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Abstract. We show that the modal µ-calculus over GL collapses to the modal frag-

ment by showing that the fixpoint formula is reached after two iterations and answer to

a question posed by van Benthem in [4]. Further, we introduce the modal µ
∼-calculus by

allowing fixpoint constructors for any formula where the fixpoint variable appears guarded

but not necessarily positive and show that this calculus over GL collapses to the modal

fragment, too. The latter result allows us a new proof of the de Jongh, Sambin Theorem

and provides a simple algorithm to construct the fixpoint formula.
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1. Introduction

The modal µ-calculus is an extension of propositional modal logic, with
least and greatest fixpoint operators. The term “µ-calculus” and the idea of
extending modal logic with fixpoints appeared for the first time in the paper
of Scott and De Bakker [11] and was further developed by others. Nowadays,
the term “modal µ-calculus” stands for the formal system introduced by
Kozen [10]. The standard semantics of the modal µ-calculus is given by
transition systems. As usual, formulae are interpreted as subsets of a system,
the set of states where the property expressed by the formula holds. Many
natural properties such as “there is an infinite path” can be expressed by
a modal µ-formula. Indeed, it is a powerful logic of programs subsuming
dynamic and temporal logics like PDL, PLTL, CTL and CTL∗. We refer
to Bradfield and Stirling’s tutorial article [8] or Stirling’s book [12] for a
thorough introduction to this system.

Gödel-Löb logic, GL, is used to investigate what arithmetical theories
can express in a restricted language about their provability predicates. As a
modal logic, provability logic has been studied since the early seventies, and
has had important applications in the foundations of mathematics. Beside
the arithmetical interpretation there is also a semantics given, as for almost
all modal logics, by transition systems. The class of all transitive and upward
well-founded systems forms a complete semantics for GL.
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Fixpoints and fixpoint theorems play an important role in GL. The most
famous one, the existence of a fixpoint for guarded formulae was proved by de
Jongh and Sambin independently (c.f., [15]). Even though it is formulated
and proved by strictly modal methods, the fixpoint theorem still has great
arithmetical significance. The uniqueness of the fixpoint was proved later by
Bernardi, de Jongh and Sambin independently (c.f., [15]).

Since the modal µ-calculus is a general framework to study fixpoints in
modal logic, studying the modal µ-calculus over GL is a promising work.
This has been done by van Benthem in [4] and Visser in [17]. Both authors
establish, by using the de Jongh, Sambin fixpoint theorem, that the modal
µ-calculus over GL collapses to its modal fragment. But since they use the
already known fixpoint theorem in order to establish this collapse in [4] van
Benthem writes:

“Our . . . analysis does not explain why provability fixed-points are
explicitly definable in the modal base language. Indeed, the general
reason seems unknown.”

In this paper we answer this question. More precisely, we prove the collapse
of the modal µ-calculus over GL without using the de Jongh, Sambin Theo-
rem by showing that fixpoints are reached after two iterations of well-named
fixpoint formulae.

Fixpoint theorems in GL hold also for modal formulae where the variable
appears guarded but not necessarily positively and, from this point of view,
this first result is not completely satisfactory since modal µ-calculus allows
fixpoint constructors only for syntactically positive formulae. Therefore, we
also introduce the modal µ∼-calculus which allows fixpoint constructors for
formulae where the fixpoint variable appears guarded. As can be done also
for the standard µ-calculus we define the semantics by way of games, in this
case only over transitive and upward well-founded transition systems and, by
using game-theoretical, we show that the modal µ∼-calculus collapses to the
modal fragment by providing an explicit syntactical translation of the modal
µ∼-calculus into GL which preserves logical equivalence. As a corollary of the
collapse, we obtain a new version of the de Jongh, Sambin Fixpoint Theorem
with a simple algorithm which shows how the fixpoint can be computed. In
this sense we give an answer to a generalisation of van Benthem’s question.
Summing up, the modal µ∼-calculus allows us to apply techniques similar
as those known from the standard µ-calculus to GL and could be regarded
as a starting point for further studies in this direction.

Both the collapse of the modal µ-calculus over GL and the one of the
µ∼-calculus over the same class of models are proved by using techniques
and results from [2].
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In the next section we repeat the preliminaries and some results which
are already known. In Section 3 we analyse the modal µ-calculus over GL

and show that it collapses to the modal fragment. In the last section we
introduce the modal µ∼-calculus and show a collapse to the modal fragment.
The result is then used to provide a new proof of the uniqueness theorem of
Bernardi, de Jongh and Sambin and of the existence theorem of de Jongh,
Sambin. For the last one we also give a simple algorithm which shows how
the fixpoint can be computed.

2. Preliminaries

2.1. Gödel-Löb Logic GL

We start from an infinite countable set Prop of propositional variables. Then
the collection LGL of GL-formulae is given by:

ϕ ::= p | ∼p | � | ⊥ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ♦ϕ | �ϕ

where p ∈ Prop. If all propositional variables occurring in ϕ are in P ⊆
Prop, we write ϕ ∈ LGL(P). If ψ is a subformula of ϕ, we write ψ ≤ ϕ.
We write ψ < ϕ when ψ is a proper subformula. sub(ϕ) is the set of all
subformulae of ϕ. The formula ¬ϕ is defined by using de Morgan dualities
for boolean connectives and the modal dualities for ♦ and � and the law of
double negation. As usual, we introduce implication ϕ → ψ as ¬ϕ ∨ ψ and
equivalence ϕ ↔ ψ as (ϕ → ψ) ∧ (ϕ → ψ). We say that p ∈ Prop is guarded

in ϕ if p ≤ ϕ and all occurrences of p are in the scope of a modal operator.
The axioms and inference rules below give a deduction system for GL.

As usual we write GL � ϕ if there is a derivation of ϕ in the system presented
below.

Axioms: All classical propositional tautologies, the Distribution Axiom

from modal logic
(�(α → β) ∧ �α) → �β

and the Löb Axiom

�(�α → α) → �α.

Inference Rules: Beside the classical Modus Ponens

α α → β

β

we have the Necessitation Rule
α

�α
.
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As for all modal logics the semantics of GL is given by transition systems.
A transition system T is of the form (S,→T , λT ) where S is a set of states,
→T is a binary relation on S called the accessibility relation and λ : Prop →
℘(S) is a valuation for all propositional variables. A transition system T with
a distinguished state s is called a pointed transition system and denoted by
(T , s). T denotes the class of all pointed transition systems. The accessibility
relation is called upward well-founded if there is no infinite chain of the form

s0 →T s1 →T s2 → . . . .

By T
wft we denote the subclass of pointed transition systems such that the

accessibility relation is transitive and upward well-founded.
Given a transition system T , the denotation of ϕ in T , ‖ϕ‖T , that is, the

set of states satisfying a formula ϕ is defined inductively on the structure of
ϕ. For all transition systems we set

• ‖p‖T = λ(p) and ‖ ∼p‖T = S \ λ(p) for all p ∈ Prop,

• ‖α ∧ β‖T = ‖α‖T ∩ ‖β‖T ,

• ‖α ∨ β‖T = ‖α‖T ∪ ‖β‖T ,

• ‖�α‖T = {s ∈ S | ∀t((s →T t) ⇒ t ∈ ‖α‖T )}, and

• ‖♦α‖T = {s ∈ S | ∃t((s →T t) ∧ t ∈ ‖α‖T )}.

We say that a pointed transition system (T , s) is a model of a GL-formula
if and only if s ∈ ‖ϕ‖T . If all pointed transition systems (T , s) ∈ T

wft are
a model of ϕ then we write GL |= ϕ. A proof of the next theorem can be
found in [6].

Theorem 2.1. For all GL-formulae ϕ we have that

GL � ϕ if and only if GL |= ϕ.

2.2. The modal µ-calculus

The language of the modal µ-calculus results by adding greatest and least
fixpoint operators to propositional modal logic. More precisely, given an
infinite countable set Prop of propositional variables, the collection Lµ of
modal µ-formulae (or simply µ-formulae) is defined as follows:

ϕ ::= p | ∼p | � | ⊥ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ♦ϕ | �ϕ | µx.ϕ | νx.ϕ

where p, x ∈ Prop and x occurs only positively in ηx.ϕ (η ∈ {ν, µ}), that is,
∼x is not a subformula of ϕ.



On Modal µ-Calculus and Gödel-Löb Logic 149

The fixpoint operators µ and ν can syntactically be viewed as quantifiers.
Therefore we use the standard terminology and notations as for quantifiers
and, for instance, free(ϕ) denotes the set of all propositional variables oc-
curring free in ϕ and bound(ϕ) those occurring bound. Further, we define
var(ϕ) = free(ϕ) ∪ bound(ϕ). If ψ is a subformula of ϕ, we write ψ ≤ ϕ.
We write ψ < ϕ when ψ is a proper subformula. sub(ϕ) is the set of all
subformulae of ϕ. We write ϕ ∈ Lµ(P) if it holds that free(ϕ) ⊆ P, with
P ⊆ Prop.

The negation ¬ϕ of a µ-formula ϕ is defined inductively as for GL-
formulae and, further, for µ and ν we use

¬µx.ϕ(x) ≡ νx.¬ϕ(x)[x/¬x] and ¬νx.ϕ(x) ≡ µx.¬ϕ(x)[x/¬x].

Given a µ-formula ϕ, for all sets of bound variables X ⊆ bound(ϕ), the
formula ϕfree(X) is obtained from ϕ by eliminating all fixpoint operators
binding a variable x ∈ X but leaving the previously bound variables x as a
free occurrences. When X = bound(ϕ), sometimes we simply write ϕfree.

Let ϕ ∈ Lµ(P). An alternating µ-chain in ϕ of length k is a sequence

ϕ ≥ µx0.ψ0 > νx1.ψ1 > · · · > µ/νk−1.ψk−1

where for every i < k − 1 the variable xi is free in every ψ such that ψi ≥
ψ ≥ ψi+1. The maximum length of an alternating µ-chain in ϕ is denoted by
maxµ(ϕ). ν-chains and maxν(ϕ) are defined analogously. The alternation

depth of a µ-formula ϕ, denoted by ad(ϕ), is the maximum of maxµ(ϕ) and
maxν(ϕ). If ϕ is a purely modal formula, we set ad(ϕ) = 0.

The axioms and inference rules below define the deduction system Koz.
As usual we write Koz � ϕ if there is a derivation of ϕ in the system presented
below.

Axioms: All classical propositional tautologies and the Distribution Ax-

iom from modal logic and the fixpoint axioms

ηx.ϕ(x) ↔ ϕ(ηx.ϕ(x)), η ∈ {µ, ν}.

Inference Rules: Beside the classical Modus Ponens and the Necessitation

Rule we have the Induction Rule

ϕ → α[x/ϕ]

ϕ → νx.α
.

It can be shown that the fixpoint axioms can be replaced by the following
weaker axioms:

νx.ϕ(x) → ϕ(νx.ϕ(x)) and µx.ϕ(x) ← ϕ(µx.ϕ(x)).
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We say that a variable x ∈ bound(ϕ) is well-bound in ϕ if no two distinct
occurrences of fixpoint operators in ϕ bind x, and x occurs only once in ϕ.
A propositional variable p is guarded in a formula ϕ ∈ Lµ if every occurrence
of p in ϕ is in the scope of a modal operator. A formula ϕ of Lµ is said to be
well-named if every x ∈ bound(ϕ) is guarded and well-bounded in ϕ. For all
well-named ϕ, if x is bound in ϕ then there is exactly one subformula occur-
rence ηx.δ ≤ ϕ which bounds x, this formula is denoted by ϕx. In Lemma
2.4 we will see that any µ-formula ϕ is equivalent to a well-named formula
wn(ϕ), therefore, if nothing else mentioned, we assume that all formulae are
well-named.

Let ϕ(x) be a µ-formula. If x is free and occurs only positively in ϕ, then
we define ϕn(x) for all n inductively such that ϕ1(x) = ϕ(x) and such that

ϕk+1(x) ≡ ϕ[x/ϕk(x)].

ϕn(�) and ϕn(⊥) are obtained by substituting x with � or ⊥ respectively.
The rank, rank(ϕ), of a formula ϕ is an ordinal number defined induc-

tively as follows:

• rank(p) = rank(∼ p) = 1

• rank(� α) = rank(α) + 1 where �∈ {�,♦}

• rank(α ◦ β) = max{rank(α), rank(β)} + 1 where ◦ ∈ {∧,∨}

• rank(ηx.α) = sup{rank(αn(x)) + 1 ; n ∈ N} where η ∈ {ν, µ}.

In the joint work with Krähenbühl [3] (see also [1]) one of the authors shows
that the algorithm for rank terminates. Further, it is an easy exercise to show
that for all formulae ϕ we have that rank(ϕ) = rank(¬ϕ). The next lemma
shows that well-naming iterated formulae which are already well-named does
not affect the rank.

Lemma 2.2. For all well-named formulae ϕ such that x appears only posi-

tively and all n ∈ N we have that

rank(ϕn(�)) = rank(wn(ϕn(�))).

Similarly for ⊥.

Proof. The result follows from the fact that since ϕ is well-named the
equivalent well-named formula is given by simply renaming bound variables
in ϕn(⊥). This can be verified by showing by induction on n that there
are no free occurrences of a variable x in ϕn(�) which becomes bound in
ϕ(ϕn(�)).
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As for GL the semantics of modal µ-calculus is given by transition sys-
tems. In order to define the denotation to fixpoint formulae let λ be a
valuation, p a propositional variable and S′ a subset of states S; we set for
all propositional variables p′

λ[p �→ S′](p′) =

{
S′ if p′ = p,

λ(p′) otherwise.

Given a transition system T = (S,→T , λT ), then T [p �→ S′] denotes the
transition system (S,→T , λT [p �→ S′]). Given a transition system T , the
denotation of ϕ in T , ‖ϕ‖T , that is, the set of states satisfying a formula ϕ
is defined inductively on the structure of ϕ as it was for GL and, in addition
we set

• ‖νx.α‖T =
⋃
{S′ ⊆ S | S′ ⊆ ‖α(x)‖T [x �→S′]}, and

• ‖µx.α‖T =
⋂
{S′ ⊆ S | ‖α(x)‖T [x �→S′] ⊆ S′}.

For a formula ϕ(x) and set of states S′ ⊆ S we sometimes write ‖ϕ(S′)‖T
instead of ‖ϕ(x)‖T [x �→S′]. When clear from the context we use ‖ϕ(x)‖T for
the function

‖ϕ(x)‖T :

{
℘(S) → ℘(S)

S′ �→ ‖ϕ(S′)‖T .

By the Tarski-Knaster Theorem, c.f. [16], ‖νx.α(x)‖T is the greatest fixpoint
and ‖µx.α(x)‖T the least fixpoint of the operator ‖α(x)‖T . Also for the
modal µ-calculus we have a completeness theorem, due to Walukiewicz.

Theorem 2.3 ([18]). For all µ-formulae ϕ we have that

|= ϕ if and only if Koz � ϕ.

The next lemma states some basic properties of denotations.

Lemma 2.4. For all transition systems T = (S,→T , λT ) and all formulae ϕ
we have that

1. ‖¬ϕ‖T = S \ ‖ϕ‖T ,

2. ‖ηx.ηy.ϕ(x, y)‖T = ‖ηx.ϕ(x, x)‖T , where η ∈ {µ, ν},

3. ‖νx.ϕ(x)‖T = ‖ϕ(�)‖T , if x is not guarded,

4. ‖µx.ϕ(x)‖T = ‖ϕ(⊥)‖T , if x is not guarded.

5. There is a well-named formula wn(ϕ) such that ‖ϕ‖T = ‖wn(ϕ)‖T .
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Proof. Part 1 to part 4 are classical properties of the modal µ-calculus.
Part 5 is a straightforward consequence of parts 2 to 4.

From now on, we assume that wn is a function associating to every
formula ϕ a well-named formula wn(ϕ) and by Lwn

µ we denote the set of all
well-named µ-formulae.

2.3. Embedding GL into the modal µ-calculus

In this subsection we define an embedding t from GL into the modal µ-
calculus. First, we define the function ()∗ : LGL(P ) → Lµ(P ) recursively on
the structure of the formula such that

• (p)∗ ≡ p and (∼p)∗ ≡∼p,

• (α ∧ β)∗ ≡ (α)∗ ∧ (β)∗ and (α ∨ β)∗ ≡ (α)∗ ∨ (β)∗

• (�α)∗ ≡ νx.�(x ∧ (α)∗), and

• (♦α)∗ ≡ µx.♦(x ∨ (α)∗).

The embedding t : LGL(P ) → Lµ(P ) is now defined as

t(ϕ) ≡ µx.�x → (ϕ)∗.

The following theorem is due to van Benthem [4]. It shows that GL which
semantically lives on transitive and upward well-founded transition systems
can be translated into the modal µ-calculus over arbitrary transition systems.
For the first equivalence van Benthem provides a syntactical proof without
using completeness results.

Theorem 2.5 ([4]). For all formulae ϕ ∈ LGL we have that

(GL � ϕ ⇔ Koz � t(ϕ)) and (|=GL ϕ ⇔ |= t(ϕ)).

2.4. Parity games

Let V be a set. By V ∗ we denote the set of finite sequences on V , and by
V + we denote the set of nonempty sequences. Finally, by V ω we denote the
set of infinite sequences over V .

A game G is defined in terms of an arena A and a winning condition
W . In our case an arena is simply a bi-partite graph A = 〈V0, V1, E〉, where
V0∩V1 = ∅ and the edge relation, or set of moves, is E ⊆ (V0 ∪ V1)×(V0 ∪ V1).
Let V = V1 ∪ V2 be the set of vertices, or positions, of the arena. Given two
vertices a, b ∈ V , we say that b is a successor of a, if (a, b) ∈ E. The set of
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all successors of a is sometimes denoted by aE or E(a). We say that b is
reachable from a if there are a1, . . . , an ∈ V such that a1 = a, an = b and
for every 0 < i < n, ai+1 ∈ aiE.

A play in the arena A can be finite or infinite. In the former case, the play
is a non empty finite path π = a1 . . . an ∈ V + such that for every 0 < i < n,
ai+1 ∈ aiE and anE = ∅. In the last case, the play consists in an infinite
path π = a1 . . . an · · · ∈ V ω with ai+1 ∈ aiE for every i > 0. Thus a finite
or infinite play in a game can be seen as the trace of a token moved on the
arena by two Players, Player 0 and Player 1, in such a way that if the token
is in position a ∈ Vi, then Player i has to choose a successor of a where to
move the token.

The set of winning conditions W is a subset of V ω. Thus, given a game
G = (A,W ) a play π is winning for Player 0 iff

1. if π is finite, then the last position an of the play is in V1,

2. if π is infinite, then it must be a member of W .

A play is winning for Player 1 if it is not winning for Player 0. In this
framework we are interested in what is called a parity winning condition.
That is, given a set of vertices V , we assume a colouring or ranking function
Ω : V → ω such that Ω[V ] is bounded. Then, the set W of winning conditions
is defined as the set of all infinite sequences π such that the greatest priority
appearing infinitely often in Ω(π) is even.

Let A be an arena. A strategy for Player i is simply a function σi :
V ∗Vi → V , with i = 0, 1. A prefix a1 . . . an of a play is said to be compatible

or consistent with σi iff for every j with 1 ≤ j < n and aj ∈ Vi, it holds
that σi(a1 . . . aj) = aj+1. A finite or infinite play is compatible or consistent
with σi if each of its prefixes which is in V ∗Vi is compatible with σi. The
strategy σi is said to be a winning strategy for Player i on W if every play
consistent with σi is winning for Player i. A position a ∈ V is winning for
Player i in the parity game G iff there is a strategy σ for Player i such that
every play compatible with σ which starts from a is winning for Player i. A
winning strategy σ is called memoryless if σ(a1 . . . an) = σ(b1 . . . bn), when
an = bn. For parity games we have a memoryless determinacy result.

Theorem 2.6 ([9, 14]). In a parity game, one of the Players has a memo-

ryless winning strategy from each vertex.

Having in mind this theorem, in the sequel we assume that all winning
strategies are memoryless, that is, a winning strategy in a parity games for
Player 0 is a function σ : V0 → V , analogously for Player 1.
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2.5. Evaluation games for the modal µ-calculus

In this subsection we will see, given ϕ ∈ Lµ and a pointed transition system
(T , s0) with T = (S,→T , λT ), how to determine the corresponding parity
game E(ϕ, (T , s0)), called also the evaluation game of ϕ over (T , s0).

The arena of E(ϕ, (T , s0)) is the triple 〈V0, V1, E〉 which is defined recur-
sively such that

〈ϕ, s0〉 ∈ V

(remember that V = V0∪V1) and such that if 〈ψ, s〉 ∈ V then we distinguish
the following cases:

• If ψ ≡ (∼)p and p ∈ free(ϕ). In this case we set E〈ψ, s〉 = ∅ and

〈ψ, s〉 ∈ V1 iff

{
s ∈ λT (ψ) if ψ ≡ p

s �∈ λT (ψ) if ψ ≡∼p.

• If ψ ≡ x and x ∈ bound(ϕ). Given 〈ϕx, s〉 ∈ V , in this case we set

(〈ψ, s〉, 〈ϕx, s〉) ∈ E

and we have

〈ψ, s〉 ∈ V0 iff x is a µ-variable.

• If ψ ≡ α ∧ β. In this case we have 〈ψ, s〉 ∈ V1 and

(〈ψ, s〉, 〈α, s〉) ∈ E and (〈ψ, s〉, 〈β, s〉) ∈ E

• If ψ ≡ α ∨ β. In this case we have 〈ψ, s〉 ∈ V0 and

(〈ψ, s〉, 〈α, s〉) ∈ E and (〈ψ, s〉, 〈β, s〉) ∈ E

• If ψ ≡ �α. In this case we have 〈ψ, s〉 ∈ V1 and

(〈ψ, s〉, 〈α, s′〉) ∈ E for all s′ such that s →T s′.

• If ψ ≡ ♦α. In this case we have 〈ψ, s〉 ∈ V0 and

(〈ψ, s〉, 〈α, s′〉) ∈ E for all s′ such that s →T s′.

• If ψ ≡ νx.α. In this case we have 〈ψ, s〉 ∈ V1 and

(〈ψ, s〉, 〈α, s〉) ∈ E.
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• If ψ ≡ µx.α. In this case we have 〈ψ, s〉 ∈ V0 and

(〈ψ, s〉, 〈α, s〉) ∈ E.

We complete the definition of the parity game E(ϕ, (T , s0)) by defining the
partial priority function Ω : V → ω. The function is only defined on states
of the form 〈ηx.δ, s〉 ∈ V , where η ∈ {µ, ν}. In this case we have that:

Ω(〈ψ, s〉) =

⎧⎪⎪⎨
⎪⎪⎩

ad(ηx.δ) if η = µ and ad(ηx.δ) is odd, or
η = ν and ad(ηx.δ) is even;

ad(ηx.δ) − 1 if η = µ and ad(ηx.δ) is even, or
η = ν and ad(ηx.δ) is odd.

Remember that if the play π is finite, Player 0 wins iff the last vertex
of the play belongs to V1, and if the play π is infinite, Player 0 wins iff the
greatest priority appearing infinitely often is even.

Theorem 2.7 ([13]). (T , s) ∈ ‖ϕ‖ iff Player 0 has a winning strategy for

E(ϕ, (T , s)).

This result can be seen as the “game-theoretical version” of what is
usually called the Fundamental Theorem of the semantic of the modal µ-
calculus.

The next lemma verifies that over upward well-founded transition sys-
tems, least fixpoints and greatest fixpoints coincide.

Lemma 2.8. Let T be an upward well-founded transition system. Then, for

every ϕ(x) ∈ Lµ such that x is guarded and positive it holds that

‖µx.ϕ(x)‖T = ‖νx.ϕ(x)‖T .

Proof. Note, that in an evaluation game there are no infinite regeneration
of x since then we would have an infinite chain of the form

s0 →T s1 →T s2 . . . .

Therefore, a winning play for νx.ϕ is also a winning play for µx.ϕ. With
Theorem 2.7 we get the result.

3. The modal µ-calculus over GL

In this section we show that the expressivity of the modal µ-calculus over
GL, that is, over transitive and upward well-founded transition systems, is
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the same as the one of the modal base language. In this sense we answer to
van Benthem’s question cited in the introduction.

In [2] the authors showed that over transitive transition systems every
µ-formula is equivalent to a µ-formula without alternation of fixpoint op-
erators. Moreover, they showed that under certain conditions a fixpoint
operator can be eliminated by regenerating the formula:

Theorem 3.1 ([2]). Let T be a transitive transition system, and let ϕ(x) be

a well-named µ-formula such that x ∈ free(ϕ) and occurs only once. Then

1. If x is in the scope of a � in νx.ϕ(x) then

‖νx.ϕ(x)‖T = ‖ϕ2(�)‖T .

2. If x is in the scope of a ♦ in µx.ϕ(x) then

‖µx.ϕ(x)‖T = ‖ϕ2(⊥)‖T .

Definition 3.2. The translation τ : Lwn
µ (P ) → LGL(P ) is defined recursively

on the rank of the formula such that τ((∼)p) ≡ (∼)p, such that τ distributes
over boolean and modal connectives and such that for all η ∈ {µ, ν} we have

τ(ηx.ϕ) =

{
τ(wn(ϕ2(�))) x is in the scope of a � in ϕ,

τ(wn(ϕ2(⊥))) else.

Obviously, by first well-naming a formula and then applying τ we get a
translation from Lµ(P ) to LGL(P ).

Given the fact that over well-founded transition systems greatest and
least fixpoint coincide, this result gives us the collapse of the modal µ-
calculus over GL into its modal fragment.

Theorem 3.3. On transitive and upward well-founded transition systems we

have that the following holds for every ϕ ∈ Lµ:

‖ϕ‖T = ‖τ(wn(ϕ))‖T .

Proof. By Lemma 2.4 we can assume that ϕ is well-named. The proof is
by induction on rank(ϕ). The base case and the case where rank(ϕ) is a
successor ordinal are straightforward. If rank(ϕ) is a limit ordinal then ϕ is
of the form ηx.α (η ∈ {µ, ν}). Assume that ϕ is of the form νx.ϕ. If x is in
the scope of a � in ϕ then the induction step follows from Theorem 3.1.1.
Else, x is only in the scope of some ♦ in ϕ. In this case by Lemma 2.8 we
have that

‖νx.ϕ‖T = ‖µx.ϕ‖T

and by applying Theorem 3.1.2 we get the induction step. The case where
ϕ is of the form µx.ϕ is shown by analogous arguments.
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4. The modal µ
∼-calculus

In this section we introduce a new language, called the modal µ∼-calculus,
which, in some sense, can be seen as an extension of the guarded fragment of
the modal µ-calculus. The main novelty is that we allow the µ-operator to
bind negative (and guarded) occurrences of propositional variables. There-
fore, the modal µ∼-calculus allows us to refer explicitly, that is, in a µ-
calculus style, to fixpoints of guarded formulae. For example, the fixpoint
of the “equation” p ↔ α(p) where α(x) is a guarded formula can be directly
denoted as µx.α(x). As it can be done for the modal µ-calculus the seman-
tics of the modal µ∼-calculus is defined by way of games over transitive and
upward well-founded transition systems. We provide an explicit syntactical
translation of the modal µ∼-calculus into GL which preserves logical equiv-
alence. As a corollary of the collapse, we obtain a new version of the de
Jongh, Sambin Fixpoint Theorem. The modal µ∼-calculus could be seen as
a starting point for the application of tools of the standard µ-calculus, as
for example games, to GL.

4.1. Basic notions and results

The language of the modal µ∼-calculus, Lµ∼ , is almost the same as the one
for the modal µ-calculus with the only difference that we allow fixpoint
constructors also when the bound variable is appearing negatively, that is,
modal µ∼-formulae (or simply µ∼-formulae) are defined as follows:

ϕ ::= p | ∼p | � | ⊥ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ♦ϕ | �ϕ | µx.ϕ

where p, x ∈ Prop and where x appears guarded in ϕ. All syntactical notions,
such as Lµ∼(P), bound variable, rank of a formula, ϕx, ϕfree(X) etc., are
defined as for the modal µ-calculus. Without loss of generality, we always
suppose that bound(ϕ) ∩ free(ϕ) = ∅.

We say that a µ∼-formula ϕ is in normal form if bound(ϕ) ∩ free(ϕ) = ∅
and if for all subformulae of ϕ of the form µx.µy.α we have that

• α is not of the form µz.β, and

• x occurs only negatively in α and y has only positive occurrences in α.

For the substitution, if x ∈ free(ϕ), then ϕ[x/ψ] is given by substituting
¬ψ to every negative occurrence ∼ x and by substituting ψ to every positive
occurrence x. As for the modal µ-calculus negation is defined by using de
Morgan laws and the duality of � and ♦, in addition we set

¬µx.α ≡ µx.¬α[x/¬x].
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The last equivalence can be rather surprising at a first look. It is motivated
by the fact that the modal µ∼-calculus will be interpreted over upward well-
founded models, where least and greatest fixpoint coincide.

Note that, for every y ∈ bound(µx.α), y is negative in µx.α if and only
if y is negative in ¬µx.α.

The semantics for the modal µ∼-calculus over GL is given by evaluation
games on pointed upward well-founded and transitive transition systems.
These evaluation games are similar to the ones for the modal µ-calculus.
Let ϕ ∈ Lµ∼ and (T , s) ∈ T

wft.

• First we construct recursively the two arenas 〈V +
0 , V +

1 , E+〉 from ϕ and
(T , s) and 〈V −

0 , V −
1 , E−〉 from ¬ϕ and (T , s) as it is done for the modal

µ-calculus, then, for each vertex of the form 〈∼x, t〉 which was generated
in the recursion defining the arena 〈V +

0 , V +
1 , E+〉 we add the condition

〈∼x, t〉 ∈ V +
0 and E+(〈∼x, t〉) = ∅,

and if it was generated in the recursion defining the arena 〈V −
0 , V −

1 , E−〉
we set

〈∼x, t〉 ∈ V −
0 and E−(〈∼x, t〉) = ∅.

• Then the arena of E(ϕ, (T , s)) is the triple 〈V0, V1, E〉 defined by taking
the disjoint union of the two arenas, with the following modification:

– For every vertex of the form 〈∼x, t〉 where x ∈ bound(ϕ) we set

E(〈∼ x, t〉) =

{
{〈¬ϕx, t〉} ⊆ V − if 〈∼x, t〉 ∈ V +

0

{〈ϕx, t〉} ⊆ V + if 〈∼x, t〉 ∈ V −
0 .

Since we are on upward well-founded models and that all regenerated vari-
ables are guarded, all plays are finite. Therefore, we have that Player 0 wins
if and only if the last vertex of the play belongs to Player 1. Since therefore
we do not have to care about priorities the definition of evaluation game for
µ∼-formulae is admissible and well-defined1.

We say that a pointed upward well-founded transitive transition system
(T , s) is a model of a µ∼-formula if and only if Player 0 has a winning
strategy in E(ϕ, (T , s)). Further, we define

‖ϕ‖WT = {s ∈ S | (T , s) is a model of ϕ}.

1Note that on non well-founded models a play can be infinite. Thus, since in this kind
of plays it is possible that Player 0 and Player 1 “switch” their roles infinitely often, it is
not clear how to extend our game-theoretical approach also to non well-founded models
by adding a natural and uniform (parity) winning conditions for infinite plays.
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By ‖ϕ‖W we denote the class of all upward well-founded and transitive
models of ϕ, that is, all pointed transition systems (T , s), transitive and
upward well-founded, such that s ∈ ‖ϕ‖W .

Example 4.1. Consider the formula µx.♦ ∼ x. This formula says that
Player 0 can always force the number of the states visited in a play to be
even. Because the considered models are transitive, this implies that the
formula says that the root of the models has at least one accessible state.

The next lemma states some basic properties of denotation.

Lemma 4.2. For all transition systems T = (S,→T , λT ) and all µ∼-formulae

µx.ϕ we have that

1. ‖µx.µy.ϕ(x, y)‖WT = ‖µx.ϕ(x, x)‖WT ,

2. ‖µx1 . . . µxn.ϕ‖WT = ‖µxp(1) . . . µxp(n).ϕ‖
W
T , where p is any permutation

over {1, . . . , n},

3. There is a well-named formula wn(ϕ) such that ‖ϕ‖WT = ‖wn(ϕ)‖WT ,

4. There is a formula nf(ϕ) in normal form such that ‖ϕ‖T = ‖nf(ϕ)‖T .

Proof. Part 1 is by definition of the evaluation game for the modal µ∼-
calculus. Part 2 is proved by an easy induction on the length of the prefix.
Part 3 is a straightforward consequence of part 1. Part 4 is a straightforward
consequence of part 1 and part 2.

The next lemma shows that over upward well-founded models, the posi-
tively bounded fragment of the modal µ∼-calculus coincides with the guarded
fragment of the standard modal µ-calculus.

Lemma 4.3. Let ϕ ∈ Lµ∩Lµ∼. Then for every upward-well founded model T

‖ϕ‖WT = ‖ϕ‖T .

Proof. This follows by applying Theorem 2.7 to the fact that, for every
ϕ ∈ Lµ ∩ Lµ∼ , the evaluation games for Lµ∼ and the evaluation games for
the µ-calculus coincide over upward well-founded models.

The next lemma shows that negation behaves as expected.

Lemma 4.4. Let ϕ be a µ∼-formula and T = (S,→T , λT ) an upward well-

founded transition system. We have that

‖¬ϕ‖WT = S \ ‖ϕ‖WT .
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Proof. Consider the evaluation game E(ϕ, (T , s)) where Player 0 starts to
play as Player 1 and vice versa. Clearly Player 0 (resp. Player 1) has a
winning strategy in this modified game iff she has a winning strategy in
E(¬ϕ, (T , s)). From this fact we get the claim.

The next lemma shows that in the modal µ∼-calculus formulae of the
form µx.ϕ indeed define a fixpoint.

Lemma 4.5. For every µx.ϕ ∈ Lµ∼ and every upward well-founded transition

system T it holds that

‖µx.ϕ‖WT = ‖ϕ[x/µx.ϕ]‖WT .

Proof. This result follows straightforwardly by definition of the evaluation
game for the modal µ∼-calculus.

4.2. The unicity of fixpoints

Let T be a upward well-founded and transitive transition system and ϕ a
µ∼-formula. Consider an arbitrary (memoryless) strategy σ for Player 0, not
necessarily winning. We define the restriction of E(ϕ, (T , s0)) on σ, denoted
by E|σ(ϕ, (T , s0)), as follows:

• The set of positions V |σ of the restriction is given by all nodes which
are the positions of some play compatible with σ starting from position
〈ϕ, s0〉,

• The arena of E|σ(ϕ, (T , s0)) is the triple 〈V0|σ, V1|σ, E|σ〉 where:

1. V0|σ = ∅,

2. V1|σ = V |σ ,

3. if 〈ψ, s〉 ∈ V |σ ∩ V1 then E|σ(〈ψ, s〉) = E(〈ψ, s〉), and

4. if 〈ψ, s〉 ∈ V |σ ∩ V0 then E|σ(〈ψ, s〉) = {σ(〈ψ, s〉)}.

We have that in E|σ(ϕ, (T , s0)) the only Player who can move is Player 1.
This can be done because the moves for Player 0 are already completely de-
termined by the (memoryless) strategy σ. Clearly, any play in E|σ(ϕ, (T , s0))
is a play in E(ϕ, (T , s0)) compatible with σ. We say that a play π in
E|σ(ϕ, (T , s0)) is winning for Player 0 if and only if the play π is winning for
Player 0 in E(ϕ, (T , s0)). If σ is a winning strategy for Player 0 then any
play in E|σ(ϕ, (T , s0)) is winning for Player 0.
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Definition 4.6. Let T be a upward well-founded transitive transition sys-
tem, ϕ a µ∼-formula and σ any strategy for Player 0 in the parity game
E(ϕ, (T , s0)). Then, for every position 〈ψ, s〉 of E|σ(ϕ, (T , s0)), we define
a measure d(〈ψ, s〉):

d(〈ψ, s〉) =

{
0 if E|σ(〈ψ, s〉) = ∅

sup{d(〈ψ, s′〉) + 1 : 〈ψ, s′〉 ∈ E|σ(〈ψ, s〉)} otherwise.

Note that, since T is upward well-founded, there cannot be an infinite
chain of the form 〈a0, a1, a2, . . . 〉 such that for every i ≥ 0, 〈ai, ai+1〉 ∈ E|σ.
Therefore for all evaluation games E(ϕ, (T , s0)) and all vertices 〈ψ, v〉 in the
arena d(〈ψ, v〉) is a well-defined ordinal number, such that if a vertex 〈α, v′〉
is reachable from a vertex 〈β, v′′〉 then we have that d(〈α, v′〉) < d(〈β, v′′〉).

The next theorem shows that a fixpoint formula µx.α(x) in the modal
µ∼-calculus defines a fixpoint, as proved in Lemma 4.5, and that any other
fixpoint of a formula α(x) is identical to µx.α(x). In this sense it is an
existence and uniqueness theorem, and it is the central result of the section.

Theorem 4.7. Let ϕ(x) ∈ Lµ∼ and x ∈ free(ϕ) a guarded variable. Let T be

a upward well-founded transitive transition system. Then, for every A ⊆ S

we have

‖ϕ(A)‖WT = A if and only if A = ‖µx.ϕ(x)‖WT .

Proof. The implication from right to left follows from Lemma 4.5. In order
to prove the implication from left to right, suppose ‖ϕ(A)‖WT = A. From the
definition of evaluation game we straightforwardly can derive the inclusion
A ⊆ ‖µx.ϕ(x)‖WT . For the other inclusion, suppose that s ∈ ‖µx.ϕ(x)‖WT .
We have that Player 0 has a winning strategy σ in E(µx.ϕ, (T , s)). Consider
the restricted evaluation game E|σ(µx.ϕ, (T , s)). For each vertex 〈α, v〉 in
E|σ(µx.ϕ, (T , s)), we have that d(〈α, v〉) is a well-defined measure. Clearly,
with the following claim we finish the proof.

Claim: For all vertices of the form 〈α, s′〉 in E|σ(µx.ϕ, (T , s)) if α = µx.ϕ
then s′ ∈ A, and, if α = µx.¬ϕ then s′ /∈ A.

The proof of the claim is by induction on d. Since d(〈µx.ϕ, s′〉) > 0
and d(〈µx.¬ϕ, s′〉) > 0 the induction base is trivial. For the induction step
assume first that we have a vertex 〈µx.ϕ, s′〉 in E|σ(µx.ϕ, (T , s)). We distin-
guish two cases:

1. If from 〈µx.ϕ, s′〉 there is no a reachable vertex of the form 〈µx.ϕ, s′′〉
or 〈µx.¬ϕ, s′′〉 then we have that s′ ∈ ‖ϕ(A′)‖WT for all sets of states
A′ and, therefore, we also have s′ ∈ ‖ϕ(A)‖WT . Since by assumption
‖ϕ(A)‖WT = A we proved the claim.
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2. Otherwise we distinguish two subcases given by the first vertex reached
which is of either the form 〈µx.ϕ, s′′〉 or 〈µx.¬ϕ, s′′〉.

(a) If the first vertex reached of such kind is 〈µx.ϕ, s′′〉, then, since we
have that d(〈µx.ϕ, s′〉) > d(〈µx.ϕ, s′′〉), by induction hypothesis we
get s′′ ∈ A.

(b) If the first vertex reached of such kind is 〈µx.¬ϕ, s′′〉, then, since we
have that d(〈µx.ϕ, s′〉) > d(〈µx.¬ϕ, s′′〉), by induction hypothesis we
get s′′ /∈ A.

Therefore, for each play consistent with σ starting from 〈µx.ϕ, s′〉 it holds
that if it reaches first a vertex of the form 〈µx.ϕ, s′′〉 (or equivalently of
the form 〈x, s′′〉) we have that s′′ ∈ A, and, if it reaches first a vertex of
the form 〈µx.¬ϕ, s′′〉 (or equivalently of the form 〈∼x, s′′〉) we have that
s′′ �∈ A. But it can easily be seen that this implies s′ ∈ ‖ϕ(A)‖WT . Since
by assumption ‖ϕ(A)‖WT ⊆ A we finish the induction step for the case
α = µx.ϕ(x).

The induction step for a vertex of the form 〈µx.¬ϕ, s′〉 is verified in the
same way by using the fact that by Lemma 4.4 we have that ‖¬ϕ(A)‖WT =
S \ ‖ϕ(A)‖WT and, therefore, by assumption that ‖¬ϕ(A)‖WT = S \ A.

Corollary 4.8. Let ϕ and ψ be two µ∼-formulae. If for all upward well-

founded transitive transition system T we have that ‖ψ‖WT = ‖ϕ‖WT then for

all variables x and all T we have that

‖µx.ψ‖WT = ‖µx.ϕ‖WT

Proof. By the “if” direction of Theorem 4.7 we have that

‖µx.ψ‖WT = ‖ψ‖W
T [x �→‖µx.ψ‖WT ]

and with the premise of the corollary we get

‖µx.ψ‖WT = ‖ϕ‖W
T [x �→‖µx.ψ‖WT ]

.

Applying the “only if” direction of Theorem 4.7 we obtain that

‖µx.ψ‖WT = ‖µx.ϕ‖WT .

The next theorem provides a new proof of Bernardi, de Jongh, Sambin
Theorem (c.f. Chapter 8 in [6] or [15]) using our results on the modal µ∼-
calculus.
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Theorem 4.9. Let ϕ(x) ∈ LGL, where x is guarded. We have that

GL � �s(p ↔ ϕ(p)) ∧ �s(q ↔ ϕ(q)) → (p ↔ q)

where �sϕ :≡ �ϕ ∧ ϕ.

Proof. By Theorem 2.5 it is enough to show that for all ϕ(x) ∈ LGL it
holds that

|= µx.�x → (((�s)(p ↔ ϕ(p)) ∧ (�s)(q ↔ ϕ(q))) → (p ↔ q))∗.

And this can be done by showing for all ϕ(x) ∈ LGL that the following
formula is valid for all transition systems

µx.�x → (p ↔ ϕ(p)∧ q ↔ ϕ(q)∧�∗(q ↔ ϕ(q))∧�∗(q ↔ ϕ(q)) → (p ↔ q))
(1)

where �∗γ ≡ νx.�(x ∧ γ).
Assume, that we have

s ∈ ‖µx.�x ∧ p ↔ ϕ(p) ∧ q ↔ ϕ(q) ∧ �∗(q ↔ ϕ(q)) ∧ �∗(q ↔ ϕ(q))‖T .

Then, (T , s) is well-founded and we have for s and for all reachable states s′

from s that q ↔ ϕ(q) and p ↔ ϕ(p). Therefore, if we assume that T consists
of s and all reachable states from s, which is an admissible assumption, we
get that we have

λT (p) = ‖ϕ(λT (p))‖WT and λT (q) = ‖ϕ(λT (q))‖WT .

By Theorem 4.7 we get that

λT (p) = ‖µx.ϕ(x)‖WT and λT (q) = ‖µx.ϕ(x)‖WT .

and therefore we obtain that

s ∈ ‖p ↔ q‖T .

We have shown Equation 1 and finished the proof.

4.3. Collapsing the modal µ∼-calculus

In this subsection we provide an explicit syntactical translation of the modal
µ-calculus into GL which preserves logical equivalence. As a corollary, we
obtain a new proof of the de Jongh, Sambin Fixpoint Theorem which pro-
vides an explicit construction of the fixpoint formula based on the syntactical
translation defining the collapse.

First of all, remember that, by Lemma 4.2.4, we can suppose that every
µ∼-formula is in normal form.
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Lemma 4.10. Let α(x) be a modal formula such that x appears only nega-

tively and guarded. Then, for every T ∈ T
wft we have that

‖µx.(α[x/α(x)])‖WT = ‖µx.α(x)‖WT .

Proof. Let A be ‖µx.α(x)‖WT . By the “if” direction of Theorem 4.7 we
have that ‖α(A)‖WT = A. We can iterate this equivalence twice and get

‖α[x/α(A)]‖WT = A.

Applying the “only if” direction of Theorem 4.7 gives us

‖µx.((α[x/α(x)])‖WT = A

and therefore the proof of this lemma.

Note that, if x ∈ bound(µx.α) appears only negatively, then x occurs
only positively in µx.(α[x/α(x)]).

Everything is now set up in order to prove that the modal µ∼-calculus
over GL collapses to its modal fragment.

Definition 4.11. The syntactical translation I : Lµ∼ → LGL uses the trans-
lation τ from Lµ to LGL of Definition 3.2. It is defined recursively as follows:

• I(p) = p and I(∼p) =∼p.

• I(⊥) = ⊥ and I(�) = �.

• I(α ◦ β) = I(α) ◦ I(β), where ◦ ∈ {∧,∨}.

• I(� β) =� I(β), where �∈ {�,♦}.

• Assume that nf(µx.I(α(x))) is of the form µz.µy.α̂(z, y). We set

I(µx.α) = τ(wn(µz.β(z))),

where β(z) ≡ τ(wn(µy.α̂(z, y)))[z/τ(wn(µy.α̂(z, y)))]).

Lemma 4.12. The translation I is well-defined and, moreover, if

ϕ ∈ Lµ∼(P ) then I(ϕ) ∈ LGL(P ).

Proof. By induction on the structure of the formula. The only critical
case is when ϕ ≡ µx.α. By induction hypothesis, I(α(x)) ∈ LGL. There-
fore α̂(y, z) ∈ LGL. By definition of normal form, z occurs only nega-
tively and y occurs only positively in µz.µy.α̂(y, z). Thus, µy.α̂(y, z) ∈ Lµ.
This implies that wn(µy.α̂(y, z)) is well-defined and by Theorem 3.3 that



On Modal µ-Calculus and Gödel-Löb Logic 165

τ(wn(µy.α̂(y, z))) ∈ LGL. Note that y occurs only positively in α̂(y, z) and
wn(µy.α̂(y, z)) is given by duplicating and renaming y. Therefore, it follows
that z occurs only positively in

τ(wn(µy.α̂(z, y)))[z/τ(wn(µy.α̂(z, y)))]).

This implies that µz.β(z) ∈ Lµ and therefore that wn(µz.β(z)) is well-
defined. Thence by Theorem 3.3 we have that τ(wn(µz.β(z))) ∈ LGL.

Theorem 4.13. Let ϕ ∈ Lµ∼. On upward well-founded and transitive tran-

sition systems T we have that

‖ϕ‖WT = ‖I(ϕ)‖WT .

Proof. The proof goes by induction on rank(ϕ). If rank(ϕ) = 1 or rank(ϕ)
is a successor ordinal the induction step is straightforward. If rank(ϕ) is a
limit ordinal then ϕ is of the form µx.α. In this case by Lemma 4.2 we have
that

‖µx.I(α)‖WT = ‖µz.µy.α̂(z, y)‖WT .

Since by induction hypothesis we have that ‖I(α)‖WT = ‖α‖WT , with Corol-
lary 4.8 we get that

‖µx.I(α)‖WT = ‖µx.α‖WT

and therefore that

‖µx.α‖WT = ‖µz.µy.α̂(z, y)‖WT . (2)

Since by Lemma 4.12 and by construction of normal forms, α̂ is a modal
formula we have that µy.α̂ ∈ Lµ. With Theorem 3.3 and Lemma 4.2 we get
that for all upward well-founded and transitive T we have that

‖µy.α̂‖WT = ‖τ(wn(µy.α̂))‖WT .

By Corollary 4.8 it holds that

‖µz.µy.α̂‖WT = ‖µz.τ(wn(µy.α̂))‖WT

and with Equation 2 that

‖µx.α‖WT = ‖µz.τ(wn(µy.α̂))‖WT . (3)

Remember that y occurs only positively and z only negatively in α̂. More-
over wn(µy.α̂(y, z)) is obtained by multiplying and renaming y. Therefore,
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since z appears only negatively in µy.α(y, z) it appears only negatively in
wn(µy.α̂(y, z)), too. Now, note that by definition of τ we are “regenerat-
ing” the formula only on positive occurrences and, therefore, we have that
z appears only negatively in τ(µy.α̂), too. By Lemma 4.10 it holds that

‖µz.(τ(wn(µy.α̂)))‖WT = ‖µz.
(
τ(wn(µy.α̂))[z/τ(wn(µy.α̂))](z)

)
‖WT .

With Equation 3 we get

‖µx.α‖WT = ‖µz.
(
τ(wn(µy.α̂))[z/τ(wn(µy.α̂))](z)

)
‖WT .

By Lemma 4.2 and Theorem 3.3 we finish the induction step.

The last theorem of the paper is a new version of the de Jongh, Sambin
Fixpoint Theorem. Our version provides an explicit construction of the
fixpoint formula based on the definition of I.

Theorem 4.14. Let ϕ(x) ∈ LGL(P), where x is guarded. We have that

GL � I(µx.ϕ) ↔ ϕ(I(µx.ϕ)).

Further if ϕ ∈ LGL(P) then we have that I(µx.ϕ) ∈ LGL(P \ {x}).

Proof. The fact that I(µx.ϕ) ∈ LGL(P \ {x}) follows from Lemma 4.12.
For the provable equivalence, we show that GL |= I(µx.ϕ) ↔ ϕ(I(µx.ϕ)).
The proof then follows by Theorem 2.1. Let T ∈ T

wft. We have

‖I(µx.ϕ(x))‖T = ‖µx.ϕ(x)‖WT Lemma 4.3 and Theorem 4.13

= ‖ϕ(µx.ϕ(x))‖WT Lemma 4.5

= ‖ϕ(x)‖W
T [x �→‖µx.ϕ‖WT ]

Definiton of evaluation game

= ‖ϕ(x)‖W
T [x �→‖I(µx.ϕ)‖WT ]

Theorem 4.13

= ‖ϕ(x)‖T [x �→‖I(µx.ϕ)‖T ] Lemma 4.3

= ‖ϕ(I(µx.ϕ))‖T Definition of denotation

We end with two examples where we apply our translation in order to
find a solution of a modal equation.

Example 4.15. Consider the modal equation x ↔ ¬�x. This is the same
as

x ↔ ♦ ∼x. (4)
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By Theorem 4.14 the µ∼-formula µx.♦ ∼x is the solution of Equation 4. By
definition of I we have that

I(µx.♦ ∼x) = τ(µx.♦¬♦ ∼x) = τ(µx.♦�x) = ♦�♦��.

Note, that on upward-well-founded transitive transition system T , it holds
that ‖♦�♦��‖T = ‖¬�⊥‖T .

Example 4.16. Consider the modal equation x ↔ (�(x → q) → � ∼x).
This is the same as

x ↔ ♦(x∧ ∼q) ∨ � ∼x. (5)

By Theorem 4.14 the formula I(µx.♦(x∧ ∼q)∨� ∼x) is a solution of Equa-
tion 5. Let’s trace the construction of the fixpoint given by Definition 4.11:

We have that
α̂ ≡ ♦(x∧ ∼q) ∨ � ∼y

and that
τ(µx.α̂) ≡ ♦((♦(⊥∧ ∼q) ∨ � ∼y)∧ ∼q) ∨ � ∼y.

The formula τ(µx.α̂) can be simplified by using the following equivalence

‖τ(µx.α̂)‖T = ‖♦(� ∼y∧ ∼q) ∨ � ∼y‖T .

Now, we calculate β(y) of Definition 4.11 by using the simplified τ(µx.α̂)
above and get

β(y) ≡ ♦(�¬(♦(� ∼y∧ ∼q) ∨ � ∼y)∧ ∼q) ∨ �¬(♦(� ∼y∧ ∼q) ∨ � ∼y).

By definition of negation, we get

β(y) ≡ ♦(�(�(♦y ∨ q) ∧ ♦y)∧ ∼q) ∨ �(�(♦y ∨ q) ∧ ♦y).

Note that the following semantical equivalences hold

• ‖♦(�(�(♦y ∨ q) ∧ ♦y)∧ ∼q)‖T = ‖♦(�⊥∧ ∼q)‖T , and

• ‖�(�(♦y ∨ q) ∧ ♦y)‖T = ‖�⊥‖T .

Therefore, we get

‖µy.β(y)‖T = ‖♦(�⊥∧ ∼q) ∨ �⊥‖T = ‖�(�⊥ → q) → �⊥‖T .

Since I(µx.♦(x∧ ∼q)∨ � ∼x) ≡ τ(wn(µy.β(y))) it follows that the formula
�(�⊥ → q) → �⊥ is a solution of Equation 5.
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