
Peano ' ,s Sman t Ch. dnen

A p tovabiZity .ogicat study o . yszew with bu L -t--.n con-s.i tency

A.2beht VJssen

Department o3 ph..L osophy

univet s ty o6 U techt

Logic Group

Preprint Series

No-14

Department of Philosophy

University of Utrecht



Peavio',s Smattt Ch fd tan

A pnovubW y 2.acgtica,2 ztudy o6 zysteni with built-in cones tevccy

Alb ent V,iss etc

Department a4 Phitozophy
Uvu.veuity o4 Utrecht

Department of Philosophy

University of Utrecht

Heidelberglaan.2

3584 CS Utrecht

The Netherlands



Peano's Smart Children

A provability logical study of systems with built-in consistency

Albert Visser

1 Introduction

Consistency can be built into a system in various ways. The two best
known constructions are Rosser's and Feferman's. Both construction's
take a given formal system in the usual sense as initial data. Consider
for example Peano Arithmetic (PA). A proof in the Peano System will
count as a proof in the Rosser System based on PA, if there is no
shorter Peano proof of the negation of its conclusion. The Feferman
System can be described in various interesting ways -modulo provable
equivalence in PA of the formulas defining the set of theorems. One
such way is: a proof in the Peano System will count as a proof in the
Feferman System based on PA, if the finite set of arithmetical Peano
axioms smaller than or equal to the largest arithmetical Peano axiom
used in the proof is consistent.

The reasons such constructions occur in the literature are various:
i) They serve as counterexamples in the study of the relation

between Godel's first and second Incompleteness Theorem (see
Feferman [19601).

ii) They serve as didactical examples in philosophical discussions,
like the debate on intensionality in Mathematics (see e.g. Auer-
bach[ 1985]) and the discussion on the possible bearing of the In-
completeness Theorems on the Minds & Machines problem (see e.g.
Lucas[ 1961 ], Webb[ 1980], Bowie[ 1982]).

iii) Rosser's construction is.. used to sharpen Godel's first incomplete-
ness Theorem.

iv) Feferman's construction is an important tool in the study of
Relative Interpretability (see Feferman[ 1960], Orey[ 1961 ]).

The main objects of study in the present paper are certain variants of
both Rosser's an Feferman's construction. My motivations are closely
related to (i)-(iv) above:
a) There is much interest in the study of bimodal systems in the

current literature on Provability Logic (see e.g. Montagna[ 1984] and
Smorynski[ 1985]). There are two directions of research: first there
is the pure study of arithmetical selfreference, secondly there is
the study of arithmetical selfreference as a tool to unify selfre-
ferential arguments in Arithmetic (see Smorynski[ 1985], chapter 7).
In the first line of study one aims at characterizing the modal
logic for a certain 'given' class of interpretations. There is no ob-
jection here to have 'few' interpretations and strong modal sys-
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tems. In the second line one looks primarily for a modal system
which is sound for as many interpretations as possible, but is
still rich enough to carry out the proofs of the arithmetical argu-
ments under study. The distinction between the two lines described
here is not precisely that between pure and applied. The first line
also has its typical applications: Solovay-style completeness
results yield a powerful machinery to produce arithmetical senten-
ces with rich but controlled properties; these sentences can be
used to prove various incompleteness and other results (for an
example, see §9 of this paper).

The contribution of this paper is to the first line. I provide an
example of a rich modal logic of not too standard sort, valid for
two different arithmetical interpretations. This example can be
used to test conjectures concerning the conditions for uniqueness
and explicit definability of fixed points (see Smorynski[ 198?] for a
discussion of these matters) . Questions of uniqueness and explicit
definability generalize the problem of the precise connection be-
tween the first and second Incompleteness Theorem; in this sense
(a) generalizes M. Also the logic can be used to illustrate the
point that one can simulate the results of intensional selfrefe-
rence (like e.g. Rosser's Theorem) to quite an extent by applying
provably extensional selfreference -the cost being an increase in
the complexity (modulo provable equivalence) of the sentences in-
volved.

b) The modal derivability conditions are an improvement in the
presentation of systems with built-in consistency in the
discussions mentioned under (ii) above.

c) The methods developped have as spin-off an application to Relative
Interpretability: I answer a question of Per Lindstrom for the case
of PA.

2 Prerequisites

Knowledge of Feferman[ 1960] & Smorynski[ 1985] should bring the
reader a long way.

3 Acknowledgements

I thank Johan van Benthem, Dirk van Dalen, Karst Koymans, Henryk
Kotlarski and Fer-Jan de Vries for stimulating discussions. Erik Krabbe
carefully read parts of an early draft of this paper. I am grateful. I

especially thank George Kreisel without whose interest and questions
the paper probably never would have seen the light of day.

4 Contents of the paper

In 55 the necessary notions and notations are introduced. 56 is a step
by step introduction to the construction of the systems that are
central in this paper. This S also illustrates the powers of provably
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extensional selfreference and contains a discussion of the problem of
uniqueness and explicitness of the Godel- and Henkinsenteces of the
various systems considered. 57 treats the bimodal principles valid for
the two central systems; of course a Kripke model completeness
theorem is proved. 58 has a partial result on embedding Kripke models
for our modal system into Arithmetic. In 59 this embedding result is
applied to a problem about Relative Interpretability.

5 Conventions, notions & elementary facts

5.1 Point

All the arithmetical results in the next sections will be stated for
Peano Arithmetic. Of course PA is just a convenient peg to hang the
discussion on: mostly any RE theory into which PA, minus induction,
plus 22-induction, can be interpreted would do. Where results on Rela-
tive interpretability appear one must also demand that the theories
considered are essentially reflexive.

5.2 and A (in different contexts)

Let Proof(x,y) be the A0 arithmetical formula representing the relation:
x is the Godelnumber of a PA-proof of the formula with Godelnumber y.
We assume for convenience that: PAH 'dx3!y Proof(x,y) Let Prov(y) : _

3xProof(x,y) .

We write par abus de langage 'Proof(x, A(xl,...,xn) )' for:
Proof (x, rA(x 1,..., Vin), ), here:

1) all free variables of A are among those shown.
ii) rA(xl,...;) nJ is the "G©delterm" for A(xl,...,xn) as defined in Smorynski

[ 1985], p43.

The modal operators and A will appear both in the context of modal
logic and in the context of arithmetic. will stand for :

Prov( 'A(xl,...,Xn)l). in arithmetical contexts 'AA(xl,...xn)' will stand for:
B(rA(X1,...,xn),), where B(x) is the arithmethization of theoremhood in the
particular system with built-in consistency that we are considering at
the place of occurrence of 'AA(xl,...,xn)'. In case confusion is possible we
will use: AR, AK, etc. . To differentiate arithmetical from modal con-
texts we use: A, B, ... for arithmetical formulas and : 4, >If, ... for modal
propositional formulas.

if t is a term for a provably recursive function we will have (suppo-
sing that t is substitutable for x in A): H A(t) . We
will only employ terms for provably recursive functions, so we may
indeed treat xi,...,xn in A(x1,...,xn) simply as free variables. Similarly
for A.

Peano's Smart Children 3

.



'O' will stand for: and 'v' for: -A- .

When we want to consider systems with other axiom sets than PA, we
write: Proof., Prov., ,, etc. , where c is a formula that represents
the axiom set of the system under consideration in an intensionally
correct way in PA. We fix a formula Tr correctly representing the axiom
set of PA. Thus our notation is just short for: ,,.

5.3 rx and *
Define: Tr rx(y) : n(y) . y<x

rx A :14 OTrrx A
Orx A : - nrx-,A
* A : 3x rx A .

Of course PAH A H *A , but the difference in form will be of some
importance when Rosser-orderings come into play. (The usefulness of
* in this connection was discovered by Svejd,ar, see Svejdar[ 1983].)

5.4 Witnessing and the Rosser-ordering

Let A be of the form 3x A.M. Define: t wit A A0(t) . Here we
assume that bound variables in A0 are renamed -if necessary- to make
t substitutable for x in Ao.

Let A be of the form 3x A0(x) and B of the form 3x Bo(x). The Rosser-
orderings between A and B are defined as follows:
A < B : 3x ( A0(x) Vy<x ,B0(y))
A < B : 3x ( A0(x) Vy<x ,Bo(y))
We will always apply witnessing and the Rosser-ordering to the
precise forms in which the relevant arithmetical formulas are intro-
duced.

In connection with the Feferman System we will consider formulas of
the form These formulas are of the more general form A<B,
where A is 3x3y Ao(x,y) with Ao in Ao and where B is 3x3y B0(x,y)
with Bo in AO. It is of some interest to know the complexity of such
formulas A<B. Prima facie A<B is 12. We have:
PAr 3x( 3yAo(x,y)'Vz<xdu-,B0(z,u) ) H Vu3x( 3yAo(x,y)..Vz<x-B0 (z,u) ).

The "-+" side is trivial, for the "+-" side reason in PA:
Suppose 'du3x(3yAo(x,y)/,b'z<x,B(,(zu)). It follows that 3x3yAo(x,y).
Let xo be the smallest such x. Consider any u. Pick an x such that
3yAo(x,y) and Vz<x-Bo(z,u). Clearly xo<x and hence Vz<xo-,Bo(z,u).
Conclude: 3yAo(xo,y),.Vz<xo-,B0(z,u).

Both Svejdar (see Svejdar[ 1978]) and Lindstram (see Lindstrom[ 1979])
show that in every degree of Relative Interpretability over PA there is
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a sentence of the form A<B where A and B are as above. Thus every
degree of Relative Interpretability contains a A2 sentence.

5.5 Relative Interpretability

'A-<B' stands for the arithmetization of: PA+A is relatively interpreta-
ble in PA+B. By a result of Orey and Hajek: PAH A<B H
We list a number of principles valid for and a:

11 PAS- (B-*A) --> A<B
12 PAr (AcB,.BcC) - AcC
13 PAH-- (AcB,.AcC) --> Ac(B.,C)
14 PAr AaB -* (OB->OA)
15 PAS- OA©B - (B-><A)
16 PAr A©OA
17 PAF- AaB ->

The principle 17 is new and is due to Franco Montagna. We prove 14, 15
and 17. First we treat 14 and 15. Given 11 and 12 it is easily seen that
14 is equivalent to:

14' PAr IcB -> - B
Thus it is sufficient to prove:ii for all P in r11: PAH P.cIB -* (B->P)
First note that for every n: PA- H Vx>n (B->OrxA). Pick
q so big that rq contains Robinson's Arithmetic. We have for S in El:
PAE- \x>a ergo for P in r11: PAH Vx>Q (OrxP - P). Hence:

PA-- PcB `dx>q (B-*OrxP)
(B->P)

We turn to 17. We prove:
J2 for all 5 in El: PA-- AaB -> (A,.S)c(B,.S)

Suppose S is El. Let q be as above. Note that:
PAi- Vx>g; ( S --> rx((D^S) - D) )

It follow th ts a :

PAr (B,.S)--+Orx(A,S) )
-> (B,.S)-+Orx(A,S) )

For further information see: Sve jdar[ 1983].

5.6 On systems

Philosophically it is -1 think- best to make the whole apparatus for
generating theorems part of the identity conditions of systems. For our
purposes it is however more convenient to confuse the systems
considered with the arithmetical predicates that codify theoremhood in
the system in an intensionally, correct way. I will say that a system
with associated arithmetical predicate A is a variant of a system with
predicate B if PAr dx(A(x)E->B(x)).

The notion of 'system' is kept more or less open in this paper. The
-usual formal systems are still paradigms of systemhood. The systems
we consider here are in some sense derived from the usual systems:

Peano's Smart Children 5
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they use the proofs of formal systems as data. A second point is that
the systems considered can be seen to be extensionally equal to the
formal systems on which they are based, given the information that the
original systems. are consistent.

6 Systems with built-in consistency, an introduction.

This section serves several purposes. First it exhibits various ways of
'loading' systems with desired 'modal' properties. Secondly it contains
brief discussions of the various systems with built-in consistency that
can be found in the literature. Thirdly the problems of uniqueness and
of explicitness of Godel- and Henkinsentences of the systems intro-
duced are considered. (The rationale behind the attention for these spe-
cific problems is that these problems were historically at the crib of
provability logic for the , and secondly that these problems turn out
to be a quite pleasant starting point when one wants to get acquainted
with the systems studied here.) In the fourth place I give examples of
the powers and possibilities of provably extensional selfreference. Spe-
cifically I show how to use provably extensional selfreference to
construct four non-equivalent Oreysentences.

In this section 'F-' stands for: PAS . A,B,C stand for formulas of the
language of PA. Note that by our conventions we have: F-A(x) F-VxA(x),
but not: F- A(x) -, VxA(x).

For the record we state here the usual principles valid in PA for .

P The Peano System

The provability principles of PA are:
L 1 F-A

F- A -* A
F-

We will use these principles without explicit mention.

R The Rosser System

The Rosser System is defined as follows: AA :

Some principles valid for the Rosser System in PA are:
1 F-A = F-AA
2 -Ai
3
4

A

F- ,01
A

-> (AA H A)
Some direct consequences of 1-4 are:

5 F- AA -* A (4)
6 F- A -* 00 A (3,4)

It is perhaps worth noting that the set of theorems of the Rosser
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System is provably infinite. Reason in PA: in case this is trivial.
In case 1 for any A clearly one of A, -A, --A, ---A, ... w i l l be
Rosser-provable.

In the Rosser System we have two explicit but non-unique Henkinsen-
tences:

7 I- T - AT (1)
8 I- L H A1_ (2)

Consider a Godelsentence of the Rosser System, i.e. a sentence G such
that:

9 H G - -AG
We have:

10 i- G -, ( (6,9)
-* 1

Of course we can also prove:
1 1 [- -,G -* 1

But not from the modal principles collected up to now: we have to go
back to the underlying Rosser-ordering. A slight change in the defini-
tion of A removes this defect as we will see under K.

Uniqueness or non-uniqueness of Godelsentences in the Rosser System
is still an open problem, Guaspari and Solovay show that if one allows
variants of Prov in the definition of A, the answer can be yes and can
be no (see Guaspari-Solovay[ 1979]).

I'm not aware of an argument that there are no explicit Godelsentences
for A.

OPEN QUESTION : Are there explicit Godelsentences for AR ?

OPEN QUESTION : If one allows E, variants (with one existential quan-
tifier in front of the A) of Prov in the definition of AR, can there be
explicit Godelsentences for AR ?

K Kreisel's symmetrized Rosser System

Kreisel's variation on the Rosser System is reported in Hilbert-Bernays
[ 1970], p298-302.

Define: AA :4=: ]x[Proof (x,A),-. u,v,b,c<x((Proof(u,b),.Proof (v,c))-+c-neg(b)):

Clearly AA is 2,. The Kreisel System satisfies the principles 1-4 and
the additional principle:

12 H,(AA,.A-A)

We can now prove 1 1 modally:
-G - G (6,9)

- (AG,.A- G)1 (12)
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Note: i- i - "{AIAA} is finite".

R' A minor variation of Rosser's System

Yet another defect of the Rosser System is that we have no appropriate
bimodal counterpart for the underlying principle:- i - (
This can be easily repaired. Define:

R'o : = 0

R'n+

u{A} if Proof(n,A) and (-A).R'n

otherwise

Let AA be the arithmetization of: In AER'n . Clearly AA is in i,. We
have: - AA H A<A-,A , and even: i- dx(x wit AA x wit A<A- A ).
This last fact happens to characterize AR'.

The principles 1-4 hold for A, plus the additional:
13 1- .L (AA\/A-A )

A direct consequence is:
14 A -* (AA\/A-,A) (4,13)

Finally note that: ARA --> AR 'A

BM The Bernardi-Montagna System

We now jump up directly to a system which is richer -from the modal
point of view- both than AK and AR'. This system was discovered by
Claudio Bernardi and Franco Montagna (see Bernardi-Montagna[ 1982]).
Define:

BMo 0

Mnu{A} if Proof(n,A) and BMnu{A} is consistent in
propositional logic

BMn otherwise

Let AA be the arithmetization of: In AEBMn+i. Clearly AA is E,. The
principles 1-4 and 13 hold for A. We also have by elementary reaso-
ning:

15 i- A(A-B) - (AA--+AB)
15 in combination with 2 entails 12, so the principles valid for ABM

comprise those valid for AK and AR' (at least in so far as we have
found such principles).

Peano's Smart Children 8
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mBM The modified Bernardi-Montagna System

For our purposes we want the following additional Principle:
16

It is not plausible that one could prove 16 for the BM System without
additional assumptions about the order of the proofs of PA. E.g. given
-L, why would one have rather than However we can
modify the BM System in such a way that we get 16.

Let (-prop stand for derivability in Propositional Logic. Define:
mBMo : _ 0

mBMnu{A} if Proof(n,A) and mBMnu{A}`Prop

mtil-in otnerwise

Let AA be the arithmetization of: 3n AEmBMn+]. Clearly AA is El.

It is easily seen that 1-3 and 15 are valid. We check 4: reason in PA:

Trivially Suppose -o-L and A, say Proof(x,A). The only
reason A could be left out of mBMX+l is that mBMXu{A}Prop L.
But then and hence -L. Contradiction. Conclude: AEmBMX+l
and thus AA.

We prove 13: reason in PA:

Suppose -L. For certain x and y we will have: Proof(x,A) and
Proof(y,-A). Let z: =max(x,y). -AA and -A-,A we will have:

and mBMZ+l

Quod non.

Finally we turn to 16. Clearly:
17 H -A-,ol

It follows that:
i- L - (13,17)

Moreover:
F- (1,15)

Hence:
l - L -

Also:
F- (4)

Thus:
l-

So we may conclude that 16 holds. (Conversely one can derive 17 from
4, 12 and 16.)

Let us list for convenience the principles valid for AmBM with brand-
new names:
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B1 HA l-AA
B2 F- A(A-B) -* (AA-AB)
B3 i- -AL
B4 A
B5 F- AA - AA
B6 F- L -
B7 F- L - (AA\/A-,A)

We note some important consequences of these principles. First a
strengthening of Lob's Axiom:

18 F- AA
Proof:

i-
A-

-AAA

(5)

(B4)
(B2)

The second consequence is the principle of provable extensionality:

19 F- (AHB) - (AA - AB)
Proof:

(A - B) -* A(A - B) (6)
- (AAHAB) (B2)

The next principle is an immediate consequence of 12 and B7:
20 F- L -> (AA <- 7A)

11

Define: °L: =L, n+1 L: =T. We will say that an arithmetical
formula A is modally closed if A is built up from T,L with the pro-
positional connectives and ,A (in other words: if A is an interpreted
sentence of the closed fragment of the bimodal propositional logic with
operators and A).

21 Suppose A is modally closed. There is an aE{0,...,ca} such
that: F- AA H °tI.

Proof: Consider B built from T,L with the, propositional connectives and
. First there is the familiar fact that:

F- H al , for some pE{ 0,...,c) }.
Hence:

AB H

Secondly we have: F- H °L, and F- H 2+VL (as is easily
seen by considering the cases that L and that separately). Com-
bining we see that F- AB H sl , for some SE{Q,...,W}.

21 follows with a trivial induction on A. (Note that we didn't use B7 in
the argument.)

We turn to the Henkinsentences of A. We have already seen that L and
T are explicit Henkinsentences (7,8). For AmBM we can show that they
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are the only explicit Henkinsentences. Consider H satisfying:
22 + - - > A H

If H is explicit, it follows that H is modally closed. Hence by 21:
F-- H -* aL , for some cxE{0,...,w}.

If u;0, a co, it follows that for some nE{ 1,2,...}:
F- n_L H Ann,

F>

Quod non.

OPEN QUESTION: Are there non-explicit Henkinsentences of AmBM?

Next we turn to the Gadelsentences of A. Under R and K we have seen
that these have the Rosser Property (10,1 1). We show that they are
non-explicit and non-unique.

Consider G satisfying 9. If G were explicit, G would be modally closed.
Hence by 2 1 : F- G F--> - EiQL (c E{ O,...,(O } ) . If uO, we see:

AG F-> (B 1,B2)
AL (18)

H L (B3)
So by 9: F- G . Thus cx=0. Contradiction. If u =O, we have: F- G and thus:
F- AG , i.e. by 9: F- -,G. Contradiction. Hence G cannot be explicit.

To see that G is not unique we show that VG is also a Godelsentence
and that vG is not provably equivalent to G. First we show:

23 F- vG -AVG
To prove 23 it is clearly sufficient

a

b

c
We prove a

To prove b,

Hence:

Thus:

Combining:

As to c:

F-A,G -> - G
->

to show:

(5)

(6,9)

(12)

F- vG
F- -AVG
F- L -> M*->,AVG)
by contraposition:

we show first:

F- AVG -

F- AVG

F- AVG -* L.

(5)
(20)
(9)
(as in the proof of a)

(B5)
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L (B4)
A(vG - AG) (B 1,82,20)
(AVGHAAG) (B2)
(AVGHA- G) (9,B 1,82)

- (-AVG - vG)

Next we show that vG is not provably equivalent to G. It is clearly
sufficient to prove:

24 - (G - vG) L
Clearly:

And:

Combining:

(G,VG) - (-AG.,-,A--G)-

i- (G - vG)

(B7)

( (G,.vG) .. (- , -vG) )

(Another way to prove 24 is by noting that:L -* ( (GHv6) (G - AG) (20)

We leave it to the reader to verify that our procedure yields no further
independent Godelsentences, i.e.

25 -- G - vvG

In 57 we will see that as far as our modal principles are concerned we
cannot show more than: if there is a Godelsentence of A then there is
a second non-equivalent one.

OPEN QUESTION : Are there three pairwise non-equivalent Godel-
sentences of AmBM ?

THE R, K, R', BM and mBM Systems are all 2l, yet they escape the
second Incompleteness Theorem. By a well known result of Feferman
(see Feferman[ 1960]) these systems cannot be provably closed under
the axioms and rules of predicate logic in other words we do not have:
F- AA H AA . If A is one of ABM AmbM we can say a bit more. Let A
be one of ABM, AmBM. Let Q be the conjunction of the axioms of
Robinson's Arithmetic. We clearly have: -Q and hence: FAQ and thus:

It immediately follows from the provable 2l-completeness of
Robinson's Arithmetic that:

26 t- AA
Let G be a Godelsentence of A. We have:

d I- L - (AG\/A-,G) (B7)
e I- AG - AAG (26)

Peano's Smart Children 12
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f A
- A-AG (9)

g i- AG A1 (e,f)
h A_ G - AA- G (26)

A,AG (B 1,12)

i i-- A - G - A --G
- AAG (9)

j H A-G - AL (h,i)
k L - A1 (d,g, j)

1 i- 1 -j (k)

m A

27
A

(1,m)

So ABM and AmBM are provably axiom sets for the theorems of PA. The
same thing can be proved for

AR'
by a slightly refined variant of the

above argument. What about AR and AK? I don't know, but yes in the
first case and no in the second seems to me a good guess.

We now turn to systems that are provably closed under the axioms and
rules of predicate logic.

F The Feferman System

The Feferman System was invented by Feferman (see Feferman[ 1960])
as an illustration in the study of the conditions for Godel's second In-
completeness Theorem. Orey discovered important applications of its
provability predicate in the theory of Relative Interpretability (see Fe-
ferman[ 1960], Orey[ 1961 ]). A modal study of this provability predicate
was made by Montagna (Montagna[ 1978]).

Let me start by giving two rather different intuitive descriptions of
the Feferman System (or, to be faithful to the conventions of 5.6, 1

should rather say: let me describe two variants of the Feferman Sys-
tem).

Suppose the arithmetical axioms of PA are enumerated as: AI,A2,A3, ... ,

in the order of their Godelnumbers ( i.e. : i<j rA; <rAi ' ). We call a set
X of arithmetical axioms of PA initial if: A1EX and j<i ALEX .

The Feferman System is simply the first order system in the language
of PA axiomatized by: F: =U{X l X is a finite, initial, consistent set of
arithmetical axioms of PA}.

Clearly from the extensional point of view F coincides with the usual

Peano's Smart Children 1.3
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axiom set of PA. The Feferman System can be viewed as a system,
where to be licened to use axiom Al one needs the external informa-
tion that {Aj I j<i } is consistent.

The second way to introduce the Feferman System is as follows: sup-
pose we enumerate the proofs in the system PA by: Tl,T12,Tf3) ... . As
soon as we hit upon a proof ni of L, we extract the axiom Ai with
largest Godelnumber from T71 . We backtrack and scratch out all the
proofs employing axioms Ak with k__>j. Then we go on enumerating
proofs, skipping those employing axioms Ak with k__>j. As soon as we
meet another proof of L we repeat the procedure. We call a proof sta-
ble if it occurs in our enumeration and is never scratched out. The
stable proofs are the proofs of, the Feferman System.

Under this last description the Feferman System can be seen as a fully
effective procedure, that will eventually yield all stable proofs. The
catch here is of course that someone who does not know the
consistency of PA will not be able to predict -at least not prima
facie- when a proof is stable. -In fact the situation is more subtle:
someone knowing PA, but not its consistency, will ipso facto not know
that all proofs are stable, but he will know of every proof that it is
stable.

We turn to the formal definition of the Feferman System. Define:
TT*(x) :<4 TT(X)..OfxT
A : <4 .I*A

We give a few equivalents of A.

28 1- A H 3x ( rxA \ OPXT )

Let f be a primitive recursive function with:

f(n) : _

the largest of the model numbers of the arithmetical
axioms occurring in Tr if n=ri for some proof ii

0 otherwise

We have:
29 H A H Ix ( Proof (x,A),\Off(x)T )

Remember that *A : We have:
30 1- A H
31 1- A

31 brings out the similarity between the Feferman System and the
Rosser System. By 5.4 and 30 or 31 we see that is 2 .

131-136 are valid for . In Feferman[ 1960] all of these except B4 are

Peano's Smart Children 14
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mentioned. In Montagna[ 1978] a modal study is made of 131, B2, B3, B5,
B6. The validity of B2, B3 and B6 is immediate. To prove the other
principles we will use the well known fact that PA is provably es-
sentially reflexive, and hence:

i-
It follows that:

i-

Ad B1:

i-A for some n i- rnA
for some n i- rnA ,. OrnT
i-AA

Ad B4.

We will prove the stronger principle:
32 Let 5 be z, then: i- S -* AS

Let Q stand for provability in Robinson's Arithmetic. For some q
PAi- QA - rqA. Let S be E,. We have:

S - QS
r S
(El rg5 OrgT )
AS

Note that we do have B4 for AmBM, but not 32. (In fact assuming 32
for AmBM quickly leads to the inconsistency of PA)

Ad B5

It is clearly sufficient to prove 6, i.e. : i- A - To do this we
formalize the reasoning for B1:

A
OrxT )

- AA
Just as AmBM, AF has precisely two non-equivalent explicit Henkin-
sentences. I will now show that AF has in fact infinitely many pair-
wise non-equivalent Henkinsentences. First we need to know a bit about
E-minded sentences. A sentence A is x-minded if both and

are provably equivalent (in PA) to a E, formula. A good exam-
ple of a E-minded sentence is the ordinary 2, Rossersentence. We have:

33 if A is E-minded then: i- AA H ( A ,.

Proof: Suppose A is E-minded.
Clearly i- AA -* A. Moreover:
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- ,A
A(- (B 1,82,32)
AL (B 1,82)
L ) (B3)

We have:

(B 1,82,32)
AA ) (B 1,B2)

Moreover:
i- ( A ,. A)) -* i -> AA) (B6)

Note that our proof only uses B1, B2., B3, B6, 32. 33 is an example of
the phenomenon of reduction : an arithmetical predicate takes a simple,
uncharacteristic form on some restricted set of formulas. A further,
more involved example of reduction will be given in section 9 (see 9.1).

To prove that there are infinitely many pairwise non-equivalent Henkin-
sentences I have to borrow some material and definitions of Visser
[19841. The reader not familiar with this paper can at least get the es-
sential idea of the argument by considering the ordinary Ei Rossersen-
tence R (i.e. any sentence satisfying: F- R and S :=
and by proving for her/himself that R and S are E-minded and satisfy:
F- R H ( R ,. (E3-L-->R) ), F- S H ( S ,.

Consider a tailmodel K . We write: QOj , for the set of nodes that
force 0 ; [0] , for [4i](K PA) , and: <4i> , for <4i>(K PA) . Note that

is upwards closed and that PAF- H It
follows that F- H 3x and hence that is
provably equivalent to a Ei sentence. Combining this with the fact that
F- _[N] H [,4i] , we find that [0] is E-minded.

Now consider the tailmodel pictured below:

p n-1 pn

Peano's Smart Children 16
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Here the pi are only forced as shown. Clearly i1- pi H ( pi
hence by the Embedding Lemma and the fact that [pi] is E-minded:

[pi] H A[pi] . On the other hand for ii- (piHpj) -* hence:
[ (pi H pj) , -oL ] and so: i- ([pi] - [pal) -j Thus the [pi] are

pairwise non-equivalent Henkinsentences of A. Since n can be freely
chosen it follows that there are infinitely many pairwise non-equiva-
lent Henkinsenteces of A.

We state, two open problems:

OPEN PROBLEM : Are there Henkinsentences of AF that are not provably
equivalent to Ei sentences?

OPEN PROBLEM : What are the possible truthvalues of the literal Hen-
kinsentences of AF?

We turn to Godelsentences. Let G satisfy 9. Just as in the case of
AmBM G is non explicit. (We can, using the observations about tail
models above, also see this "vom hoheren Standpu,nkt", for consider the
'minimal' tailmodel, i.e. the linear one. The 'propositions' of this model
correspond precisely to the closed fragment of Lab's Logic. Clearly the
interpretations of this closed fragment are going to be closed under A
(modulo provable equivalence). It follows that the modally closed
sentences are provably equivalent to arithmetical interpretations of
elements of the closed fragment of Lob's Logic. In the model the
'equation' (0 F--) -( o has no solution, hence no modally
closed sentence solves the equation in PA ! )

The argument for the non-uniqueness of the Godelsentences of AmBM
depended upon B7, so we can't use it here. The problem of the uni-
queness of G thus remains open. This problem was first posed in
Montagna[ 1978].

MONTAGNA'S PROBLEM : Is G unique?

The Godelsentence of AF is an Oreysentence. Before defining what an
Oreysentence is, I want to note that the fact that G is such a sentence
only depends upon B1, B2, B3, 6 and 32. Let's call a A that satisfies
these principles precocious .

An Oreysentence is a sentence A with the property AT and ,A<T.
(Strictly speaking my usage is at variance with the tradition: e.g.
Godelsentences and Rossersentences are sentences that solve certain
fixed equations; on the other hand we say of a sentence A satisfying
i- that it has the Rosser Property . Rossersentences
have the Rosser Property, but there are others. So the more correct
usage would be: sentence with the Orey Property.) Trivially the
negation of an Oreysentence is again an Oreysentence.

Peano's Smart Children 1.7



We show that the Godelsentence of any precocious is an Oreysenten-

ce. Suppose is precocious. First we prove:
34 i- AavA

Proof:
b`x V x (6)

\x (B2)
\x (32)

Secondly one easily proves using 11, 12, 13:

35 A ©- A --> A< T
We have:

H G V G (34)
a G (B 1,B2,B3,1 1,12)
a ,G (9,1 1,12)

Hence by 35:
I-G vT

Moreover:
-G a V-G (34)

o (B 1,B2,1 1,12)
o G (9,11,12)

Hence by 11, 12 and 35:
i- - G 4 T

A curious fact is that the Godelsentence of F is precisely the Orey-
sentence discovered independently by Lindstrom and Svejdar (see Lind-
str6m[1979] and Svejdar[1978]); by 5.4 this Oreysentence is 2. In 59
we will see that there are infinitely many non-equivalent Oreysen-
tences.

Before leaving the subject of Oreysentences, I want to note that
Oreysentences are Zl- and rrl-flexible and that they are Kentsentences.
Let r be a set of formulas. A formula A is T-flexible if for all B in r:
i-- -,(A - B) - l. A sentence A is a Kentsentence if (A^oA) is not
provably equivalent to a 2i sentence. I show that an Oreysentence is a
Kentsentence and leave the proof that Oreysentences are El- and
rig-flexible to the reader. Suppose A is an Oreysentence and suppose for
a reductio that A is a Kentsentence. Then clearly (-A\/O,A) is provably
equivalent to a rrl sentence and hence:

( A-1T ,\ -A-<T ) - (-,A./O-,A)<T (11,12)
(I 1,12,J 1)

(A->O,A)
- O_A<T (11,12)
- O-,A (15)- L

mF The modified Feferman System

The modified Feferman system is a modification both of the Feferman
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system and of the BM system. Define:
mFo :_ 0

mFnu{A} if Proof(n,A) and mFnu{A} is consistent
mFn+l =

mFn otherwise

Let AXA be the arithmetization of: AemFX+I. Define further:
AA : 3x AXA

A*A 3x AXA

It is easily seen that: F- AA H AA , and hence that: i- AA H A*A.
Moreover we have: AA H A<A*_ A , and even:

i-'dx(xwitAAH x wit A<A*A). ,

This last observation brings out the Rosserlike character of A.

We claim that A satisfies 131-137, The argument for the validity of 131-
B6 is similar to the one for the case of AF. We treat for example B5.

Define: XA :4=> 3y<_x proof(x,A) . Clearly H dx and hence by
induction on x in PA: F- dx It follows that:

AA

The argument for B7 is similar to the one for the case of AmBM. Just
as AF, AmF satisfies 32, i.e. AmF is provably zl-complete.

Prima facie A is E2. It is seen to be A2 by the following observation:
35 f- -,AA H ( (86,87)

About the Henkinsentences of AmF the same remarks can be made as
for AF. Just as AmBM AmF has at least two non-equivalent Godel-
sentences. Clearly Amy is precocious. It is now easy to see that the
two non-equivalent Godelsentences and their negations give us four
pairwise non-equivalent Oreysentences. In 58 we will show that AmF
has in fact infinitely many pairwise non-equivalent Godelsentences;
thus there are infinitely many pairwise non-equivalent Oreysentences.

AmF is our final system and the main object of study of this paper. In
57 we will study the principles B1-B7 from the modal point of view. In
58 we give a partial result on embedding Kripke models for our modal
system into Arithmetic. In S9 we apply the result of S8 to Relative In-
terpretability.
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§ 7 The system BMF

7.1 Description of the system

BMF is the smallest system, containing the tautologies of propositional logic,

closed under Modus Ponens and the following axioms and rules:

Ua?

LL33
'

L

B11

B2%

B

B4

B 55

B

BT l.- l -i (L cp .V-A-I(P)

This list is very long and rather redundant.. A more economical list is:

B1 B2 B3f1 B5,f B j,and th,ed pr inci03e s

Bn=, I- cpH (DcpV 1)
B 91(, - cp) - A cp

B8 is easily derived from !Lil , .

D4 B6.

B6. =B-9. follows from L 1 ;s L2, < L4:, 82,411

Let me briefly indicate how to derive the long list from. the short one: tL1
follows from Bj _.B°$;1¢L2', from B2, B8. L43ist proved, from B8, B9; B6 from B8:

-;We_ to;. ,deri;v D by a fapi_1 iar trick

cP
( A.,o_, (t) cp A (p) )

1. 0 cP - A ( (cp A (p) -* ((P A (P) )

Acp ->A(cpn (P)

}- A cp a A cp

( (P -+ A (p)

l- 0 1 -, (A1 V A -c :1).

{- ; 1, o 1

L

a, B11

b B99x

c,B1fB22
d., B

B T-

B

f, g

an

L 1 I- cp => I- cp

I- ((P P - )

I- cp - . tp

E- ( cp (p) - cp

- cP =*, I- O cO

I- A ((p -) - (A cP -> A )

f--,tl l
I- cp - 0 cp

F- 4 cp A cp

6 I- - 1 - (A cP H (P)

I- 0( (p

L2,

a ) f - - ( ->

b)

C) f

d)

e) {- 1 -
f)
g) I- n -, 1

h) ---> o

1

, B2

B9



i) 1 -}
j) [- {1
h) 0 1 -

v
d o (p i/B1B2
(P h, j

1) e, h

Finally L3 =: fol-I w5 fror B$.

We list a few further convenient consequences of BMF:

B 1 'l.), f - 0 cp - cp

B1'1 [

B12 -- 1 (A(cp- v tp v O tU) )

B13 - (p * _)_ (o cp f+ L Vii) (Provable d Exte,ns o, a fit )

S I-o(p (F'X)
F cp -, (=vt[p / p] [X / p])

7.2 Non Non-Expliciteness in BMF

Clearly the discussion on non uniqueness and non expliciteness of H:e Lkin- and

Godelsentences of § 6 under r 1 1 can beb outs in- $MF

E.g. one can show:

1-0 (pH--1Ap 0(Vpf* Aop)
I°- (p 0 -t p) (D(p H v p) - o 1)

7.3 Kripke BMF

7.3.1 Definition

Let K be a finite, non empty set. Let S be a binary relation on K. The

structure <K,S> is called 2a if:

i) for each k,k' in K: US, T k' . Here S T is the transitive,

reflexive closure of S.
ii) for each k in K, there pt o et y one k' K with k S k' . We

call k' with k S k',,-,. the of k.
i i i ) there at most one k in K such that for no k ' K : k.

Clearly a ?oily looks this:

S

-

) f> (p
-

=>

H

p

a)

y

z
S-5ucca.6otL

i



A lolly such that for every k in K there is a k ' in K with V S k is also

called .a. c the e-.-,

c) A structure <K,R,S> is called _u>fo,22y-(name if K is non empty, R and S

are binary relations in K and:

i) R is transitive

ii) R is up:ards.wjll.founded

Let K
0

(k in K I for no k' in K kR k'}

K : = Kt K0

. = S rK0

= the transitive, symmetric, reflexive closure of SD

iii) k E Kl (kSk' a kRk')

Suppose k CO K0. Let [k]. {k 1 k` S
0Tk1. Then <[k1, S0 I` [k].> is a

lolly. Moreover .f°, k R lC , then ks'; RV for all k" in DO.
v) k_E K0 any-k !<' r k' E K0

A ada, is a structure <K,R,S, II- >, where <K,R,S> is--,a lolly-frame
and II- is a relation between elements of K and formulas of the language

of BMF, satisfying

=-i) k I+- T

i i) k IV l
iii) k 11- ((P n -p) (k 11- (p 'and k 11- V) )

iv) k I1- (p

11- I I- V )

k I I

k II- u co for all k' with k R k' k' II- cp

v i i i ) k 11- cp for all k' with kSk' k' E- cp

7.3.2 Remark

It is easy to verify that lolly-frames also satisfy:
1

k R M S k" k R k", and k S k ' RV k R k

A loitly=frame is best visualised as a conventional frame for provability logic

where the - i oprrodes are_ -44-owTr up to lollies:

99

b)

=

S0

SOT

--*

iv) : =

d)

=--

A

=* =*



Here e.g.

S

means:

Note that we don't draw the arrows to exhibit the transitivity of R. Also

because R c we don't write 'S' next to R-arrows.

7.3.3 Soundness

Consider any lolly-model K = <K,R,S, Il->. We write,, K I - p for: for all k E K k IF- T.

We have: B.MF f- -p K IF-cp.

Proof: entirely routine.

?I

=*



7.3.4 Completeness

Suppose BMF b` cp , then there is a finite lolly-model K such that K IV(p.

We proceed with some preliminaries for the proof of 7.3.4.

7.3.5 Definition

Let F and A be sets of formulas of the language of BMF.

a) Pro: there are finite F cr, 0 c0 such that BMFl-SAT -*W

(The empty conjunction is: T, the empty disjunction _L

b) Let X be a set of formulas. r is X-,satuA ted if: r is consistent and for
.each ocX: r I- L = there is a cpEO such that (pEr.

7.3.6 Lemma

Suppose r boo A. Let X be a set of formulas. There is a set Y c X, such that

Yur is X-saturated and Y,,r l o

Proof: entirely routine.

7.3.7 The Henkin Construction

Let X be a finite set of formulas that is closed under subformulas, such that:

and (i

We construct a Kripke Model.

K, the set of nodes of the Kripke model we are constructing, consists of those

sets of formulas y such that:

i) y is X-saturated

ii) if cp is in y and not in X, then cp is of the form 0 P and both and AA

are in y.

Clearly y consists of elements of X plus for certain X in X n y also AX, o o X,

AAA X,.... As is easily seen K is finite and non-empty (by 7.3.6). For x,;y E k

we define:

xRy: 4* cp,ocpA2(p, ... Ey) and (there is a »Ey with

2a

#> A
0

V

=1



x S y : ((-inn-) Ex and xRy) or ( o L E X , jLE,yx and (A cp C X, = pEy) and
and A(pEX)

Finally we. define: x II-- pi
: <' pi Ex.

Claim 1: R is transitive and irreflexive (and hence upwards wellfounded).

Claim 2 : x R y S z = xRz

The simple. proofs of Claims 1 & 2 are left to the reader.

Claim 3: For cp E X : x CF- cp a cp E x

Proof of Claim 3: We prove this claim by induction on cp in X. The only non

trivial cases are when cp is of the form i or A p.

-Suppose cp = ip.

- Suppose o E x and xRy. Then iji E y, hence by IH: y IF- iU. Therefore x 11- .

- Suppose x . Let xR: _ {X, A 02 X, I XEx}. We claim: ,xR, l .

Otherwise: { X , d X , I XEx} I- ( Hence { X I XEx} E-o,

and thus o i E x . Quod non. By 7.3.6 there is a: set x0 c X such that

x0 u xR U to l,} As X-saturated °an=d. x0 Li x (.i {©0 Ij)._ 1si,ss easily semen=C,

x0 U xR U { i} E K. Define y: = x0 U xR u { °p}. Clearly x R-y and y and so

by IH y IV . Hence x IV o lp.

-,'Suppose cp = o l,. In case (-+_ 1) Ex, this reduces to. the previous case. So we
assume LEx.
- Suppose 0 E x and x S y. Then E y, hence by IH: y 1F- cU. Conclude : x IF-A .

- Suppose Ax. Let xS: ={x I OXE-x} u{o1} and x
S

: ={X I AXEx,AXEX}. We

claim: xS I- xS. Otherwise: x F- A :W xs ergo (by B12, using the fact that

LEx) : x I- W{oX I XExS}. Hence x 1-AX for some X in xS. Contradiction.

By 7.3.6 there is an x0 C X such that x0 u xS is X-saturated and x0 u xS 1- xS.

Let y: = x0 U xS. We show: y E K. Suppose v E y and v V X. Clearly v E.xS, hence

.vEx. so v and ODv are in x: vEx and vEX, so v must be of the

form A p. Conclude that p and A o p are in xS. Next- we show x S y. We have:

and OXEx XEy. If OXEx and oXEX, then XExS, so XEy.

') G

t-*

=>

V

V

=>



Conclude x S y.

Since E xS, we have y. So by IH IV and hence x IV 4 .

Claim 4: (There is a y with xRy) Ex

Claim 5 : for every x there is a y with x S y

We leave the simple proofs to the reader. (For the proof of claim 5, note that

ALE X.)

The model we constructed is not quite a lolly-model yet, so a small transmuta-

tion is due.,

Consider any x such that 1 E x. Clearly we can produce a sequence
x = x0 S x1 S ... S xn+1 where xi = xn+1, for some i <n+1 and where if k <j and

xk= xj, then k =i and j =n+1. We define a small lolly model Lx as follows:

<{x0, ... xn} R' ,S' IF- '>, where:

- R' is empty

- YS' z: y=x and for some j E{0, ... , n}

- y rI- ' pi .t-t-' p i E y

We claim for y E {x0 , xn} and cp E X,: y II-' cp 4*y II-cp.

Proof: by induction on .p in X for all xj.simul.taneously.

The atomic case and the cases of n v ,-- ,-* are trivial. If cp is p it is
sufficient to note that, since R' is empty, xj IF-' and that on the other

hand ±Exj for each xj. Hence by claim 3: xj So xj

Suppose cp = v p. Note that: xi II- A i xi+1 II- ip , and xi IV A xi +1 IbW ip. Hence:

xi If--' A xi+1 H xi+1 IF-i a xi II-A

With each x such that 1 E x we associate a small lolly-model Lx as above.

Define:

K*:= {xEK I ±ExEK where y is in the domain of Lx}

7.G.

4

t-*

,

, ,

t-*

... ,

=' =>

<=0 ff,.



{<y,x> I 1 E x E K and y is in the domain of Lx.

K1 *:= IX EK I-io1Ex}

u R* v ;-<4 (u v are in K1 * and u R v) or,_t

(u is in K1 * , v is in K
0

* , where v = <y,x> and u Rx)

:, :u R * v or u is in KB * , of is in KB * , u = y,x>, v =<z,x> and

y S' z, where S' is the relevant relation of Lx.)

u II- * pi t-* (u E K1 * and pi or (u E K0 * , u = <y,x> and pi E Y)

K*:= <K*, R*, S*, 11-

We claim:

A) K * is a lolly-model

B) If u E K1 * , then (u [_*p ua,li-(p) for cp E X. If u E K0 * , u =<y,x>, then

(u IF- * p y I[--cp) for cp-E X.

Proof of A: One easily verifies that K * is finite and that R * is transitive,
irreflexive and hence upwards wellfounded. Moreover: u E K1 4* there is a v in

K* such that u R * v . The definition of S * impl ies: u E K1 * -+ ( u S * v u R * v) .

We leave to the reader the easy verification that <[<y,x>], 'S '* r [<y- x>]>1 is
isomorphic to =frame apart of Lx (for <y,x> in KC *). Clearly if

u R * <y,x> then u R * <z;x> for all z in the domain of L. Also if u E K0 * and

uS*v,, then vEK0*.

Proof of B: by induction on cp in X, simultaneously for all u in K *.

- If uEK0*, u=<y,x>: a IF- *cp Y Vc0

Y IF-p

(The first equivalence is by a completely trivial induction).

- Suppose u E K1 *. The case that cp is atomic is trivial and so are the cases

of n,v.,--+ ands:,

- Suppose cp = ip

Suppose u II- ip and u R * v. If v is in K1 *, we have u R v, hence v II- ip,

u)

>.

*

**

«

-
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so by IH: v II-* . If v is in KU *, say v = <y,x>, we have u R x. Using

claim 2, we show: u Ry. It follows that y Hence by IH: v

Conclude u IF--* j.

- Suppose u IF-* V and u R y. If (-i 1) E y, we have u R * y; hence y IF-* 1,
so by IH: y II--. If 1 E y, then u R * <y,y> and <y,y> Hence by

IH: y II- . Conclude u II-.

- The case that cp=off is similar.

Proof of 7.3.4: Suppose BMF Lp. Let X
0
be the smallest set that is closed

under subformulas and contains cp and Let X :=X O-U{A p I p EX
0

1 u

{ p I At Cz XD}. Construct a finite lolly-model K * as in 7.3.7 for X. By

7.3.6 there is an X-saturated x6 c X such that x0 V (P. xC will correspond to

a node of K *, say u, and u IV-* (p.

7.3.8 Application

In 6 under mBM we showed that neither in BMF nor in PA there is an explicit

Godelsentence for L, where in PA 0 is interpreted as omBM or
of

or
AmF.

For

the case of BMF this fact can be easily shown by considering the following

Kripke Model: S

7.4 Conservativity of Fixed Point Equations over BMF

7.4.1 Definition

Let L be the language of BMF. We will consider extensions of L with finitely

many constants. If C ={c1, ..., cn}, then LC is the extension of L with

c1, ..., cn, closed under the usual formation rules.

A constant c or a variable p is modal ized in cp if a- occurences of c or p

13
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90
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are in the scope of or o.

A last of equations E for C ={c1, ..., cn} is a:list of axioms of the form:

I

I-- cn 0
`pn'

where the cpi are in LC and where the ci are modalized in each of (pi' ..., On-

7.4.2 Theorem

Let E be a list of equations for C. Then for each tp in L:

BMF + E I-cp.=> BMF l--cp. In other words BMF + E is couewa Lue over BMF w.r.t. L.

The rest of 7.4 will be devoted to the proof of 7.4.2.

7.4.3 Definition

Let K and, K' be Kripke Models for LC. We define:
;MCy

K K' : a there is an E c K x K' such that:

i ) for every k E K there is a k E K' s. t. k E. k' for every k' E K'

there is a k E K s.t. k E k' .

ii) k0 R ki, k0 E k0 there is a k1 s.t. k1 E ki' and k0 R' k1

k 0 ' R ' k 1 ' , k0 E k0' there is a ki s . t . ki E ki' and k0 R k1 .

iii) similarly as in (ii) for S

iv) kEk' =* (k pick' II-' pi)

Clearly .v is an equivalence relation.
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n
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7.4.4 Lemma

Consider K.,K' with K - K' and an E as in 7.4.3. Then we have: for each cp in

L : k E k ' ( k IF- p*.k.' i - '(p)

Proof:. entirely routine.

To prove 7.4.2 it is clearly sufficient to provide for every lolly-model K

for L a model K' for LC that satisfies E, with K V. (Here we interpret K

as a model, for LC by making e.g. all ci false on K)

Let us first note that ti4 we could solve the equations of E on the circles of

a given lolly-model, then we can solve the equations on the rest of the model.

Simply work downwards! Let ST be the transitive closure of S if the forcing

relation is defined for C on a l l k with k ST k we set: k (I- ci Aa k II-cpi
.

This works because the cj occur modalized in (pi. Note that the procedure doesn't

work on the circles!

So it is sufficient to solve the equations on a circle. This we cannot do in

general., e.g. F- c H -,Ac, has no-solution on:

What we can do. is to blow up a given circle C to a new one C' in such a way

that C C' and such that the equations of E are solved on C. (I use 'circle'

here as short for: lolly-model with as frame a circle.)

.7.4.5 Definitions

i) For (p in L C, we define nC (cp) , the nesting depth of the ci 's in cp as follows:

nC ((p) _ . = 0 if cp is an atom

nC =max nC(X)) if E{n,v,->l

nC nCM

0 if no c occurs in .

LnC(0 + 1

3:0

=*

zj

S

---

( p'X) : o

W) : =

nC (oV) . _



0 if no ci occurs in

1 otherwise.

ii) Consider a frame F=<M,T,U>, where T cU and (mTm' Um" mTm").

A path rr between m,m' is a sequence: m =m
I

U m2 U m3 ... Um
n

= m' . The tevig th of

this path is n-1.

The asymmetric distance d : MxM-{:0,1,...., co} is defined by:

d ,(m,m') {length of ;;i I rr is a path between m,m' }

Note: d (m,m) =0, d (m,m") < d (m,m') ± d (m' m") (assuming: n+oo=w+n=o+oo=oo).

B (m,N) : = {m' E M I d (m,m')<N

7.4.6 Seeing Lemma

This lemma refines 7.4.4 a bit. ,.Consider M = <M,T,U, II-> and M' = <M' T' U' , II-

where <M,T,U> and <M',T,U'> satisfy the conditions of 7.4.5 (ii). Consider cp

in LC with n cp.) = N, and m0,m0 respectively in M,M'. Suppose there is a relation

E satisfying the conditions of 7.4,.3. Suppose E is such that m0 E m0' and for all

m1 E B(m0,N)--, for all m 1 E B(m0' N) with m1 E m 1 we have (m, II- ci a m1 ci )

(i= 1, ..., n). Then: m0 II- cO m0' II- ' T.

Proof: induction on cp. Suppose e.g. cp =o i and some ci occurs in I. Suppose

m0 II- o p and m0' Tm1' . There is an m, such that mi E m1 ' , and m0 T m1. Let

M. Clearly B(m1,M) c B(m0,1) and B(m1',M) c B(m0',1). So we apply the IH

to ip and get: m1 II- iU 4* m1 Conclude m1 ' IF-'lU. Hence mo' 11-' rU. The rest

is easier or similar.

We turn to the construction of C' from _C. Let a,circT° C be given with a forcing

relation for L. We stipulate arbitralily that the ci are false on C. Suppose

:= inf

`>,

,

4*

' IF- '
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the domain of C ={1, ..., r}. We construct an auxiliary model D with D -_ C,

as follows: we hang a od oofpi?s: tt> the forcing re,l=t;i oar. on (the

atoms of) L of the nodes of C under C, repeating over and over again the

order, of the nodes of C.

i1
D

The truth
values of
'1 , c2 are

shown at each

node.

I

D

kr

nodes

11

We assign values to the ci onthe nodes

of the tail in the obvious way: if we

have given values to the c in all nodes

above a we set: a :tea II- cpi. This

definition is sensible because the c.
J

occur modal i zed in .pi .

Let N: =max InC(cpi) I i = 1, ..., n} and

let k be the smallest number such that

k r > N. We look at stretches of k copies

of 1, ...,.r in the tail as in the next

picture:

On each such stretch we will have a certain sequence

of truthvalue assignments for the c1, ..., cn. Of

course at a certain point (going downwards) we will

meet a sequence we have already seen. Now we cut the

tail directly Wow the first stretch that is repeated

and directly below its first repetition. See the next

picture. Then we connect the ends, leaving the

assignments to cl, ..., cn_ intact. The new model: so

obtained will be our desired model C'.

-"I

2 r, 11
1, 11

T

r-1 T T
r '

I

I
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D
)CD

I1,

repe-"
tition

L

We conclude:

a' IF-' ci a a II-' ci a a IF- (P i a' IF-' cpi.

Hence a' 11-' ci ` (Pi.

Clearl'y..C' Moreover consider

the relation E between the nodes

of D and those of C' that matches

nodes of the stretch that was cut

out to the corresponding nodes of

C' and is then uniquely extended

to satisfy the. demands of defini-

tion 7.4.3. As is easily seen:

for each (pi and for each

where a is on the stretch that

was cut out and a Ea, the hypo-

thesis of the Seeing Lemma is

fulfilled, so a ll-(pi <=> a' II-' cpi'

Our final construction is. this.'.W,e.s:tart with lolly-model K. We blow up every
circle C in K to a new circle C' with C -- C' in which the equations of E are

solved. Weratta the new circles C' to their sticks at some point in C'

corresponding via some E that witnesses C C' to the original point to which

the stick of C was-atttaached., We extend R in the obvious way and we extend the

forcing relation to the ci as described above. Clearly our new model K' satis-

fies: K' K. Moreover the equations of E are solved in V.

Consider for example E with as sole member: F-c ->-,/ c, and consider the model:

S
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We have N =r =k =1. Thus the construction is as follows:

New model:

I

:1 T

tut

or:
S

S+ 0 T S 1 T

to 1

34
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8 Embedding circle-tail models in Arithmetic

We would like to generalize the result of Solovay[ 1976] to the logic
BMF, interpreting A as AMF. To do this we must embed lolly-models in
Arithmetic. This program however meets with a difficulty I couldn't
solve: in a nutshell the problem is how to handle the sticks of the
lollies. It turns out that if the sticks are absent a straightforward
embedding is possible. For the record l state the obvious open problem:

STICK PROBLEM: Can lolly-models be embedded in Arithmetic?

Even if we do not achieve arithmetical completeness for BMF it seems
to me that the partial result proved here is of interest: the Embedding
Theorem gives us a powerful machinery to construct arithmetical sen-
tences (see also §9). Moreover the methods employed add to our experi-
ence with Solovay style arguments: we have the first example here of
an embedding of structures that are not (completely) upwards well-
founded.

In this § I follow the presentation of Visser[ 1984].

To get a true embedding of circle-models in Arithmetic we must add a
tail to the circle-models: consider a finite circle-model. We hang a
down-going w+ 1-tail (in R) under it as in the picture below. We can
arrange it so that the nodes of the finite model at the top are
numbered: 1,...,N , and the nodes of the down-going tail except bottom:
N+1,N+2,... ; finally the bottom: 0 . The nodes numbered N+1,N+2,... 0 will
be called: tailelements. We stipulate that at each of the nodes only
finitely many atoms are forced and that on all elements of the tail in-
cluding 0 the same atoms are forced.

We call the resulting models circle-tai ]models. Clearly a circle-tailmo-
del is a circle-model.

An immediate consequence of our definition is:

8.1 Tail Lemma

Ov-0 there is a k such that for all m>k mii-
Oiv o there is a k such that for all m>k m iv o

Proof: a simple induction on 0.

Let QOJ1 := {k I kii- ) . Then by the Tail Lemma Q$]1 is either finite or
cofinite.

Note that circle-tailmodels satisfy the principle:
C

I would be very surprised if C were arithmetically valid. A lolly-model
to refute C is easily found.

Peano's Smart Children 35

<=>

t-*



OPEN PROBLEM: is C arithmetically valid when A is interpreted as
AmF2

o p

For the rest of this 9:

i) We fix a circle-tai ]model K
ii) We assume that K is suitably described in Arithmetic. Specifically

we assume that R and S are given oo definitions in such a way
that all their simple properties are verifiable.

iii) We interpret A as AmF in arithmetical contexts.
iv) 'I-' stands for: PAH .

v) We assume that 'Proof' satisfies the following plausible
assumptions:

A - Vx3y>xProof(y,A)
VuVv( Proof(u,v) - v<u )

We define a variant of Solovay's reluctant function: the function that
dares not go anywhere for fear of having to stay. Our variant will not
dare to go anywhere for fear of coming there too often.
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Define by the Recursion Theorem:

COFa Vx3y>x hy=a

hO .= 0

if for some a with hkRa Proof(k,-COFa)

h(k+ 1) a if for some a with hkSa Proof(k,-COFa)
and (-COFa)EmFk+I

hk otherwise

It is easy to see. that the arithmetization of '(-COFa)EmFk+l' is A2 and
hence that h is A2 .

An important difference with Solovay's original construction is that we
use 'COFa' instead of '1=a'. Later we will see, that F- COFa <--> 1=a ; but
to show this we need that -h is defined using 'COF rather than T.

We prove a sequence of lemmas about h

8.2 Lemma

Let S* be the transitive reflexive closure of S, then:

i- Vx`dy ( x<_y hxS*hy )

Proof: by a trivial induction on z with x+z=y.

8.3 Lemma

i) t- ( (Vz<x hzEK1) hx=y - Ahx=y
ii) VxVy ( hx=y -> hx=y )

Proof:
i) Reason in PA:

The proof is by induction on x. The case that x=0 is trivial. Sup-
pose x=u+1, Vz<x hzEKl., hx=y and hu=v. There are three possi-
bilities:
a) hx was computed by the first clause of the definition of h. We

have vRy and Proof(u,-COFy). Hence: ovRy and AProof(u,-,COFy)
By the Induction Hypothesis: Ahu=v. Conclude Ahx=y.

b) hx was computed by the second clause of the definition of h.
We have: vSy and Proof(u,-COFy). Because vEK,, we also have:
vRy. So hx was also computed by the first clause.

c) hx was computed by the third clause. Clearly y=v. Either for
no w Proof(u,-COFw) or for some w Proof(u,-COFw) and not
uRw. (We may ignore the second clause by the reasoning under
b.) Hence we have AVw<u-Proof(u,-COFw) or ( AProof(u,-COFw)
and A-;vRw). By the Induction Hypothesis: Ahu=v. Conclude:
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Ahx=y. (i)
ii) The proof is by an easy induction in PA, using the fact that:

F-- VuVv ( uEmFV --) (uEmFV) ) (ii)

We define LIMa : = 3x hx=a ,. VxVy( (hx=a,.x<y) - hy=a

8.4 Lemma

- Va(COFa -LIMa)

Proof: By 8.2 clearly: i- Va ( (COFa,.aEKI) - LIMa ), so it is sufficient
to show: i- Va ( (COFa,/.aEK0) -* LIMa ). Reason in PA:

Suppose COFa and aEK0. Assume a is on the circle C with, say,
a= 21S22S...SanSan,i =a. Let xo be the unique number such that
hxoEK1 and h(xo+ 1 )EKo . Clearly h(xo+ 1)=ai for some j. By 8.3(i):
oh(xo+ 1)=aj . Conclude: AW(COFai I i = 1,...,n ).

Now suppose for a reductio that ,LIMa. Clearly by 8.2: COFa1,
COFa2, ... , COFan . It follows from the definition of h that:
A-COF21, A-COFa2, ... , A-COFan (or how else could h move on and
on?) . Hence: AW { COFai I i = 1,...,n) and A/X\(,COFai I i = 1,...n ), ergo
of and thus 1. Conclude LIMa.

8.5 Lemma

i-3aLIMa

Proof: It is easily seen that >- 3a COFa

8.6 Lemma

i-- 3x hxEK0 H 1

11

Proof: Reason in PA:
Trivial.
Suppose hx=al, where al is on the circle C , given by:

a l Sa2S...SanSan+ i =a1.

We have hx=al by 8.3(ii), hence: W{COFai I h moved up
to al by the first or by the second clause. In either case we
have: - COFa i .

We show for k=O,...,n-1: /X\{ Ak,COFajI j = l ,...,k+ 1 ), by (external)
induction on k. The case that k=O is simply -COFa1. Suppose:
A A \ { Ak_ COFai I j = 1 ,...k+ 1 ) . By B 1 1 : /X\{ Ak+I -,COFa I j = 1,...,k+ 1 }. We
show: Ak+ I -,COFak+2. Clearly:

( (hx=a,../X\{ -,COFai I j =1,...,k+ 1 }) 3y>x by=ak+2 ).
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Hence:
( (hx=a,../x\{,COFaII j=1,...,k+1 }) - A-COFak+2 ).

Conclude using L1, L2, B 1, B2, B1 1:
j= 1,...k+1 }) - Ak+i,COFak+2

Moreover by B1 1 we have from hx=ai: Akhx=ai. So finally:
Ak+ i - COFak+2.

We have found: /a1{ An- i - COF2, I j = 1,...,n }. On the other hand we
have: W{COFaj l j= 1,...,n}, hence: An-iW{COFa I j= 1,...,n}. Combi-
ning we find: An-IL and hence: L.

Consider i in Ko. We call the S-successor of is ai , and the S-predeces-
sor: Tf i.

8.7 Lemma

i) k- (COFu,.uSv) -> VCOFv
ii) i-- (yEK0,.COFy) - ACOFay
iii) l- (ACOFay->COFy)

iv) l- (COFy<->ACOFay)

Proof:
i) Reason in PA:

Suppose COFu, uSv and A-COFv. By 8.4: LIMu. Suppose hx=u and
for all y>_x hx=u. For some z (-COFv)emFZ. Consider w with w>x,
w>z and Proof(w,-COFv). Clearly (- COFv)EmFW+1. Hence h would
move up to v at z+1. Quod non. Conclude -A-COFv. (i)

ii) Immediate from (i) using l- (yEK0COFy) - L , which follows di-
rectly from 8.6, and l- L - (VA<->AA). {ii)

iii) Reason in PA:
Suppose yEK0, L and ACOFay. From L we have by 8.6 that for
some zEK0: COFz. By (ii): ACOFaz. Hence by 8.4, B1, B2 and
ACOFay: Ay=z and thus y=z. (We have rti-Reflection for Al) {iii)

iv) By (ii) and (iii). (iv)
8.8 Definition

i) Let f be a function from the propositional variables of the language
of BMF to the sentences of PA. We define ( )f from the formulas of
the language of BMF as follows:

(pi)f : = f(pi)
( )f commutes with the propositional connectives (including T,L)
(o)f (Note that shifts its meaning!)

_ (Ao)f Awf
ii) Consider in the language of BMF. If E01 is finite, we set:

[0] : W{COFi I t[-O} ( We take WO (0= 1). )

If QOj is cofinite, we set:
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[0] : _ A\{ - COFi I ii,- 0) ( We take /X\o : = (Q=Q. )
Note that is simply an arithmetization of: IxEQ0I COFx

iii) Define Fpi [pi], and <0> := (of

8.9 Embedding Theorem

l- <j> H [0]

Proof: It is clearly sufficient to show in PA that [ ] 'commutes' with
the logical constants including and A. The cases of the propositional
constants are trivial (using 8.4). We show:

i) [Ir]
fl) i- [oar] A[qr]

Proof of (i): In case {i I is infinite, we have: hence
It follows that i- F-> [yr]. Suppose {i I iiF-llr} is

finite. Reason in PA:
Let be the complete set of nodes such that and

jkiVW. Suppose [ir]. Clearly -COFjk. Suppose Proof(p,-COFj.) and
hp=y. There are two possibilities:
Case 1: yR j.k. If yRjk, clearly h(p+ 1)=,-k.
Case 2: -,yRik. It follows that if COFx, then -,xRjk, for if we

had yS*xRj , it would follow that yR, k.
I n both cases: COFx - - xR jk.

On the other hand it is easily seen that if then xRj,k for
some k. Hence: COFx --> Conclude

Suppose COFi for some 1 with Because h must have
moved up to i at a certain point by clause 1 or clause 2 of the
definition of h. In either case we have -COFi. Suppose hx=i. By
8.3(ii): hx=i. If ]EK0 we have by 8.6: i, and hence hr]. If iEKI
we see that -,COF1 and hx=i imply: vy(COFy-iRy). Conclude:
[jr]. (i)

Proof of (ii): Clearly hence F- -o-L----
by the fact that [ ] 'commutes' with the propositional connectives and
. Also: i- So we may conclude:

To complete the argument we show: L-*([A ]Ho[yr]) :

1 - ( [Aw] H
H
H W{COFj_I
H W{COFTji I ii-v^o i }

H W{ACOFi I
H AW{COFi I (B12)
F>

o[yr] ) (131,132,134) (i i)
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8.10 Remark

The reduction result proved as 33 in 56 clearly applies to omF. It
implies that for the arithmetical embedding of traditional tailmodels
we have: i- o[0] f-> ( [0] , (o±- [O]) ). We can now understand this
result in a new way: the arithmetical embedding of traditional tailmo-
dels is similar to the arithmetical embedding of circle-tailmodels
which have just singleton circles ! (This point will become even clearer
in the light of lemma 9.3.)

8.1 1 Application

There are infinitely many non-equivalent Godelsentences for AmF.

Proof: It is clearly sufficient to prove that for any n there are n non-

equivalent Godelsentences for A. Consider the following circle-
tai lmode l:

b 2

b3

o 0

Let s be a sequence c
1

C2...Cn of o's and I's. Consider an atom ps. Let:
ao;ii-ps :44, c;=0
aril-ps :It c;= 1
biv-ps for all j

01Hps
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Define: GS := [PS]

It follows immediately from the Embedding Theorem that:
i- GS H AGS

Moreover if s-s':
i- (GS * GS.) -a 1

Because Godelsentences of A are Oreysentences it follows that there
are infinitely many non-equivalent Oreysentences.,

9 omF meets Relative Interpretability

In this 5 'A' will stand for 'omF' in arithmetical contexts. will
stand for 'PAH'. We fix a circle-tailmodel K .

For convenience we repeat the derivability conditions we collected for
Relative Interpretability in 5.5 here:

11 A<B
12 i- (A<B,.B<C) -, A<C
13 H (A<B,.A<C) -> Ad(BvC)
14 H A < B - (OB- >A)
15 H° oA<B - (B-*(A)
16 i- A<a0A
17 f- A<B -*
J1 for all P in ri,: PAH P<B - (B-*P)
J2 for all S in 2l: PAH A<B -* (A,.S)a(B,.S)

We add the for our purposes essential 34 of 56:
J3 F- A<VA

Note that 15, 16, 17 are redundant in our present list.

We list some immediate consequences of our list:
J4 i- A<AA (B 1,B2,B3, 11,J3,12)

Define: A=B :<=4> A-B,.B<A
J5 - (A=A',.B=B') -j (A<BHA'<B') (12)
J6

(11,12,13)
J7 - B=(B.,OB) (1 1,16,13)
J8 If then: i- ((B.. >B)-*P) -* ( B<C -* (C-*(B.,OB)) )

(I 1,J5,J7,J 1)

We want to take a closer look at the interaction between © and the
sentences [0] constructed in 58. The classes of sentences [0], construc-
ted for different circle-tai ]models, are too poor to refute all modal
principles in the language with and < not valid in PA. For example
Per Lindstrom has shown that there is a 2, sentence A such that

Ef A<T --* (A<T)
On the other hand we will see that:

H [0]<T -* ([O]<T)
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This weakness however turns out to be a strength: [l]iT reduces to a
simpler formula. (We encountered the phenomenon of reduction before in
connection with Feferman's Predicate.)

We define an ad hoc modal operator ( )* as follows: Q4*] is the smal-
lest set X such that NNX and if jEXnK0, then 6 jEX. In other words
QO*]J is obtained by adding all circles C such that C nQOT-0 to QOj.

9.1 Reduction Theorem

,- [0]aA H (A-j([0*],0[O*]>)

To prove 9.1 we need a few lemmas.

9.2 definition

We define a recursive function ho as follows:

ho0 := 0

ho(k+ 1) : =
f a if for some a with hokRa P.roof(k,-COFa)

L hk otherwise

Here 'COF is as in 58. Note that COF is based on h and not on ho

9.3 Lemma

i) i- (Vz<x hZEK1) --> hx=hox
ii) Let S* be the transitive, reflexive closure of S, then:

i- Vx hoxS*hx

Proof: The proof is in both cases by a simple induction on x in PA.
These inductions are much like the proof of 8.3(i).

9.4 Corollary

Proof: It is clearly sufficient to show that sentences of the form COFi
are A2. In case iEK0 we have by 8.9 : r COFJ H ACOF6i , hence COFJ is
in A2. In case iEK1 we have by" 8.4 and 9.3:

COFi (3xhox=i Vxby((hox= ^x<y)--->hoy=i))

9.5 Definition

Consider X9K. We call X upwards persistent if: (iEX and iSj) jEX.
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9.6 Lemma

Suppose To] is upwards persistent then [0] is provably equivalent to a
Z, sentence.

Proof: In case QOj is infinite this is trivial. Suppose QOj is finite, we
show:

- [0] H W{ ]xhox=i I iil-O}
Reason in PA:

Suppose hox=i for iEW. 1S*hx by 9.3(ii). Hence by the upwards
persistence of I[01: hxEI[ j. Thus: b'z>x hzEQOj. Conclude: [0].
Suppose COFi for iEQO1. In case iEKI we have by 9.3(i): 3xhox=i.
Suppose iEKo. Say i is on circle C . Clearly there is a u on C
and a y such that hy=u and for all z<y hzEK1. By 9.3(i) hoy=u.
QOj is upwards persistent, i is in E[ OT, i is on C , hence C 910 1.
Conclude uEQ01. Ergo: 3y hoyEQOI

9.7 Lemma

Suppose i is on circle C . Then: k- COFi a W{COF.I jEC }.

Proof: Reason in PA:
By 8.7(ii) we have: (COFni- COFi). Hence by 11: (ACOFi)JCOFT1i.
By J4 and 12:

COFI i COFnri.
Similarly we have:

COFni a COFT72i

COFT7n-2i a COF nn- l i

Here we suppose that n is the number of
12 and the above we have:

COFi <I COFi
COFi a COFn

COF1 a COFTTn-11
Hence by 13:

COF a W{COFTrki 10<_k<n},
In other words:

COFJ a W{COF..I jEC }

9.8 Lemma

- [0l=[0*]

elements of C . By 11,
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Proof: it is immediate that We show: Reason in
PA:

First note that by 8.9: ( H cn]) ). Hence by J6
and 11: [O]a[O*] . It follows that we may
restrict ourselves to 0 with Q0jsK0. So suppose Q0j9K0. Clearly
[O*j consists precisely of those circles C with QO]nC not empty.
We have by 9.7 and J6:

W{COFi I iiHO}aW{W{COFj 1 jEC } I C nQ01-0}
In other words: [O]a[O*].

9.9 Lemma

is provably equivalent to a rt, sentence.

Proof: Note that: - -,([O*],O[$*]) H Moreover as is
easily seen Q, is upwards persistent. Apply 9.6.

Proof of 9.1:

We have :
- [O]<A [O*]aA (9.8,J5)

H (9.9,J8)

9.10 Corollary

i- [Q]<T E'

Proof: We leave it as an excercise to the reader to show that:
i- (A,<A) H

9.1 1 On a question of Lindstrom

Per Lindstrom asks: for which sets r of propositional formulas in the
variables pl,...,pn are there arithmetical sentences Bl,...,Bn such that:
r={ O I O(B1) ...,B )ziT }? (See Lindstrom[ 1982] p6; actually Lindstrom poses
his question for arbitrary essentially reflexive theories T. I think that
inspection of the argument of this paper shows that the answer given
here applies to consistent essentially reflexive RE theories T into
which PA restricted to E2-i.nduction can be translated.)

Let's say that {010(B,,...)Bn)zT} is the interpretability class of B,,...,Bn.

A moment's reflection shows that interpretability classes r 'should
satisfy:

i) TEr
ii) LiFF

iii) O --propW and OEr WEF

We will show that conversely every r of propositional formulas in
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pl,...,pn satisfying (i), (ii), (iii) is an interpretability class.

Proof: Let r be a class of propositional formulas in Pl,...pn satisfying
(i), (ii), (11i). The plan of the proof is to construct a circle-tai1model K
and to take B, := [pi]. 9.10 tells us that what happens below the circles
is really irrelevant, so we start by.stipulating an arbitrary tail, say
bo.... b3Rb2Rbj, where no atom is true at the nodes bj. We proceed to
construct the circles.

rc := {010 is a propositional formula in the variables Pl,---,Pn and 0,0F).

Note that r and rc are both closed under provable equivalence in
propositional logic (in the language based on pl,...pn). Let be

representatives of the equivalence classes of IF and let be

representatives of the equivalence classes of rc. Define:
Ko := {<i,j>l 1<i<k,1<j<m}
<i, j>S<i', j'> : j = j' and ((1 <i <k and i' = i+ 1) or (i = k and i' = 1))

Let's say that the nodes <i, j> for fixed j form a circle C i .

Consider a node 0,k Clearly ail propVj. So there is an assignment f of
truthvalues to pl,...,pn under which 0; is true and Wj is false. Pick such
an assignment f and put:

<i,j>;;-ps :=> 'fps=T

Clearly on every circle C j there is a node <i, j> such that <i, j>ii-O;.

Hence and i*) are forced everywhere in the model.

On the other hand no node <i, j> on C
i

forces yr , hence <i, j>
It follows that is forced everywhere in the model.

Put BS := [ps]. Note that for any propositional formula x in pl,...,pn we
have: x(B

1
,...)Bn)= <x>. We have by 8.9:

(9.10)
[0;]<T (8.9,1 1,J5)
<Oi>4T =

- 0;(Bj,...,Bn)dT = (Reflection Principle)
0j(Bj,...,Bn)

Moreover by 8.9:
F- (9.10)
F- [llrj]4T --j L (8.9,11,J5)
F < lr > 4 T - L
F- tlry(Bt) ...,Bn)<T - L (Reflection Principle)
,yrj B

1
7...,Bd
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Note that the uses of the Reflection Principle are eliminable here: we
could just have proved the necessary lemmas externally, i.e. in non-
formalized form.

It follows immediately that r={O I O(B1) ...,Bn)1T}.

9.12 Remark

Note that in the proof of 9.1 1 it would have sufficed to consider
representatives 0; of the equivalence classes in r that are minimal in
the implication ordering. Similarly we need only consider representa-
tives ijrl of the equivalence classes of rc that are maximal in the
implication ordering.
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