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Abstract

Internodons are a formalization of Hennig’s concept of species. We
present an alternative construction of internodons imposing a tree struc-
ture on the genealogical network. We prove that the segments (trivial
unary trees) from this tree structure are precisely the internodons. We
obtain the following spin-offs. First, the generated tree turns out to be an
organismal tree of life. Second, this organismal tree is homeomorphic to
the phylogenetic Hennigian species tree of life, implying the discovery of a
multi-level tree of life: this phylogenetic tree can be obtained by zooming
out from the organismal tree, or conversely, the organismal tree of life
can be generated by expanding the phylogenetic nodes into unary trees.
Finally, the definition of the organismal tree allows an efficient algorith-
mic transformation of a given genealogical network into its corresponding
phylogenetic species tree of life. The latter will be presented in a separate
paper.

1 Introduction

According to Hennig, the hierarchical classification of organisms into species,
genera, families, orders, etc., is based on a phylogenetic tree of species satis-
fying Woodger’s formal definition of a hierarchy [14].1 In essence, Woodger’s

∗The Ohio State University. Email: alexander@math.ohio-state.edu
†TU Delft
‡Leiden University
1“If, therefore, the relationships between the elements of a hierarchy are represented by

unidirectional arrows, then according to Woodger’s definition: (1) The point of one, and only
one, arrow can lie in each element of the hierarchy, whereas several arrows may arise from it.
(2) There is one, and only one, element from which arrows emanate but to which no arrows
lead. Woodger and Gregg call this element the “beginner”. (3) All elements to which an
arrow leads, and which therefore lie at an arrow tip, are connected with the beginner by an
arrow or a sequence of arrows.” [5]
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hierarchies are rooted trees. As Hennig states: “The ‘phylogenetic tree’ is only
a different, sketch like form of presenting the hierarchic system” [5].

Hennig builds the notion of the phylogenetic tree of life on a very specific
conception of species: “Such a picture of phylogenetic relationships can be a
system of hierarchic type only if in its plan of construction the species is regarded
as the unit that undergoes division. This is possible only if two successive
processes of species cleavage are assumed to be the temporal delimitation of the
existence of a species” (ibid. p. 64).

A species cleavage was sketched as follows: “If we could determine the ge-
nealogical relationships among all individuals over a long period of time, and
present these graphically, we would find gaps in the structure of the relation-
ships. These gaps divide complexes of individuals, which we call species, from
one another” (ibid. p. 18). Under reference to splitting events as nodes, Hen-
nig’s concept of species was named the ‘internodal species concept’ by Nixon
and Wheeler [11].2

Hennig wished to anchor his methodology of tree construction formally, and
he managed to do so for phylogenetic trees by basing them on Woodger’s formal
definition of hierarchies. But he described his concept of species only verbally
and graphically, for instance, by indicating a splitting event with just a solid
triangle without formalizing this (ibid. Figs. 4, 6).

Hennig’s concept of species has been formalized by Kornet [7] via equivalence
classes based on a conspecificity relation INT on the organisms of a genealogical
network. This formalization unveiled an implied dependence, in Hennig’s infor-
mal split-triangles, upon infinity (See also [1]). These equivalence classes were
later called internodons3 [9]. This formalization amounts to a transformation
of a genealogical network into a phylogenetic tree of species.

In the present paper, we take this project a step further by constructing an
organismal tree to be nested within the phylogenetic tree of Hennigian species.
This organismal tree of life not only is homeomorphic to the phylogenetic tree of
Hennigian species but also defines it rigorously meeting equally well Woodger’s
formal criteria for hierarchies. To give an impression of the transformation of
a genealogical network to such an organismal tree structure, we first present a
naive example, in the sense that the delimitation of the species is stipulated a
priori.

So, suppose we have a genealogical network in which the species are given
(Fig. 1a), from which the phylogenetic species tree (Fig. 1b) is derived. Taking
for granted that no two organisms are born at precisely the same time (almost
certain if we measure time in small enough units), species (save possibly for
species that endure forever unsplit) have unique youngest and oldest specimens.
More strongly, we can view a species as a discrete ordered list: the oldest spec-
imen, the next oldest, and so on. In this sense, species are trivial organismal

2This practice fits into ‘stem-based tree’ terminology, not to be confused with ‘node-based
tree’ terminology where the nodes represent the species. See [10] and [12] for discussion of
mixing node- and stem-based terminology. Confusion about the nodal part of the name could
be avoided by calling it the ‘intersplittal species concept.’

3In hindsight perhaps better named “intersplittons”.
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b

Figure 1: Binary phylogenetic species tree (open and closed circles denote male
and female specimens). a A phylogenetic tree of five internodal species mapped
on a genealogical network of organisms (a directed acyclic graph of their parental
relation). b Node-based representation of the phylogenetic tree of five internodal
species.

trees: unary trees, without branching. These trivial trees can be joined accord-
ing to the species they represent: when one old species gives way to two new,
the old trivial tree can be attached to the two new, with edges directed from
the youngest specimen of the former to the oldest specimens of the latter (Fig.
2a). If we zoom in on such a species tree, we see a tree of organisms (Fig. 2b).

a b

Figure 2: Unary/binary organismal tree nested in binary species tree. a Each
species contains a unary tree of organisms ordered by birthdate. Last and
first borns of consecutive species connect the unary trees into a unary/binary
organismal tree. b Nodes show the first and last born of one internodal species.
The unary/binary organismal tree is nested in the binary species tree.

As it assumes species already known (which marks the naivety of the ex-
ample), the above reasoning, by itself, is useless for species delimitation in a
genealogical network. But in this paper, we will construct these species from
scratch. We will obtain a zoomable organismal/species tree structure much like
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the example described above, assuming nothing more than tokogenetic informa-
tion4 of a given organismal network, the permanency of its splits and the total
order induced by unique birthdates.

We will show that the ‘trivial’ unary organismal trees emerging in this con-
struction are exactly Kornet’s internodons. In this way, we arrive at a more
perspicuous alternative definition of the internodon concept as well as a more
insightful proof that internodons are indeed equivalence classes. A promising
feature of this construction is that it is algorithmic in nature, which enables us to
construct efficient software calculating trees of life out of genealogical networks
via organismal trees.

A few words on the basic graph structure on which our paper will be built.
Following [4], we view the biosphere as a directed graph G whose vertices are the
individual organisms, with an edge directed from vertex x to vertex y if x is a
parent of y. Following [1], we allow thatGmay be infinite. We assume organisms
have unique birthdates, ancestors are born before their descendants, and that
only finitely many organisms were born before any time t. The definition below
formalizes this and introduces some terminology and notation used throughout
the paper:

Definition 1. 1. A graph is called birthdated if every vertex has a unique
real number associated to it, called its birthdate5. We write x < y if x’s
birthdate is smaller (i.e., earlier) than y’s, in which case we also say x is
an elder of y, that x is older than y, or that y is younger than x.

2. A birthdated graph is called downward finite if it has, for each real number
t, only finitely many vertices older than6 t.

3. Throughout this paper, the symbol G will denote a downward finite birth-
dated directed acyclic graph, where the vertices denote organisms, and the
relation defined by the arrows is called the parent relation, with the addi-
tional proviso that parents are always older than their children.

4. For any members x, y of G, we say x is an ancestor of y (equivalently,
that y is a descendant of x) if x 6= y and there is a sequence x0, . . . , xn
of members of G such that each xi is a parent of xi+1 (for 0 ≤ i < n),

4That is, information pertaining to theparenthood relation between organisms (as defined
by the genealogical network).

5It would be more appropriate, but less natural, to speak of birth moments rather than
birthdates. We impose the constraint that no two members of the population have the same
birthdate: a constraint that makes more sense the finer we divide time. Formally, the role
birthdates play is to extend the partial order of ancestorhood into a total order, and for this
purpose, we need not worry about the precise details of what exactly defines an organism’s
exact moment of birth.

6If, in clause 1 of this definition, we would have stipulated birthdates to be natural num-
bers instead of reals, then downward finiteness would follow immediately from uniqueness of
birthdates. In the sequel of this paper, it will transpire that birthdates are needed only insofar
as they impose a topological order on the graph, and natural numbers are sufficient for this
purpose. However, we chose to stick to defining birthdates as real numbers because this is
closer to the day-to-day meaning of this notion.
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x0 = x, and xn = y (in short: if there is a nonempty directed path from x
to y).

The paper has the following structure. The construction of the organismal
species tree hinges on a transformation of the parental relation defining the
genealogical network (cf. Fig. 1a) into a derived relation to be called the undir-
parent relation which gives rise to organismal tree structures like the ones in
Fig. 2a, b. This transformation is a special case of the so-called parenthood
reconstruction method to be discussed in Section 2 and will be worked out for
our special case in Section 3. In this section, we will also show that this indeed
results in a natural forest or tree structure on the biosphere, called the undirtree.
In Kornet’s internodon construction, those organisms that have a descendant
that has more than one parent, called SD organisms, play a vital role. Section
4 will be devoted to a study of such organisms.

By then, we have acquired sufficient material to give an alternative definition
of Kornet’s internodons, looking like the unary trees comprising the pre-given
species in Fig. 2. This will be the subject of Section 5. Section 6 is devoted to
a proof that these two internodon definitions are equivalent. In Section 7, we
revisit the SD property and use infinitary combinatorial methods to show that
in a formal sense, non-SD organisms are negligible. The final section is devoted
to conclusions and future research.

2 The Parenthood Reconstruction Problem: Can
Parenthood be Reconstrued from Ancestor-
hood?

The approach followed in this section is inspired by the observation that the
basis of Kornet’s internodon construction is the notion of path-connectedness
which can naturally be interpreted as an ancestry-like relation. In a rather
elaborate way, Kornet derived from this relation a disjoint cover consisting of
internodons, thus arriving at a species tree. In seeking a shortcut, the route
taken in the current paper is to derive from that ancestry-like relation a parent-
like relation, arriving at an organismal tree of life. Since deriving parenthood
relations from ancestral relations is far from simple, in this section we treat this
general problem, the parenthood reconstruction problem, first.

We assume full ancestral knowledge of a population, meaning that we know
the members of the population and given any two members, and we know
whether or not one is an ancestor of the other (as in Definition 1). We fur-
ther assume knowledge of birthdates.

The question we now wish to answer is which ancestor relations are parental
relations as well. The following observation shows that without additional in-
formation, perfect parenthood reconstruction is hopeless.

Lemma 1. There are two populations with different parental relations and the
same ancestral relations. Thus, given just a population’s ancestral relations, we
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cannot perfectly reconstruct its parental relations.

Proof. (See Fig. 3) Let a, b, c be three hypothetical organisms. Let X be the
population with members a, b, c where a is the lone parent of b, and b is the
lone parent of c. Let Y be the same population, with one difference: a and b
co-parent c. It is easy to check X and Y have identical ancestral relations.

Figure 3: Proving Lemma 1: a being a grandparent of c allows multiple patterns
of parenthood between a, b, and c.

We will give a parsimony-based imperfect solution to the parenthood recon-
struction problem assuming ancestral relations that make some sense to begin
with. For the remainder of this section, let X be a birthdated population.

Definition 2. A binary relation ≺A on X is a plausible ancestorhood if the
following conditions hold.

1. Ancestors are older than descendants: whenever x ≺A y, x’s birthdate is
smaller than y’s.

2. Transitivity: if x ≺A y and y ≺A z, then x ≺A z.

3. No organism has infinitely many ancestors: for any x, there are only
finitely many y such that y ≺A x.

Definition 3. Let ≺A be a plausible ancestorhood on X. By the parsimoniously
reconstructed parenthood, we mean the binary relation ≺P such that for every
x, y ∈ X, x ≺P y if and only if the following hold.

1. x ≺A y.

2. There is no z such that x ≺A z and z ≺A y.

Proposition 2. Let ≺A,≺P be as in Definition 3.
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1. ≺P is consistent with ≺A, by which we mean that ∀x, y ∈ X, x ≺A y if
and only if there is a sequence x = x0, . . . , xn = y such that xi ≺P xi+1

for each i = 0, . . . , n− 1.

2. ≺P is as small as possible: if ≺P0
is any binary relation consistent with

≺A in the above sense, then ≺P⊆≺P0
(i.e., ≺P is a subrelation of ≺P0

,
or equivalently, whenever x ≺P y, then it follows that x ≺P0 y).

Because of the generality of Proposition 2, we can apply it freely to any
ancestorhood notion we like, as long as that notion is formally plausible, as in
Section 3 where a derivative ancestorhood notion will be obtained by varying
the properties of actual ancestorhood.

Proof of Proposition 2. We divide the proof into two claims.
(1) First, we prove ≺P is consistent with ≺A, in the sense defined above.
(See Fig. 4a) First suppose x ≺A y, we will show there is a sequence x =

x0, . . . , xn = y, each xi ≺P xi+1. If x ≺P y, this is trivial (let x = x0, x1 = y). If
not, there must be some z such that x ≺A z and z ≺A y. If x ≺P z and z ≺P y,
we are done (let x = x0, z = x1, y = x2). If not, say x 6≺P z (the other case is
similar), then there must be some z′ with x ≺A z′ and z′ ≺A z. This process
continues... it cannot continue forever, lest y have infinitely many ≺A ancestors
(distinct since ancestors are older than descendants), violating the plausibility
of ≺A.

Conversely, assume there is a sequence x = x0, . . . , xn = y, each xi ≺P xi+1,
we will show x ≺A y. Part of the definition of xi ≺P xi+1 is that xi ≺A xi+1.
So each xi ≺A xi+1, and by transitivity, x ≺A y.

(2) Second, we prove ≺P is as small as possible.
Suppose ≺P0

is consistent with ≺A, we will show ≺P⊆≺P0
. Assume, for

sake of contradiction, there are x, y ∈ X such that x ≺P y and x 6≺P0
y. Since

x ≺P y, in particular, x ≺A y. Thus, since ≺P0 is consistent with ≺A, there is
a sequence x = x0, . . . , xn = y with each xi ≺P0 xi+1 (see Fig. 4b). We must
have x1 6= y, by the assumption that x 6≺P0

y. Because ≺P0
is consistent with

≺A, the subsequence x1 ≺P0
· · · ≺P0

xn = y forces x1 ≺A y. Letting z = x1,
this contradicts x ≺P y (Definition 3 part 2).

3 Introduction to the Wondrous Undirworld: from
Networks to Trees

Now, we will apply the construction from the previous section to the path-
connected relation as given in Kornet’s earlier work.

Recall (Definition 1) that x is an ancestor of y precisely if G has a nonempty
directed path from x to y. We can strengthen this characterization slightly.
The following lemma is trivial, but it plays an important role in the definition
of internodons.
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Figure 4: Proving optimality of the parsimoniously reconstructed parenthood.

Lemma 3. (Compare underlined words with Definition 4 below) If x 6= y are
organisms, x is an ancestor of y precisely if G has a nonempty directed path
from x to y that avoids x’s elders.

Proof. Follows from the assumption that parents are born before their children.

The virtue of Lemma 3 is that it lends itself well to variation. From it, we
obtain a definition by variation of what Kornet et al called [9] the path-connected
relation, called CNB in the Appendix of [7].

Definition 4. (Compare underlined phrases with Lemma 3 above) If x 6= y
are organisms, x is an undirected ancestor of y precisely if G has a nonempty
undirected path from x to y that avoids x’s elders.

Figure 5a depicts a typical (directed) path as in Lemma 3, versus (Fig. 5b)
a typical (undirected) path as in Definition 4. We have underlined words in
Lemma 3 and Definition 4 to emphasize their differences.

One advantage of such definitions by variation is that they permit adjacent
definitions by analogy. Thus, y is an undirected descendant of x if x is an
undirected ancestor of y. For brevity, we use abbreviations like undirancestor
and undirdescendant (the undir prefix can be pronounced “under”).

Lemma 4. Undirancestry is plausible in the sense of Definition 2.
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Figure 5: Directed and undirected paths avoiding x’s elders.

Proof. We divide the proof into three parts corresponding to the three parts of
Definition 2.

1. Undirancestors are older than their undirdescendants, because by defini-
tion, the defining path from an undirancestor a to each of its undirdescen-
dants d avoids a’s elders so that, more in particular, each d is not an elder
of a. Because every organism in G has a unique birthdate, each d must
be younger than a.

2. (Transitivity) If a is an undirancestor of b and b is an undirancestor of c,
then there is an undirected path π from a to b avoiding a’s elders, as well
as an undirected path π′ from b to c avoiding b’s elders. It follows from
(1) that π′ also avoids a’s elders. Thus, the concatenation of π and π′ is
an undirected path from a to c avoiding a’s elders.

3. Suppose organism a has infinitely many undirancestors. Then, by (1),
there are infinitely many organisms older than a. But in that case, there
are infinitely many organisms born before a’s birthdate, which contradicts
the fact that G is downward finite (Definition 1 part 2).

The above Lemma justifies the Definition below, which is based on Proposi-
tion 2.

Definition 5. Following Definition 3, x is an undirparent of y if the following
conditions hold.

1. x is an undirancestor of y.

9



2. There is no organism z such that x is an undirancestor of z and z is an
undirancestor of y.

Figure 6a shows parenthood relations, and Figure 6b shows undirparenthood
relations in a small population. By Proposition 2, undirparenthood is consistent
with undirancestorhood. For motivation, recall the introduction. Under Hennig,
individual species can be viewed (as we do in Figure 2a) as unary trees joined
where speciation occurs to form a compound tree of life. The following theorem
shows that undirparenthood formalizes this. It will turn out that the undirtree
construction gives rise to a segmentation of this tree that forms the basis of
the formal internodal species concept, which is well motivated [7] [9] [8]. That
the same notion arises in such different ways increases its robustness, in the
mathematician’s view.

Figure 6: Parental relations (a) and undirparental relations (b).

Theorem 5. Let G′ be the digraph (directed graph) whose vertex set is the set of
organisms, with an edge directed from x to y precisely when x is an undirparent
of y. Then G′ is a forest. If the biosphere is monophyletic (i.e., if all life
descends from a common ancestor), G′ is a tree.

Proof. (See Fig.7) It suffices to show every organism has at most one undirpar-
ent. This will hinge on our assumption that no two organisms share a birthdate.

Let y be an organism and, for sake of contradiction, assume y has distinct
undirparents x1 and x2. Relabeling if necessary, say x1 is born before x2.
Because x1 and x2 are undirparents of y, in particular, they are undirancestors
of y, so there are nonempty undirected paths π (from x1 to y) and ρ (from x2
to y) such that π avoids x1’s elders and ρ avoids x2’s elders. Then, π _ ρreverse

is a nonempty undirected path from x1 to x2, avoiding x1’s elders7. This shows
x1 is an undirancestor of x2. Letting z = x2, this violates Definition 5 Part 2.

If the biosphere is monophyletic, then G′ is connected, hence a tree.

7Here, _ denotes concatenation and ρreverse stands for the path ρ travelled in the opposite
direction. More formally, if ρ = a1, . . . , an denotes an undirected path (where the ai are
nodes), then ρreverse is the path an, ..., a1.
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Figure 7: Proving that undirparenthood is a forest.

Theorem 5 provides a foothold for doing with DAGs what is normally done
with trees (for example, defining monophyletic groups, closer to cladograms),
but that is not the primary focus of this paper.

Corollary 6. Any time y has an undirparent x, x is the youngest undirancestor
of y.

Call the graph G′ of Theorem 5 the undirforest, or the undirtree if the
biosphere is monophyletic. Figure 8a shows an initial segment of a population,
and Figure 8b shows the corresponding undirtree. We have arrived at a tentative
candidate for (an organism-level version of) the tree of life. On our own, we have
little justification to call this tree such, but it will turn out that it is identical
to a zoomed-in version of the tree of internodons. Before we prove as much, we
must first analyze the structure of G′.

We adopt the following notation from [9].

Definition 6. For any organisms x, y, write x(PC≥x)y if there is a (possibly
empty) undirected path from x to y avoiding x’s elders. Thus, x(PC≥x)y if
either x = y or x is an undirancestor of y. Write x 5 y if x = y or x is born
before y.

Lemma 7. For any organisms x 5 y, x(PC≥x)y if and only if there is a
directed path from x to y in the undirforest G′.
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a b

Figure 8: a A population (a network). b The corresponding undirpopulation (a
tree). Triangles in the graph denote permanent splits.

Proof. Immediate from the fact (Proposition 2) that undirparenthood is consis-
tent with undirancestry.

4 The SD Property: Having a Sexual Descen-
dant

A problem with the Hennigian notion of cleavages as speciation events is that
it leads to unrealistically small species, for instance, via organisms that do not
bear offspring. In the most extreme case, a single childless organism technically
induces a permanent split8. One such infertile specimen would suffice to ter-
minate its parents’ species and generate two new species (one consisting solely
of that single organism), if Hennig’s notion is not amended to take this into
account.

A general method for reducing the above problem is as follows (∗): formally
define some notion of outsider organism, in such a way that the property of be-
ing an outsider is inherited by descendants (descendants of an outsider should
be outsiders). Having done this, one may temporarily discard all outsider or-
ganisms; partition the remaining non-outsiders into species; and finally, place
outsider organisms in the species of their most recent non-outsider ancestor.
The only question, then, is how to define outsider organisms. There are many
possibilities. Effectively, Kornet’s [7] outsiders, called non-SD organisms (see
Definition 7), are the organisms that have no descendant with more than one
parent. Thus, to be non-outsider, one’s descendants (and those descendants’
parents) must form a proper genealogical subnetwork, not simply a tree. For a
general notion of outsider, the construction (∗) might significantly distort the
network (and there might be a significant amount of outsider organisms with no

8See [13] for more discussion on the problem of short-lived internodons.
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non-outsider ancestors). But if we use Kornet’s SD notion, we can give a very
rigorous mathematical argument that both the distortion, and the number of
non-SD organisms without SD ancestors, are negligible. (We do precisely that
in Section 7.)

Definition 7. An organism x in G has the sexual descendant property (or the
SD property, or more simply x is SD) if x has a descendant y such that y has
at least two parents in G. If x is not SD, an organism y is an x-test organism
if the following hold.

1. y is SD.

2. y is an ancestor of x.

3. No y′ younger than y satisfies (1) and (2).

Figure 9 shows a partially cleistogamous population. Non-SD members,
indicated by smaller vertices, form non-SD clusters, indicated by dashed lines.

Figure 9: A partially cleistogamous population, with non-SD clusters indicated
by dashed lines.

The internodon construction to be discussed in Section 5 will be based on
the SD subgraphs of the networks G and G′. One can see from Figure 9 that
omitting non-SD nodes there leaves the structure of the SD part intact in the
sense that if two SD nodes are connected by a directed path in G, this will
also be the case in the SD-only subgraph of G. (This property follows from the
observation that an ancestor of an SD node is itself SD.) On the other hand, it
is not immediately clear that the same property holds for the undirgraph G′. To
prove that this is indeed the case (Proposition 13), we need a few preparatory
technical lemmas.
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Lemma 8. Suppose x is a non-SD organism. There is at most one x-test
organism.

Proof. Immediate from the assumption that no organisms share a birthdate and
part 3 of Definition 7.

Lemma 9. An organism cannot have multiple non-SD parents.

Proof. Immediate from the definition of SD.

Corollary 10. The subgraph G0 ⊆ G of non-SD organisms is a forest.

Proof. Immediate from Lemma 9.

Lemma 11. Let x be non-SD. For any organism y, the following are equivalent.

1. x is an undirancestor of y.

2. x is an ancestor of y.

3. There is a unique nonempty directed path from x to y in G.

Proof. (1 ⇒ 2) Suppose x is an undirancestor of y. This means there is a
nonempty undirected path x = p0, . . . , pn = y from x to y avoiding x’s elders
(see Figure 10). Simplifying if necessary, we may assume this path does not
repeat vertices. We claim each pi is a parent of pi+1 (making x an ancestor of
y). Assume not, then there is some i (we can take the minimum such i) such
that pi is a child9 of pi+1. Since the path avoids x’s elders, i > 0. Thus, pi
has two parents pi−1 and pi+1, distinct since the path does not repeat vertices.
Because i was chosen minimal, pi is a descendant of p0 = x. This shows x has a
descendant with multiple parents, violating the assumption that x is non-SD.

Figure 10: Proving that undirancestors that are non-SD are ancestors in the
ordinary sense.

(2 ⇒ 3) Suppose x is an ancestor of y. Then, there is a directed path π in
G from x to y. In fact, all the vertices in π are non-SD (they are descendants

9Thus, for any two SD vertices x, y, if x is an undirparent of y, then there is an arc from
x to y in G′

SD.

14



of x, and if they were SD, that would make x itself SD), so lie in the non-SD
forest of Corollary 10. It is a general fact from graph theory that there cannot
be multiple directed paths connecting two vertices in a forest.

(3 ⇒ 1) If there is a unique nonempty directed path π from x to y in G, π
must avoid x’s elders (since ancestors are born before descendants), and so since
π is also an undirected path, π witnesses that x is an undirancestor of y.

It can be shown from Lemma 11 that among non-SD organisms, parenthood
and undirparenthood are the same relation.

Corollary 12. 1. Every undirdescendant of a non-SD organism is non-SD.

2. Every undirancestor of an SD organism is SD.

Proof. (2) is the contrapositive of (1). To prove (1), let x be non-SD and let y
be an undirdescendant of x. By Lemma 11, y is a descendant of x. If y were
SD, then y would have a descendant z with multiple parents. This is impossible
because z would also be a descendant of x.

Proposition 13. Let G′SD ⊆ G′ be the vertex-induced subdigraph of G′ con-
taining the SD organisms (i.e., G′SD is the smallest subgraph of G′ containing
the SD organisms and containing every edge whose two endpoints are SD10).

1. G′SD is a forest.

2. If x, y ∈ G′SD, then x(PC≥x)y if and only if y is in the subtree of G′SD
rooted at x.

Proof. (1) follows from Theorem 5, the rest of the proof is devoted to (2).
(⇒) Assume x(PC≥x)y. By Lemma 7, there is a directed path π from x

to y in G′. Since every nonterminal vertex in π is an undirancestor of y and y
is SD, by Corollary 12, this path is actually a path in G′SD, placing y in the
subtree of G′SD rooted at x.

(⇐) Immediate by Lemma 7.

To illustrate Proposition 13, Figure 11a shows an undirtree G′ (from Figure
8b) and Figure 11b shows the SD-part G′SD.

5 Internodons in the Undirworld11

We follow Kornet’s idea of first partitioning the SD organisms into species,
and then letting non-SD organisms fall into the species of their test organisms
(Definition 7).

To avoid confusion, in the sequel, we will refer to the notion of internodon as
defined in [9] as internodonK , and to this notion as defined below as internodonA

(for its motivation from [1]). After Section 6 where we will show that these
definitions are equivalent, this distinction will not be needed anymore.

10Thus, for any two SD vertices x, y, if x is an undirparent of y, then there is an arc from
x to y in G′

SD.
11Note that the undirworld assumes unequal birthdates. See also Remark 21.
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a b

Figure 11: From a full undirtree to an SD-only undirtree. a An undirtree G′

derived from the population in Figure 8a. b The corresponding SD-only part
G′SD of Proposition 12. Triangles denote permanent splits in the network.

Definition 8. By a segment of a forest, we mean a maximal non-branching
directed path, that is, a directed path whose vertices (except possibly a final
vertex) have outdegree 1 and which is as long as possible with that property. By
a pre-internodonA (see Figure 12), we mean a segment of the forest G′SD of
Proposition 1312.

a b

Figure 12: Pre-internodonsA. a The SD part of the undirpopulation from
Figure 11. b The corresponding pre-internodonsA. Triangles denote permanent
splits in the network.

Applying species terminology to pre-internodonsA, speciation occurs pre-

12Note that a non-final vertex in a segment of G′
SD may have outdegree > 1 in G′, but

must have exactly one SD undirchild.
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cisely when an SD organism has multiple SD undirchildren. If an SD organism
x has n > 1 SD undirchildren y1, . . . , yn, then x’s pre-internodonA goes extinct
and n new pre-internodonsA speciate, one for each of y1, . . . , yn.

Lemma 14. The pre-internodonsA form a disjoint cover of the set of all SD
organisms.

Proof. A special case of the general fact that the segments of any forest form a
disjoint cover of the vertices of that forest.

We finally state the definition of internodonA. In Section 6, we will recall
the definition of internodonK from Kornet et al and prove that the two are
equivalent.

Definition 9. (See Figure 13) An internodonA is a set of the form P ∪ Q,
where P is a pre-internodonA and Q is the set of non-SD organisms with test
organisms in P .

Figure 13: InternodonsA in the population from Figure 12.

Lemma 15. The internodonsA form a disjoint cover of the set of all SD or-
ganisms combined with the set of all non-SD organisms with test organisms.

Proof. Immediate by Lemmas 8 and 14.

6 Definitional Equivalence

In this section, we recall some definitions from Kornet et al [9]. We recall them
in a simplified form, due to our assumption of distinct birthdates. The 1995
paper allows shared birthdates, which complicates definitions. In Remark 21,
we revisit this issue.
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Definition 10. (Kornet et al, 1995) Assume x, y are organisms.

1. By DYN(x) (the dynasty of x), we mean {y : y is SD and x(PC≥x)y}
(in the language of this paper, DYN(x) consists of x’s SD undirdescen-
dants along with x itself, if x is SD).

2. By INTSD, we mean the binary relation on the set of SD organisms
defined so that for all SD organisms x and y,

(a) If x = y, then xINTSDy.

(b) If x is born before y, then xINTSDy holds if and only if:

i. y ∈ DYN(x), and

ii. For all r ∈ DYN(x) such that y = r, DYN(r) = {z ∈ DYN(x) :
z = r}.

(c) If x is born after y, then xINTSDy if and only if yINTSDx.

Proposition 16. Let I be a pre-internodonA and let x ∈ I. For any13 organism
y, y ∈ I if and only if xINTSDy.

Proof. Write I = {x1, x2, . . .} (possibly finite, possibly infinite) where each xi
is an undirparent of xi+1.

(⇒, see Figure 14) Assume y ∈ I, we will show xINTSDy. Assume x is
born before y, the other case is similar. Write x = xj , y = xk, so k > j.
The path xj , . . . , xk witnesses y ∈ DYN(x). Now suppose r ∈ DYN(x) and
y = r. By Proposition 13, r lies on the SD subtree rooted at x, so must
be x` for some k ≥ ` ≥ j; we claim DYN(r) = {z ∈ DYN(x) : z = r}.
Clearly, DYN(r) ⊆ {z ∈ DYN(x) : z = r}. For the reverse inclusion, suppose
z ∈ DYN(x) and z = r. By Proposition 13, z is in the SD subtree rooted at x, so
there is a directed undirparental path π from x to z. And π must pass through
r, lest one of xj , . . . , x`−1 have multiple undirchildren (contrary to Definition
8). A suitable restriction of π witnesses z ∈ DYN(r).

(⇐, see Figure 15) Assume xINTSDy, we will show y ∈ I.
Assume y is younger than x, the other case is similar. Since y ∈ DYN(x),

by Proposition 13, there is a directed undirparental path π from x to y. We
claim there are no splitting points (organisms with multiple SD undirchildren)
on π except possibly for y itself; this claim will prove y ∈ I by maximality of I.
Assume not: assume π passes through u, which has multiple SD undirchildren,
before reaching y. Let r be the oldest SD undirchild of u and let r′ be a
different SD undirchild of u. Note r 5 y since π contains an SD child of u.
Now, {z ∈ DYN(x) : z = r} contains r′ but DYN(r) does not contain r′ (by
Theorem 5 and Proposition 13). This violates the definition of xINTSDy.

Corollary 17. INTSD is an equivalence relation, and its equivalence classes
are the pre-internodonsA.

13Note that y ∈ I implies that y is SD, which implication is also true if xINTSDy. Thus,
the Proposition would not change if we wrote “for any SD organism y.”
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Figure 14: Proving that when two organisms x and y share a pre-internodonA,
they are necessarily INTSD related.

Proof. By Proposition 16, for any SD organism x, {y : xINTSDy} = {y :
yINTSDx} equals the pre-internodonA containing x. By Lemma 14, these pre-
internodonsA are a disjoint cover of the set of all SD organisms. This tells us
INTSD is an equivalence relation and that the pre-internodonsA are exactly
the INTSD equivalence classes.

On the basis of the first part of Corollary 17, the INTSD classes can aptly
be called pre-internodonsK (we would have made this a definition sooner, but
it requires knowledge that INTSD is an equivalence relation); the second part
of Corollary 17 then becomes a statement about equivalence of definitions: the
pre-internodonsK and the pre-internodonsA are identical.

Definition 11. (Kornet et al, 1995)

1. By WN, we mean the set of organisms that either are SD or have a test
organism.

2. By INT, we mean the binary relation on WN defined so that for all
organisms x, y ∈WN, xINTy if and only if x′INTSDy′, where

(a) If x is SD, then x′ = x, otherwise x′ is x’s test organism.

(b) If y is SD, then y′ = y, otherwise y′ is y’s test organism.
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Figure 15: Proving that when two organisms x and y are INTSD related, they
necessarily share a pre-internodonA.

Proposition 18. Let I be an internodonA and x ∈ I. For any organism y,
y ∈ I if and only if xINTy.

Proof. Let x′, y′ be as in Definition 11 clause 2 and write I = P ∪ Q as in
Definition 9 (so P is a pre-internodonA). Since x ∈ I, it follows x′ ∈ P . The
following are equivalent:

y ∈ I
y′ ∈ P (Definition 9)

x′INTSDy′(Proposition 16)

xINTy.(Definition 11)

Corollary 19. INT is an equivalence relation and the equivalence classes are
precisely the internodonsA.

Definition 12. (Kornet et al, 1995) By an internodonK , we mean an INT
equivalence class.

Theorem 20. (Definitional Equivalence) The internodonsA are precisely the
internodonsK .

Proof. Immediate from Corollary 19.

Given Theorem 20, it is no longer necessary to distinguish internodonsA
from internodonsK . Note that Definition 9 is the more algorithmic of the two
definitions.

20



Remark 21. We have worked in less generality than Kornet et al: for simplic-
ity, we have assumed no two organisms share the exact same birthdate. Kornet
et al did not make this assumption. Our work can be generalized to accommo-
date non-distinct birthdates as follows. If B is a biosphere where some organisms
are born simultaneously, let B′ be the corresponding (hypothetical) biosphere in
which two organisms x and y are identified if x and y have the same birthdate
and x(PC≥x)y (note that if x and y are born simultaneously, x(PC≥x)y is
equivalent to y(PC≥y)x). Then, B′ may still contain distinct organisms with
shared birthdates, but never one within the dynasty of another. It is straightfor-
ward to adjust our work for such a biosphere B′. From the internodons of B′,
the internodons of B follow by declaring that any x and y identified in B′ lie in
the same internodon in B.

Remark 22. The vigilant reader may have noticed an apparently arbitrary de-
cision (anathema to mathematics) in our definition of pre-internodons. We
start by computing undirparents; then, we discard non-SD organisms; then, we
take maximal non-branching undirpaths. The first two steps could be reversed:
discard non-SD organisms first, compute undirparents second. Assuming no
shared birthdates, this would lead to alternate internodon-like clusters. Remark
21 justifies the order we chose: it would not hold if we chose the other order.

7 The SD Property Revisited

In order to avoid a proliferation of “tiny” permanent splits, Kornet proposed
to group non-SD organisms with their nearest SD ancestors (see also Section
4). This correction causes the internodal tree from Figure 13 to differ from the
one in Figure 12b. How great is this difference? One theme of the paper is that
the two trees are similar enough to motivate one another, so we feel obliged to
demonstrate their similarity: we will argue their difference is negligible, in a
formal sense.

At the same time, not all organisms lie in an internodon at all. If an organism
is non-SD and has no test organism, it is left out of the internodon construction.
We will demonstrate that such stray individuals are also negligible.

Unfortunately, the predicate negligible is vague. To remove this vagueness,
we assume the genealogical network is infinite and treat “negligible” and “small”
as synonyms for finite. Maybe the genealogical network is not infinite! But we
would not be the first scientists to approximate the finite by the infinite. See [1]
for more justification for this infinitary assumption. Hereafter, we assume the
genealogical network is infinite, and we define negligible to mean finite.

The key to proving negligibility is the Knight–Darwin law, stated by Darwin
[2] (see also [3], [1]). Darwin’s original words were:

“...it is a general law of nature that no organic being self-fertilizes
itself for a perpetuity of generations; but that a cross with an-
other individual is occasionally—perhaps at long intervals of time—
indispensable.”
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Based on this and surrounding passages, we formalize the Knight–Darwin law
as follows (we phrase it as a property of graphs, rather than a law of physics,
to emphasize that it is an unfalsifiable inductive generalization).

Definition 13. (See Figure 16) We say G has the Knight–Darwin property
if G does not contain any infinite directed path in which every vertex has < 2
parents.

Figure 16: The Knight–Darwin law: every infinite directed path through the
genealogical network hits a sexually produced vertex.

We shall need a combinatorial theorem known as König’s Lemma.

Theorem 23. (König’s Lemma) Let T be an infinite tree in which every vertex
has at most finitely many children. Then T has an infinite directed path.

Hereafter, we assume that every organism in the biosphere has only finitely
many children (we consider this to be a mild assumption).

Theorem 24. Assume (following [4]) that there are only finitely many parent-
less organisms. If G has the Knight–Darwin property, then the set WNc of
non-SD organisms lacking test organisms is negligible.

Proof. Let C be the set of connected components of WNc.
Claim 1: For each C ∈ C, C contains a parentless organism.
Since connected components are nonempty, C contains some organism x. If

x is not parentless, let x′ be a parent of x. Then, x′ ∈ C because x′ is connected
to x, and x′ is not SD nor does x′ have a test organism (in either case, x would
have a test organism, contradicting x ∈ WNc). If x′ is not parentless, let x′′

be a parent of x′, by identical reasoning x′′ ∈ C. This process cannot continue
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forever or x would have infinitely many ancestors. Thus, C has a parentless
organism, proving the Claim.

It follows (since there are only finitely many parentless organisms) that |C| <
∞.

Claim 2: Every C ∈ C is finite.
Let C ∈ C. By Corollary 10, C is a forest; since C is connected, C is a tree.

Assume, for sake of contradiction, C is infinite. By König’s Lemma, C has an
infinite path. Since G has the Knight–Darwin property, this infinite path has
an organism with multiple parents—absurd. The Claim is proved.

Consisting of finitely many finite connected components, WNc is finite, so
negligible.

The next corollary shows individual non-SD pieces of an internodon are
negligible.

Corollary 25. Let I0 be a pre-internodon, let I be the corresponding internodon,
and let C be the set of connected components of I\I0. Assuming G has the
Knight–Darwin property, each C ∈ C is negligible.

Proof. Let C ∈ C. By Corollary 10, C is a forest; being connected, C is a
tree. If C were infinite, C would contain an infinite directed path by König’s
Lemma. By the Knight–Darwin property, that infinite path would contain an
SD organism, absurd.

8 Conclusions and Future Work

On the biological side, we have presented a new definition of internodons, ex-
ploiting the simplification obtained by taking the undirparent relation as our
primary focus, as opposed to Kornet’s path-connectedness based on the undi-
rancestor relation. This resulted in a tree of life construction that zooms down
to individual organisms (with individuals as nodes in the tree). This is the-
oretically satisfying because it diminishes arbitrary dependence on scale. For
example, if we treated individual cells like distinct organisms, the construc-
tion would require no adjustments. A topic for future research is to investigate
whether the multi-level tree of life can be zoomed all the way down to the level
of historical gene trees.

A further spin-off obtained is that the organismal tree generated is home-
omorphic to the phylogenetic Hennigian species tree of life. This implies the
discovery of a multi-level species tree of life: such a phylogenetic tree can be
obtained by zooming out from the organismal tree, or conversely, the organismal
tree of life can be generated by expanding the phylogenetic nodes into unary
trees.

Lastly, given a birthdated population, with tokogenetic information and data
about permanency of splits, an internodon tree can be generated by an efficient
algorithm. The latter will be presented in a separate paper.
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On the mathematical side, we have taken a DAG along with distinct birth-
dates and produced a forest. Distinct birthdates are a special case of the well-
studied notion of a topological order [6] on a DAG. Given a DAG, the undircon-
struction can be viewed as a function taking topological orders and producing
forests. We suspect that in some sense, biological undirforests do not depend
drastically on which topological order is used; one possible direction of future
research would consist of investigating this conjecture.
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