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An Axiomatic Version of Fitch’s

Paradox
Abstract. A variation of Fitch’s Paradox is given, where no special
rules of inference are assumed, only axioms. These axioms follow from
the familiar assumptions which involve rules of inference. We show
(by constructing a model) that by allowing that possibly the knower
doesn’t know his own soundness (while still requiring he be sound),
Fitch’s Paradox is avoided. Provided one is willing to admit that sound
knowers may be ignorant of their own soundness, this might offer a way
out of the paradox.

1. Introduction

Fitch’s Paradox is the fact that certain sets of assumptions imply, by
what is called the Church-Fitch argument, that φ → K(φ). There are
various different choices for the sets of assumptions, and we will initially
start from the following one, call it F :

− T: K(φ) → φ

− ∧: K(φ ∧ ψ) → K(φ) ∧K(ψ)

− C: φ→ P (K(φ)).

− D-Rule: From ¬φ, infer ¬P (φ).

It is common to replace D-Rule with the axiom K(¬φ) → ¬P (φ)
while adding the rule of necessitation φ/K(φ) (this is essentially what
Salerno (2010) does), but F is more basic, being easily implied by the
alternative. Following Chow (1998), we may say the following about the
paradox (and about paradoxes in general): to resolve it is to weaken
or alter the assumptions so that the unreasonable conclusion no longer
follows. Therefore there may be many different resolutions to a paradox,
and it may be subjective which is better, if any. Accordingly, in this
paper I will demonstrate one resolution, and, though I will argue for its
philosophical plausibility, I do not intend to champion it above other
known resolutions.

The assumption I will target for removal is K(K(φ) → φ). The
reader may object that this is not one of the assumptions listed! It
merely follows from them. That it follows from them is a special case
of the Church-Fitch argument, if nothing else. Which leads us to ask:
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Informal Question: Can K(K(φ) → φ) be proved from F by a
different method than variation on the Church-Fitch argument?

I have not managed to do so, and I very tentatively conjecture the
answer is “no”, though I do not know for sure. Suppose that the an-
swer really is “no”. Then any resolution which blocks the Church-Fitch
argument and goes no further, will necessarily block all the proofs of
K(K(φ) → φ), unless there be something special about this partic-
ular instance of the argument, against the spirit of the Question. If
the Answer is indeed “no”, then an optimal resolution of the paradox
must eliminate K(K(φ) → φ) as a consequence of F (or of whatever
system replaces F ). For example, from F , the intuitionist can deduce
¬¬K(K(φ) → φ), following Church and Fitch til the end. To cover the
final gap, the intuitionist needs a whole new tactic, whose existence
would positively answer the Question. Maybe the intuitionist could
simply add K(K(φ) → φ) as an axiom in addition to letting intuition-
ism destroy the paradox, but that resolution would not be “optimal”.
The point of all this is to justify the choice of targeting K(K(φ) → φ):
if it has to go in any case, why not aim at it directly?

My aim is to break up the rules of inference, which can be thought
of as huge indivisible assumptions, into smaller pieces (together capa-
ble of taking the rules’ place). More smaller assumptions means more
flexibility choosing how to resolve the paradox, unfortunately such new
resolutions will probably not translate into resolutions for the familiar
form of the paradox (we are saddened that this may justifiably render
our result an outlier in the bigger picture of Fitch’s Paradox). The
smaller assumptions will be axiom schema instead of rules, and one
will be the schema K(K(φ) → φ). I will discard this schema and show
the paradox dissolves.

To see that discarding K(K(φ) → φ) is philosophically plausible,
consider Gödel’s Second Incompleteness Theorem: assuming PA is con-
sistent, the arithmetist’s knowledge is factive, but she cannot be certain
of it. Kritchman and Raz (2010) demonstrated that a similar knowledge
paradox, the surprise examination paradox, can be resolved in part by
(in essence) altering the definition of surprise to say that unsound
knowers are surprised by everything. The students in Kritchman and
Raz’s treatment are sound, but (in the resolution) they interpret their
teacher’s ambiguous announcement using the modified definition of
surprise, acknowleding that they might be unsound. The same trick
was also used by Halpern and Moses (1986). Factive knowers failing
K(K(φ) → φ) can also be found in the semantics of impossible-worlds

structures (as defined, for example, by Duc (2001 pp. 21-22)).
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But this justification is limited to particular concrete knowers inside
closed systems, about whom we possess meta-knowledge. What about
our own knowledge, or the total idealized knowledge of mankind? Surely
that knowledge is factive (if the barest foundations of science are) and
what’s more, we know it, or at least we presuppose it in our struggle to
define knowledge at all. The situation is similar to how non-paradoxical
third-party Moore’s paradoxes (“He’s factive and he doesn’t know it”)
become paradoxical when there’s only one voice (“We’re factive and
we don’t know it”). In short, this paper mainly applies to specific,
formal knowers. This is unsatisfying since the most profound questions
in the Fitch’s Paradox debate are directly concerned with the general
meta-knowledge.

Still I can offer one desperate throe in the face of the above. We
can speak of limit knowledge, saying that a fact is limit known if it is
eventually always known and always true after some point. Mathemat-
ics periodically suffers errors which spread far enough to be considered
part of the mathematical knowledge. There may be cofinally many
moments when we are presently unfactive, so the statement that we
are factive might not be limit knowledge. But all errors are eventually
corrected, no error becomes limit knowledge, and limit knowledge is
factive.

2. The Paradox

Work in a language L , propositional1 except for exactly two new unary
modal operators K and P . I will give an entirely axiomatic version of
the Fitch assumptions, but some machinery is needed. Call a formula
propositional if it has the form ρ ∧ σ, ρ ∨ σ, ρ → σ, ρ ↔ σ, or ¬ρ.
Now, call a formula valid if it can be proved by classic propositional
logic treating non-propositional formulas as atoms (an idea inspired by
Carlson (2000)). That is, φ is valid if and only if it is True according
to every truth assignment to the subformulas of φ which respects ∧, ∨,
→, ↔ and ¬.

Thus K(φ) → K(φ) is valid, as is P (φ) ∨ ¬P (φ), but K(K(φ) →
K(φ)) is not. Any valid formula holds in any model where the semantics
of propositional connectives are classical. Whenever Σ is a set of axioms,
write Σ |= φ to mean φ can be proved from Σ propositionally, treating
non-propositional formulas as atoms.

Our Fitch assumptions are the following set S of axioms:

1 I originally wanted to publish a first-order treatment, but there are a lot of new

technical details. It was H. Friedman who suggested the switch to propositional,

which is more in alignment with existing work on Fitch’s Paradox anyway.
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− E1: K(φ) whenever φ is valid.

− E2: K(φ→ ψ) → K(φ) → K(ψ).

− E3: K(φ) → φ.

− E-Closure: K(φ) whenever φ is an instance of E1, E2, or E3.

− C: φ→ P (K(φ)).

− D: K(¬φ) → ¬P (φ).

The names of E1-E3 were chosen to match names used by Carlson
(2000 pp. 56). I want to point out we’ve added no new assumptions
not already implied (in classic logic) by Salerno’s (2010) more familiar
assumptions. For example, to prove E2, assume K(φ → ψ) and K(φ);
then by T , φ → ψ and φ; by modus ponens, ψ; by Fitch’s Paradox,
ψ → K(ψ); and by modus ponens, K(ψ). We have simply broken some
component pieces off of an inference rule.

Finally we show S |= φ → K(φ). This is a modification of the clas-
sical Church-Fitch argument. The original argument was published by
Fitch (1963) after it was communicated to him by an anonymous referee
who we now know was Alonzo Church. In the following argument (ex-
cept line 8), we work in propositional logic, treating non-propositional
formulas as atoms.

1. Assume K(φ ∧ ¬K(φ)).

2. By E1, K((φ ∧ ¬K(φ)) → φ).

3. By E2, K(φ ∧ ¬K(φ)) → K(φ).

4. By 1, 3, Modus Ponens, K(φ).

5. An identical argument shows K(¬K(φ)).

6. By E3, ¬K(φ).

7. By 4, 6, Contradiction, Discharge 1 and conclude ¬K(φ∧¬K(φ)).

8. I’ve proved ¬K(φ ∧ ¬K(φ)) propositionally from finitely many in-
stances of E1-E3. There are finitely many axioms φ1, ..., φn from
E1-E3 such that φ1 → · · · → φn → ¬K(φ ∧ ¬K(φ)) is valid.

9. By E1, K(φ1 → · · · → φn → ¬K(φ ∧ ¬K(φ))).

10. By E2 repeatedly, K(φ1) → · · · → K(φn) → K(¬K(φ ∧ ¬K(φ))).

11. We have K(φ1), ..., K(φn) by E-Closure.
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12. By 10, 11, Modus Ponens, K(¬K(φ ∧ ¬K(φ))).

13. By D, ¬P (K(φ ∧ ¬K(φ))).

14. Assume φ ∧ ¬K(φ).

15. By C, P (K(φ ∧ ¬K(φ))).

16. By 13, 15, Contradiction, Discharge 14 and conclude ¬(φ∧¬K(φ)).

17. By elementary logic, φ→ K(φ).

Lines 7-12 illustrate how the axioms in S perform work traditionally
done by rules of inference. If we strengthened E-closure to also include
K(φ) whenever φ is an instance of C, D, or (recursively) E-closure, the
resulting system would enjoy the full rule of necessitation φ/K(φ).

One feature of this axiomatic version of Fitch’s Paradox is that in
principle we can use it to write Fitch’s Paradox as a single logical
tautology schema. This can be done by reverse-engineering lines 1-
17 above to obtain a tautology of the form Ψ → φ → K(φ), where
Ψ is a giant conjunction of specific axioms (depending uniformly on
φ) of S. Since the conclusion is K(φ) and one of the hypotheses is
K(K(¬K(φ)) → ¬K(φ)), this is almost a kind of weak propositional
version of Löb’s Theorem.

3. Avoiding Paradox by Weakening E-Closure

Let S′ be the following set of axioms:

− E1: K(φ) whenever φ is valid.

− E2: K(φ→ ψ) → K(φ) → K(ψ).

− Weak E-Closure: K(φ) whenever φ is an instance of E1 or E2.

− E3: K(φ) → φ.

− C: φ→ P (K(φ)).

− D: K(¬φ) → ¬P (φ).

We will show these axioms do not imply Fitch’s Paradox: resolving it,
in the sense of Chow (1998).

Theorem: Let L be the language, propositional except for two new
unary connectives K and P , with a single atom q. Then S′ 6|= q → K(q).

Proof: Let Σ be the following set of L -axioms:
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− E1: K(φ) whenever φ is valid.

− E2: K(φ→ ψ) → K(φ) → K(ψ).

− Weak E-Closure: K(φ) whenever φ is an instance of E1 or E2.

For each i ∈ {1, 2}, let Ni be the L -model defined as follows:

− Ni |= q iff i = 1.

− Ni |= K(φ) iff Σ |= φ.

− Ni |= P (φ) iff Σ 6|= ¬φ.

− Ni treats propositional sentences inductively in the classical way.

I will show both Ni |= S′. I claim this is enough to prove the
theorem: evidently N1 and N2 interpret K identically, so if N1 |= K(q)
then so does N2, which would contradict that N2 6|= q and N2 models
K(q) → q. In the following Claims, N shall stand for either N1 or N2

interchangeably.

Claim 1: N |= K(φ) if φ is valid.

Since φ follows propositionally from ∅, it certainly follows from Σ.

Claim 2: N |= K(φ→ ψ) → K(φ) → K(ψ).

Assume N |= K(φ → ψ) and N |= K(φ). Then Σ |= φ → ψ and
Σ |= φ. By Modus Ponens, Σ |= ψ. So N |= K(ψ).

Claim 3: N |= K(φ) whenever φ is an instance of E1 or E2.

If φ is an instance of E1 or E2, then φ ∈ Σ, so Σ |= φ, so N |= K(φ).

Claim 4: N |= K(φ) → φ.

Assume N |= K(φ). Then Σ |= φ. By Claims 1-3, N |= Σ. Thus
N |= φ.

Claim 5: N |= φ→ P (K(φ)).

In fact, N |= P (K(φ)), a much stronger fact. To see this, define a
new L -model M as follows: M |= q, M |= K(ψ) always, M |= P (ψ)
never, and M treats propositional sentences inductively in the classic
way. Then M trivially satisfies Σ. Since M 6|= ¬K(φ), this shows Σ 6|=
¬K(φ). Therefore, N |= P (K(φ)).

Claim 6: N |= K(¬φ) → ¬P (φ).

Assume N |= K(¬φ). Then Σ |= ¬φ. Therefore, it is not the case
that Σ 6|= ¬φ. Thus N 6|= P (φ). Thus N |= ¬P (φ).
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By the above claims, N |= S′, as desired.

This resolution preserves the knowability thesis, that all truths are
knowable, which I hope will please the verificationists, though I might
have gone too far. In proving Claim 5, we actually showed that in this
particular model, everything is knowable, whether true or false.
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