , with 

∑ 𝜗𝑟 = 1𝑙
𝑟=1  such that (z∗, z

∗
) is an optimal solution for 

problem (16). 

Proof. If (z∗, z
∗
) is a properly efficient for problem (1) 

with respect to U , then it is properly efficient for the 

problem (13) accompanied with (8). 

On the other hand, since 𝑓(𝑧, 𝑧) is a convex with respect to 

𝑈 , one can easily find that 𝑅𝑒 𝑏𝑓(𝑧, 𝑧)  is convex with 

respect to ℜ+
l  on P, this is leads to the existence of 𝜗 ∈

ℜ𝑙 , 𝜗 = (𝜗1  𝜗2 … 𝜗3)𝑇 > 0  with ∑ 𝜗𝑟 = 1𝑙
𝑟=1  such that 

(z∗, z
∗
) is an optimal solution for problem (9). 

Theorem 8.  Let U  defined in (14) and 𝜗 ∈ ℜ𝑙 , 𝜗 =
(𝜗1  𝜗2 … 𝜗3)𝑇 > 0 with ∑ 𝜗𝑟 = 1𝑙

𝑟=1  such that (z∗, z
∗
) is 

an optimal solution for problem (16), then (z∗, z
∗
)  is a 

properly efficient for problem (13) with respect to U. 

Proof.  If (z∗, z
∗
)  is a solution for problem (16), then 

(z∗, z
∗
) is a properly efficient for problem (6) satisfying  

equation  (8), and hence (z∗, z
∗
) is properly efficient for 

problem (1) with respect to U. 

5.2. Kuhn- Tucker's conditions for proper efficiency  

In this section, the conditions for proper efficiency are 

established in the case of 𝑈 is a polyhedral cone. 

Theorem 11.  Assume that U  defined in (14), M  is a 

polyhedral cone in ℂ𝑚 ; f: ℂ2n → ℂ, g: ℂ2n → ℂ  are 

analytic functions at a feasible point (z∗, z
∗
) at which the 

Kuhn- Tucker's constraint qualification holds, f is convex 

on P with respect to U, g is concave on P with respect to 

M. Then a necessary condition for (z∗, z
∗
) to be a properly 

efficient solution for problem (1) with respect to U is that 

there is u ∈ (M (g(z∗, z
∗
)))

°

 and 𝜗 ∈ ℜ𝑙 , 𝜗 =

(𝜗1  𝜗2 … 𝜗3)𝑇 > 0 with ∑ 𝜗𝑟 = 1𝑙
𝑟=1  such that  

  𝜗𝑇𝑏∇zf(z∗, z
∗
) + 𝜗𝑇𝑏∇z(z∗, z

∗
) − uHDzg(z∗, z

∗
) −

uTDzg(z∗, z
∗
) = 0, and                                           (17)   

  Re uHg(z∗, z
∗
) = 0                                                (18) 

 Proof. Since (z∗, z
∗
) is a properly efficient for problem (1) 

with respect to U , then from theorem7, there is a 𝜗 ∈
ℜ𝑙 , 𝜗 = (𝜗1  𝜗2 … 𝜗3)𝑇 > 0  with ∑ 𝜗𝑟 = 1𝑙

𝑟=1  such that 

(z∗, z
∗
)  is an optimal solution  for problem (9). From 

theorem4, there exist a u ∈ (M (g(z∗, z
∗
)))

°

 such that 

∇z𝜗𝑇𝑏f(z∗, z
∗
) + ∇z𝜗𝑇𝑏(z∗, z

∗
) − uHDzg(z∗, z

∗
) −

uTDzg(z∗, z
∗
) = 0, and  

Re uHg(z∗, z
∗
) = 0. 

Theorem 12.  Assume that U defined in (7), M is a closed 

convex cone in ℂ𝑚; 𝑓 is an analytic function and convex 

on 𝑃  with respect to 𝑈, 𝑔    is an analytic function and 

concave on 𝑃   with respect to 𝑀 . Then a sufficient 

condition for (z∗, z
∗
) ∈ 𝐺 to be properly efficient solution 

for the problem (1) with respect to U is that there is 𝑢 ∈ 𝑀°  

and 𝜗 ∈ ℜ𝑙 , 𝜗 = (𝜗1  𝜗2 … 𝜗3)𝑇 > 0  with ∑ 𝜗𝑟 =𝑙
𝑟=1

1  such that the equalities (17) and (18hold. 

Proof. Since 𝑓  is a convex function with respect to 

𝑈, 𝑅𝑒 𝑏𝑓(z, z) is convex with respect to ℜ+
𝑙 on P. It follows 

from 𝜗 > 0 that 𝑅𝑒𝜗𝑇 𝑏𝑓(z, z) is convex with respect to 

ℜ+  on 𝑃.  Therefore, theorem4 implies to (z∗, z
∗
)  is a 
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solution of problem (9), that (z∗, z
∗
) is a properly efficient 

for problem (1) with respect to U. 

Table 1 

List of symbols 

Symbols  Meaning  

ℂm×n Complex 𝑚 × 𝑛 matrix 

A Matrix ℂ𝑚×𝑛 

AT Transpose of A 

A Conjugate of A 

AH Conjugate transpose 

Re x Real part 

 Int U The interior of U 

ℜ+
𝑘  Non- negative orthant  of ℜ𝑛, 

 ℜ+
𝑘 = {𝑥 ∈ ℜ𝑛: 𝑥𝑗 ≥ 0, 𝑗 = 1, 𝑛}. 

 

6. Conclusions and Future Works 

In this paper, the necessary and sufficient conditions for a 

point to be an efficient or a properly efficient solution of a 

multi-objective complex programming problem have 

studied, when the ordering has taken with respect to a 

pointed closed convex cone. The future of this work 

summarized as in the following points: 

A. Developing the duality theory in both single-objective 

and multi-objective optimization problems.  

B. Deriving the optimality conditions under other types 

of generalized convexity such as E-convexity and 

invexity. 

C. Deriving the saddle point optimality criteria without 

differentiability requirements. 

D. Study of fractional programming problems in both 

single-objective and multi-objective programming 

problems. 

E. Study of multiplicative programming problems. 

F. Study of stability in parametric programming 

problems over complex space. 

G. Extending the various concepts of proper efficiency 

to complex space and establishing the relationships 

between them. 
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