
This is an open access article licensed under the Creative Commons BY-NC-ND License.

Journal of Artificial General Intelligence volume(issue) pages, year Submitted submitted
DOI: DOI Accepted accepted

Extending Environments to Measure Self-reflection in
Reinforcement Learning

Samuel Allen Alexander samuelallenalexander@gmail.com
The U.S. Securities and Exchange Commission

Michael Castaneda
KX

Kevin Compher
InQTel

Oscar Martinez
The U.S. Securities and Exchange Commission

Editor: TBD

Abstract

We consider an extended notion of reinforcement learning in which the environment
can simulate the agent and base its outputs on the agent’s hypothetical behavior. Since
good performance usually requires paying attention to whatever things the environment’s
outputs are based on, we argue that for an agent to achieve on-average good performance
across many such extended environments, it is necessary for the agent to self-reflect.
Thus weighted-average performance over the space of all suitably well-behaved extended
environments could be considered a way of measuring how self-reflective an agent is. We
give examples of extended environments and introduce a simple transformation which
experimentally seems to increase some standard RL agents’ performance in a certain type
of extended environment.

1. Introduction

An obstacle course might react to what you do: for example, if you step on a certain button,
then spikes might appear. If you spend enough time in such an obstacle course, you should
eventually figure out such patterns. But imagine an “oracular” obstacle course which reacts
to what you would hypothetically do in counterfactual scenarios: for example, there is no
button, but spikes appear if you would hypothetically step on the button if there was one.
Without self-reflecting about what you would hypothetically do in counterfactual scenarios,
it would be difficult to figure out such patterns. This suggests that in order to perform well
(on average) across many such obstacle courses, some sort of self-reflection is necessary.

This is a paper about measuring the degree to which a Reinforcement Learning (RL)
agent is self-reflective. By a self-reflective agent, we mean an agent which acts not just based
on environmental rewards and observations, but also based on considerations of its own
hypothetical behavior. We propose an abstract formal measure of RL agent self-reflection

1

Alexander et al.

similar to the universal intelligence measure of Legg and Hutter (2007). Legg and Hutter
proposed to define the intelligence of an agent to be its weighted average performance over
the space of all suitably well-behaved traditional environments (environments that react
only to the agent’s actions). In our proposed measure of universal intelligence with self-
reflection, the measure of any agent would be that agent’s weighted average performance
over the space of all suitably well-behaved extended environments, environments that react
not only to what the agent does but to what the agent would hypothetically do. For
good weighted-average performance over such extended environments, an agent would need
to self-reflect about itself, because otherwise, environment responses which depend on the
agent’s own hypothetical actions would often seem random and unpredictable. The extended
environments which we consider are a departure from standard RL environments, but this
does not interfere with their usage for judging standard RL agents: one can run a standard
agent in an extended environment in spite of the latter’s non-standardness.

To understand why extended environments (where the environment reacts to what the
agent would hypothetically do) incentivize self-reflection, consider a game involving a box.
The box’s contents change from playthrough to playthrough, and the game’s mechanics
depend upon those contents. The player may optionally choose to look inside the box, at
no cost: the game does not change its behavior based on whether the player looks inside
the box. Clearly, players who look inside the box have an advantage over those who do not.
The extended environments we consider are similar to this example. Rather than depending
on a box, the environment’s mechanics depend on the player (via simulating the player).
Just as the player in the above example gains advantage by looking in the box, an agent
designed for extended environments could gain an advantage by examining itself, that is,
by self-reflecting.

One might try to imitate an extended environment with a non-extended environment by
backtracking—rewinding the environment itself to a prior state after seeing how the agent
performs along one path, and then sending the agent along a second path. But the agent
itself would retain memory of the first path, and the agent’s decisions along the second path
might be altered by said memories. Thus the result would not be the same as immediately
sending the agent along the second path while secretly simulating the agent to determine
what it would do if sent along the first path.

Alongside the examples in this paper, we are publishing an MIT-licensed open-source
library (Alexander et al., 2022) of other extended environments. We are inspired by similar
(but non-extended) libraries and benchmark collections (Bellemare et al., 2013; Beyret et
al., 2019; Brockman et al., 2016; Chollet, 2019; Cobbe et al., 2020; Hendrycks and Dietterich,
2019; Nichol et al., 2018; Yampolskiy, 2017).

Our self-reflection measure is a variation of Legg and Hutter’s measure of universal
intelligence (Legg and Hutter, 2007). Legg and Hutter argue that to perfectly measure RL
agent performance, one should aggregate the agent’s performance across the whole space
of all sufficiently well-behaved (traditional) environments, weighted using an appropriate
distribution. Rather than a uniform distribution (susceptible to no-free-lunch theorems),
Legg and Hutter suggest assigning more weight to simpler environments and less weight to
more complex environments. Complexity of environments is measured using Kolmogorov
complexity. Although the original Legg-Hutter construction is restricted to traditional
environments (which react solely to the agent’s actions), the construction does not actually

2

Extending Environments

depend on this restriction: all it depends on is that for every agent π, for every suitably
well-behaved environment µ, there is a corresponding expected total reward V π

µ which that
agent would obtain from that environment. Thus the construction adapts seamlessly to our
so-called extended environments, yielding a measure of the agent’s average performance
across such environments. And if, as we argue, good average performance across such
extended environments requires self-reflection, then the resulting measure would seem to
capture the agent’s ability to use self-reflection to learn such extended environments.

2. Preliminaries

We take a formal approach to RL to make the mathematics clear. This formality differs
from how RL is implemented in practice. In Section 4 we will discuss a more practical
formalization.

Our formal treatment of RL is based on Section 4.1.3 of (Hutter, 2004), except that
we assume the agent receives an initial percept before taking its initial action (whereas in
Hutter’s book, the agent acts first), and, for simplicity, we require determinism (the more
practical formalization in Section 4 will allow non-determinism). We will write x1y1 . . . xnyn
for the length-2n sequence 〈x1, y1, . . . , xn, yn〉 and x1y1 . . . xn for the length-(2n−1) sequence
〈x1, y1, . . . , xn〉. In particular when n = 1, we will write x1y1 . . . xn for 〈x1〉, even if y1 is
not defined. We assume fixed finite sets of actions and observations. By a percept we mean
a pair x = (r, o) where o is an observation and r ∈ Q is a reward.

Definition 1 (RL agents and environments)

1. A (non-extended) environment is a function µ which outputs an initial percept µ(〈〉) =
x1 when given the empty sequence 〈〉 as input and which, when given a sequence
x1y1 . . . xnyn as input (where each xi is a percept and each yi is an action), outputs a
percept µ(x1y1 . . . xnyn) = xn+1.

2. An agent is a function π which, given a sequence x1y1 . . . xn as input (each xi a
percept, each yi an action), outputs an action π(x1y1 . . . xn) = yn.

3. If π is an agent and µ is an environment, the result of π interacting with µ is the
infinite sequence x1y1x2y2 . . . defined by:

x1 = µ(〈〉) y1 = π(〈x1〉)
x2 = µ(〈x1, y1〉) y2 = π(〈x1, y1, x2〉)
· · · · · ·

xn = µ(x1y1 . . . xn−1yn−1) yn = π(x1y1 . . . xn)

· · · · · ·

In the following definition, we extend environments by allowing their outputs to depend
also on π. Intuitively, extended environments can simulate the agent. This can be considered
a dual version of AIs which simulate their environment, as in Monte Carlo Tree Search
(Chaslot et al., 2008).

3

Alexander et al.

Definition 2 (Extended environments)

1. An extended environment is a function µ which outputs initial percept µ(π, 〈〉) =
x1 in response to input (π, 〈〉) where π is an agent; and which, when given input
(π, x1y1 . . . xnyn) (where π is an agent, each xi is a percept and each yi is an action),
outputs a percept µ(π, x1y1 . . . xnyn) = xn+1.

2. If π is an agent and µ is an extended environment, the result of π interacting with µ
is the infinite sequence x1y1x2y2 . . . defined by:

x1 = µ(π, 〈〉) y1 = π(〈x1〉)
x2 = µ(π, 〈x1, y1〉) y2 = π(〈x1, y1, x2〉)
· · · · · ·

xn = µ(π, x1y1 . . . xn−1yn−1) yn = π(x1y1 . . . xn)

· · · · · ·

The reader might notice that it is superfluous for µ to depend both on π and x1y1 . . . xnyn
since, given just π and n, one can reconstruct x1y1 . . . xnyn. We intentionally choose
the superfluous definition because it better captures our intuition (and makes clear the
similarity to Definition 1). For the sake of simpler mathematics, we have not included non-
determinism in our formal definition, but in practice, agents and environments are often
non-deterministic, so that π and n do not determine x1y1 . . . xnyn (our practical treatment,
discussed in Section 4, does allow non-determinism).

The fact that classical agents can interact with extended environments (Definition
2 part 2) implies that various universal RL intelligence measures (Legg and Hutter,
2007; Hernández-Orallo and Dowe, 2010; Gavane, 2013; Legg and Veness, 2013), which
measure performance in (non-extended) environments, easily generalize to measure self-
reflective intelligence (performance in extended environments). In particular, Legg and
Hutter’s universal intelligence measure Υ(π) is defined to be agent π’s average reward-
per-environment, aggregated over all (non-extended) environments with suitably bounded
rewards, each environment being weighted using the algorithmic prior distribution (Li and
Vitányi, 2008). Simply by including suitably reward-bounded extended environments,
we immediately obtain a variation Υext(π) which measures the performance of π across
extended environments.

Definition 3 (Universal Self-reflection Intelligence) Assume a fixed background prefix-free
Universal Turing Machine U .

1. An extended environment µ is computable if there is a computable function µ̂ such that
for every sequence x1y1 . . . xnyn (where each xi is a percept and each yi is an action),
for every computable agent π, for every U -program π̂ for π, µ̂(π̂, x1y1 . . . xnyn) =
µ(π, x1y1 . . . xnyn). If so, the Kolmogorov complexity K(µ) is defined to be the
Kolmogorov complexity K(µ̂) of µ̂.

2. For every agent π and extended environment µ, let V π
µ be the sum of the rewards in

the result of π interacting with µ (provided that this sum converges).

4

Extending Environments

3. A computable extended environment µ is well-behaved if the following property holds:
for every computable agent π, V π

µ exists and −1 ≤ V π
µ ≤ 1.

4. For any computable agent π, the universal self-reflection intelligence of π is defined to
be

Υext(π) =
∑
µ

2−K(µ)V π
µ

where the sum is taken over all well-behaved computable extended environments.

We have defined Υext(π) only for computable agents, in order to simplify the
mathematics. The definition could be extended to non-computable agents, but it would
require modifying Definition 3 to use UTMs with an oracle. We prefer to avoid going that
far afield, opting instead to use the trick in Part 1 of Definition 3.

Otherwise, our definition of the universal self-reflection intelligence Υext(π) is very
similar to Legg and Hutter’s definition of the universal intelligence Υ(π). The main
difference is that we compute the sum over extended environments, not just over non-
extended environments (as Legg and Hutter do). Nonetheless, the resulting measures have
qualitatively different properties. We will state a result (Proposition 6) showing one of these
qualitative differences. First we need a preliminary definition.

Definition 4 (Traditional equivalence of agents)

1. Let π be an agent. Suppose s = x1y1 . . . xn is a sequence (each xi a percept, each yi
an action). We say that s is possible for π if the following condition holds: for all
1 ≤ i < n, π(x1y1 . . . xi) = yi. Otherwise, s is impossible for π.

2. Let π1 and π2 be agents. We say π1 and π2 are traditionally equivalent if π1(s) = π2(s)
whenever s is possible for π1.

Lemma 5 Traditional equivalence is an equivalence relation.

Proof Reflexivity is obvious.
For symmetry, assume π1 is traditionally equivalent to π2, we must show π2 is

traditionally equivalent to π1. If not, then there is some s = x1y1 . . . xn such that s is possible
for π2 and yet π1(s) 6= π2(s); we may choose s as short as possible. We claim s is possible
for π1. To see this, let 1 ≤ i < n be arbitrary. Since x1y1 . . . xn is possible for π2, clearly
x1y1 . . . xi is also possible for π2. Thus by minimality of s, π1(x1y1 . . . xi) = π2(x1y1 . . . xi).
But π2(x1y1 . . . xi) = yi since x1y1 . . . xi is possible for π2. Thus π1(x1y1 . . . xi) = yi. By
arbitrariness of i, this proves that s is possible for π1. But then π1(s) = π2(s) because π1

is traditionally equivalent to π2. This contradicts the choice of s. This proves symmetry.
Given symmetry, transitivity is obvious.

Proposition 6 (A qualitative difference from Legg-Hutter universal intelligence)

1. There exist well-behaved computable extended environments µ and traditionally-
equivalent computable agents π1, π2 such that V π1

µ 6= V π2
µ .

5

Alexander et al.

2. For some choice of background UTM, there exist traditionally-equivalent computable
agents π1, π2 such that Υext(π1) 6= Υext(π2).

Proof (1) Fix some observation o, fix distinct actions a, b, and define µ by

µ(π, 〈〉) =

{
(1, o) if π(〈(0, o), b, (0, o)〉) = a,

(0, o) if π(〈(0, o), b, (0, o)〉) 6= a;

µ(π, x1y1 . . . xnyn) = (0, o).

In other words, µ is the environment which:

• Begins each interaction by simulating the agent to find out what the agent would do in
response to input 〈(0, o), b, (0, o)〉. If the agent would take action a in response to that
input, then the environment gives an initial reward of 1. Otherwise, the environment
gives an initial reward of 0.

• Thereafter, the environment always gives reward 0 forever.

Let

π1(x1y1 . . . xn) = a

be the agent who ignores the environment and always takes action a. Let

π2(x1y1 . . . xn) =

{
b if x1y1 . . . xn = 〈(0, o), b, (0, o)〉,
a otherwise

be the agent identical to π1 except on input 〈(0, o), b, (0, o)〉. Clearly 〈(0, o), b, (0, o)〉 is
impossible for both π1 and π2, and it follows that π1 and π2 are traditionally-equivalent.
But V π1

µ = 1 and V π2
µ = 0.

(2) Follows from (1) by arranging the background UTM such that almost all the weight
of the universal prior is assigned to an environment µ as in (1).

Proposition 6 shows that Υext is qualitatively different from the original Legg-Hutter
Υ, as the latter clearly assigns the same intelligence to traditionally equivalent agents. The
proposition further illustrates that extended environments are able to base their rewards
not only on what the agent does, but on what the agent would hypothetically do—even on
what the agent would hypothetically do in impossible scenarios (impossible because they
require the agent taking an action the agent would never take). And thus, assuming the
UTM is reasonable (unlike the unreasonable UTM in the proof of part 2 of Proposition
6), this suggests that in order to achieve good average performance across the whole space
of well-behaved extended environments, an agent need not just self-reflect about its own
hypothetical behavior in possible situations, but even about its own hypothetical behavior
in impossible situations. As in: “What would I do next if I suddenly realized that I had
just done the one thing I would never ever do?”

6

Extending Environments

3. Some interesting extended environments

In this section, we give some examples of extended environments. The environments in this
section are technically not well-behaved in the sense of Definition 3 because they fail the
condition that V π

µ converge to −1 ≤ V π
µ ≤ 1 for every computable agent π. They could be

made well-behaved, for instance, by applying appropriate discount factors.

3.1 A quasi-paradoxical extended environment

Example 1 (Rewarding the Agent for Ignoring Rewards) For every percept x = (r, o), let
x′ = (0, o) be the result of zeroing the reward component of x. Fix some observation O.
Define an extended environment µ as follows:

µ(π, 〈〉) = (0, O),

µ(π, x1y1 . . . xnyn) =

{
(1, O) if yn = π(x′1y1 . . . x

′
n),

(−1, O) otherwise.

In Example 1, when the agent takes an action yn, µ simulates the agent in order to
determine: would the agent have taken the same action if the history so far were identical
except all rewards were 0? If so, µ gives the agent +1 reward, otherwise, µ gives the agent
−1 reward. Thus, the agent is rewarded for ignoring rewards. This seems paradoxical.
Suppose an agent guesses the pattern and begins deliberately ignoring rewards, as long as
the rewards it receives for doing so are consistent with that guess. In that case, does the
agent ignore rewards, or not? The paradox, summarized: “I ignore rewards because I’m
rewarded for doing so.”

We implement Example 1 as IgnoreRewards.py in our library (Alexander et al., 2022).

3.2 A counterintuitive winning strategy

Example 2 (Tempting Button) Fix an observation B (“there is a button”) and an action
A (“push the button”). For each percept-action sequence h = x1y1 . . . xn, if the observation
in xn is not B, then let h′ be the sequence equal to h except that the observation in xn is
replaced by B. Let o0, o1, o2, . . . be observations generated pseudo-randomly such that for
each i, oi = B with 25% probability and oi 6= B with 75% probability. Let µ(π, 〈〉) = (0, o0),
and for each percept-action sequence h = x1y1 . . . xn and action yn, define µ(π, h _ yn) as
follows (where O is the observation in xn and _ denotes concatenation):

µ(π, h _ yn) =

(1, on) if O = B and yn = A;

(−1, on) if O = B and yn 6= A;

(−1, on) if O 6= B and π(h′) = A;

(1, on) if O 6= B and π(h′) 6= A.

Every turn in Example 2, either there is a button (25% probability) or there is not (75%
probability). Informally, the environment operates as follows:

• If there is a button, the agent gets +1 reward for pushing it, −1 reward for not pushing
it.

7

Alexander et al.

Agent Avg Reward-per-turn ± StdErr
(test repeated with 5 RNG seeds)

Q −0.44858 ± 0.00044
DQN −0.46687 ± 0.00137
A2C −0.49820 ± 0.00045
PPO −0.24217 ± 0.00793

Table 1: Performance in Example 2 (100k steps)

• If there is no button, it does not matter what the agent does. The agent is rewarded
or punished based on what the agent would do if there was a button. If the agent
would push the button (if there was one), then the agent gets reward −1. Otherwise,
the agent gets reward +1.

Thus, whenever the agent sees a button, the agent can push the button for a free reward
with no consequences presently nor in the future. Nevertheless, it is in the agent’s best
interest to commit to never push the button! Pushing every button yields average reward
1 · (.25)− 1 · (.75) = −.5 per turn. Never pushing the button yields average reward +.5 per
turn.

The environment does not alter the true agent when it simulates the agent in order to
determine what the agent would do if there was a button. If the agent’s actions are based
on (say) a neural net, the simulation will include a simulation of that neural net, and that
simulated neural net might be altered, but the true agent’s neural net is not. Thus, unless
the agent itself introspects about its own hypothetical behavior (“What would I do if there
was a button here?”), it seems the agent would have no way of realizing that the rewards
in buttonless rooms depend on said behavior. In Table 1 we see that industry-standard
agents perform poorly in Example 2 (these numbers are extracted from result table.csv in
(Alexander et al., 2022); see Sections 4 and 6 for more implementation details).

Example 2 is implemented in our open-source library as TemptingButton.py.

3.3 An interesting thought experiment

Example 3 (Reverse history) Fix some observation O. For every percept-action sequence
h = x1y1 . . . xn (ending with a percept), let h′ be the reverse of h. Define µ as follows:

µ(π, 〈〉) = (0, O),

µ(π, h _ y) =

{
(1, O) if y = π(h′),

(−1, O) otherwise.

In Example 3, at every step, µ rewards the agent iff the agent acts as it would act if
history were reversed.

What would it be like to interact with the environment in Example 3? To approximate
the experiment, a test subject, commanded to speak backwards, might be constantly
rewarded or punished for obeying or disobeying. This might teach the test subject to imitate
backward speech, but then the test subject would still act as if time were moving forward,

8

Extending Environments

only they would do so while performing backward-speech (they would hear their own speech
backwards). But if the experimenter could perfectly simulate the test subject in order to
determine what the test subject would do if time really was moving backwards, what would
happen? Could test subjects learn to behave as if time was reversed1? Another possibility
is that humans might simply not be capable of performing well in the environment. Our
self-reflectiveness measure is not intended to be limited to human self-reflection levels.

We implement Example 3 as ReverseHistory.py in (Alexander et al., 2022).

3.4 Incentivizing introspection of internal mechanisms

Example 4 (Incentivizing Learning Rate) Suppose there exists a computable function `
which takes (a computer program for) an agent π and outputs a nonnegative rational number
`(π) called the learning rate of π (in practice, real-world RL agents are generally instantiated
with a user-specified learning rate and ` can be considered to be a function which extracts
said user-specified learning rate). Further, assume there is a computable function f which
takes (a computer program for) an agent π and a nonnegative rational number l and outputs
(a computer program for) an agent f(π, l) obtained by changing π’s learning rate to l. We
are intentionally vague about what exactly this means, but again, in practice, this operation
can easily be implemented for real-world RL agents.

Fix some observation O. Define an extended environment µ as follows:

µ(π, 〈〉) = (0, O),

µ(π, x1y1 . . . xnyn) =

{
(1, O) if f(π, `(π)/2)(x1y1 . . . xn) = yn,

(−1, O) otherwise.

In Example 4, the environment simulates not the agent itself, but a copy of the agent
with one-half the true agent’s learning rate. If the agent’s latest action matches the action
the agent would hypothetically have taken in response to the history in question if the agent
had had one-half the learning rate, then the environment rewards the agent. Otherwise,
the environment punishes the agent. Thus, the agent is incentivized to act as if having a
learning rate of one-half of its true learning rate. This suggests that extended environments
can incentivize agents to learn about their own internal mechanisms, as in Sherstan et al.
(2016).

We implement Example 4 in our library as IncentivizeLearningRate.py.

3.5 Some additional examples in brief

We indicate in parentheses where the following examples are implemented in (Alexander et
al., 2022).

• (SelfRecognition.py) Environments which reward the agent for recognizing actions it
itself would take. We implement an environment where the agent observes True-False
statements like “If this observation were 0, you would take action 1,” and is rewarded
for deciding whether those statements are true or false.

1. The difference between behaving as if the incentivized experience were its experience and actually
experiencing that as its real experience brings to mind the objective misalignment problem presented in
(Hubinger et al., 2019).

9

Alexander et al.

• (LimitedMemory.py, FalseMemories.py) Environments which reward the agent for
acting the way it would act if only the most recent n turns in the agent-environment
interaction had ever occurred (as if the agent’s memory were limited to those most
recent n turns); or, on the other extreme, environments which reward the agent for
acting the way it would act if the agent-environment interaction so far had been
preceded by some additional turns (as if the agent falsely recalls a phantom past).
Such environments incentivize the agent to remember incorrectly.

• (AdversarialSequencePredictor.py) Environments in which the agent competes against
a competitor in an adversarial sequence prediction game (Hibbard, 2008). This is
done by outsourcing the competitor’s behavior to the agent’s own action-function,
thus avoiding the need to hard-code a competitor into the environment, a technique
explored by Alexander (2022).

Alexander and Pedersen (2022) have described a technique for using extended environ-
ments to endow computer games with a novel gameplay mechanic called pseudo-visibility.
Pseudo-visible players are perfectly visible to non-player characters (NPCs), but they are
visually distinguished, and the NPCs are driven by policies pre-trained in extended RL
environments where those NPCs are punished for reacting to pseudo-visible players (i.e.,
for acting differently than they would hypothetically act if a pseudo-visible player were
invisible). Thus, NPCs are trained to ignore pseudo-visible players, but can strategically
decide to react to pseudo-visible players if they judge the reaction-penalty for doing so is
outweighed by other penalties (e.g., a guard might decide to accept the reaction-penalty to
avoid the harsher penalty that would result if the player stole a guarded treasure).

4. Extended Environments in Practice

Definitions 1 and 2 are computationally impractical if agents are to run on environments for
many steps. In this section, we will discuss a more practical implementation. Our reasons
for doing this are threefold:

1. The more practical implementation makes it feasible to run industry-standard agents
against extended environments for many steps.

2. We find it interesting in its own right how certain environments can be implemented
in a practical way whereas others apparently cannot.

3. Non-determinism is effortless and natural in the practical implementation.

To practically realize extended environments, rather than passing the environment an
agent, we pass the environment an agent-class which can be used to create untrained copies
of the agent, called instances of the agent-class. Libraries like OpenAI Gym (Brockman
et al., 2016) and Stable Baselines3 (Raffin et al., 2019) are similarly class-based: the key
difference is that in our library, one must pass an agent-class to the environment-class’s
initiation function. The instantiated environment can use that agent-class to create copies of
the agent in its internal memory. The extended environment classes in our implementation
have the following methods:

10

Extending Environments

Listing 1 A practical version of Example 1.

class IgnoreRewards :
def i n i t (s e l f , A) :

Ca l l i n g A() c r ea t e s untra ined agent−cop i e s . On i n i t i a t i o n , t h i s
environment s t o r e s one such copy in i t s i n t e r n a l memory .
s e l f . sim = A()

def s t a r t (s e l f) :
return 0 # I n i t i a l o b s e r va t i on 0

def s tep (s e l f , a c t i on) :
At each step , use the s t o r ed copy (s e l f . sim) to determine how the t rue
agent would behave i f a l l h i s t o r y so f a r were the same excep t a l l
rewards were 0 . Assumes s e l f . sim has been t ra ined the same as the t rue
agent , excep t wi th a l l rewards 0 .
h y p o t h e t i c a l a c t = s e l f . sim . act (obs=0)
reward = 1 i f ac t i on==h y p o t h e t i c a l a c t else −1
To maintain above assumption , t r a i n s e l f . sim as i f curren t reward
were 0 . True agent w i l l a u t oma t i c a l l y t r a i n the same way wi th the
true reward .
s e l f . sim . t r a i n (o prev =0, a=act ion , r =0, o next =0)
return (reward , 0) # Observat ion=0

• An init method, used to instantiate an individual instance of the extended
environment class. This method takes an agent-class as input, which the instantiated
environment can store and use to create as many independent clones of the agent as
needed.

• A start method, which takes no input, and which outputs a default observation to get
the agent-environment interaction started (before the agent takes its first action).

• A step method, which takes an action as input, and outputs a reward and observation.
Class instances can store historical data internally, so there is no need to pass the entire
prior history to this step method.

Agent classes are assumed to have the following methods:

• An init method, used to instantiate instances.

• An act method, which takes an observation and outputs an action. Instances can
store information about history in internal memory, so there is no need to pass the
entire prior history to this method.

• A train method, which takes a prior observation, an action, a reward, and a new
observation. Environments which have instantiated agent-classes can use this method
to train those instances in arbitrary ways, independently of how the true agent
is trained, in order to probe how the true agent would hypothetically behave in
counterfactual scenarios.

In Listing 1 we give a practical version of Example 1. The reason it is practical is
because it maintains just one copy of the true agent, and that copy is trained incrementally.

11

Alexander et al.

Not all extended environments (as in Definition 2) can be realized practically. Example 3
(Reverse History) apparently cannot be. The reason Example 3 is inherently impractical
is because there is no way for the environment to re-use its previous work to speed up its
next percept calculation. Even if the environment retained a simulated agent trained on the
previous reverse-history h0 = xn−1yn−2 . . . y1x1, in order to compute the next percept, the
environment would need to insert a new percept-action pair xnyn−1 at the beginning of h0

to get the new reverse-history h = xnyn−1 . . . y1x1. There is no guarantee that the agent’s
actions are independent of the order in which it is trained, so a fresh new agent simulation
would need to be created and trained on all of h from scratch.

This practical formulation of extended environments generalizes the Newcomblike
environments (or NDPs) of Bell et al. (2021) (Definition 2 would also, except for being
deterministic). Essentially, NDPs are environments which may base their outputs on the
agent’s hypothetical behavior in alternate scenarios which differ from the true history only in
their most recent observation (as opposed to the agent’s hypothetical behavior in completely
arbitrary alternate scenarios). Already that is enough to formalize a version of Newcomb’s
paradox (Nozick, 1969). When this paradox is formalized either with NDPs or extended
environments, the optimal strategy becomes clear (namely, the so-called one-box strategy).

4.1 Determinacy and Semi-Determinacy

Unlike mathematical functions, class methods in the computer science sense can be non-
deterministic. They can depend on random number generators (RNGs), time-of-day, global
variables, etc.

Definition 7 An RL agent-class Π is semi-deterministic if whenever two Π-instances π1

and π2 have been instantiated within a single run of a larger computer program, and have
been identically trained (within that same run), then they act identically (within that same
run).

For example, rather than invoke the RNG, Π-instances might query a read-only pool of
pre-generated random numbers. Then, within the same run of a larger program, identically-
trained Π-instances would act identically, even if they would not act the same as identically-
trained Π-instances in a different run.

Given an agent-class, if one wanted to estimate the self-reflectiveness of that agent-
class’s instances in practice, one might run instances of the agent-class through a battery
of practical extended environments and see how well they perform. Provided the agent-
class is semi-deterministic (Definition 7), this makes sense. Whenever an instance π of a
semi-determinstic agent-class Π interacts with an extended environment µ, whenever µ uses
a Π-instance π′ to investigate the hypothetical behavior of π, the semi-determinacy of Π
ensures that the behavior µ sees in π′ is indeed π’s hypothetical behavior. This technique
would not make sense if Π were not semi-deterministic. For example, suppose an agent-
class’s instances work by reading from and writing to a common file in the computer’s
file system. Then simulations of one Π-instance might inadvertantly alter the behavior
of other Π-instances (by changing said file). In that case, agent-simulations run by an
extended environment would not necessarily reflect the true hypothetical behavior of the
agent-instance being simulated.

12

Extending Environments

5. The Reality Check Transformation

In Proposition 6 we observed that traditionally equivalent agents can have different
performance in extended environments. In this section, we introduce an operation, which
we call the Reality Check transformation, which modifies a given agent in an attempt to
facilitate better performance in extended environments like Examples 1 (“Ignore Rewards”),
3 (“Reverse History”) and 4 (“Incentivize Learning Rate”). The transformation does not
alter the traditional equivalence class of the agent: every agent is traditionally equivalent
to its own reality check.

Definition 8 Suppose π is an agent. The reality check of π is the agent πRC defined
recursively by:

• πRC(x1y1 . . . xn) = π(x1y1 . . . xn) if x1y1 . . . xn is possible for πRC (Definition 4).

• πRC(x1y1 . . . xn) = π(〈x1〉) otherwise.

In response to a percept-action history, πRC first verifies the history’s actions are those
πRC would have taken. If so, πRC acts as π. But if not, then πRC freezes and thereafter
repeats one fixed action. Loosely, πRC is like an agent who considers that it might be
dreaming, and asks: “How did I get here?” For example, suppose π(〈x1〉) = y′1 where y′1 6=
y1. Then for any history x1y1 . . . xn beginning with x1y1, by definition πRC(x1y1 . . . xn) =
π(〈x1〉) = y′1. It is as if πRC sees initial history x1y1 and concludes: “I shall now freeze,
because this is clearly not reality, for in reality I would have taken action y′1, not y1” (a
self-reflective observation).

We will argue informally that if π is intelligent and not already self-reflective, then
there is a good chance that πRC will enjoy better performance than π on certain extended
environments (like those of Examples 1, 3, and 4), and this seems to be confirmed
experimentally as well (in Section 6 below). But first, we state a few properties of the
Reality Check transformation.

Theorem 9 Let π be any agent.

1. (Alternate definition) An equivalent alternate definition of πRC would be obtained by
changing Definition 8’s condition “x1y1 . . . xn is possible for πRC” to “x1y1 . . . xn is
possible for π”.

2. (Idempotence) πRC = (πRC)RC.

3. (Traditional equivalence) π is traditionally equivalent to πRC.

4. (Equivalence on genuine history) For every extended environment µ and for ev-
ery odd-length initial segment x1y1 . . . xn of the result of πRC interacting with µ,
πRC(x1y1 . . . xn) = π(x1y1 . . . xn).

5. (Equivalence in non-extended RL) For every non-extended environment µ, the result
of πRC interacting with µ equals the result of π interacting with µ.

13

Alexander et al.

Proof Let D be the set of all sequences x1y1 . . . xn (each xi a percept, each yi an action).

(Part 1) Define ρ on D by

• ρ(x1y1 . . . xn) = π(x1y1 . . . xn) if x1y1 . . . xn is possible for π.

• ρ(x1y1 . . . xn) = π(〈x1〉) otherwise.

We must show that ρ = πRC. We will prove by induction that for each x1y1 . . . xn ∈ D,
ρ(x1y1 . . . xn) = πRC(x1y1 . . . xn). The base case n = 1 is trivial: ρ(〈x1〉) = π(〈x1〉) =
πRC(〈x1〉) since, vacuously, 〈x1〉 is possible for both π and πRC (because there is no i such
that 1 ≤ i < 1). For the induction step, assume n > 1, and assume the claim holds for all
shorter sequences in D.

Case 1: x1y1 . . . xn is possible for π. By definition this means the following (∗): for all
1 ≤ i < n, yi = π(x1y1 . . . xi). We claim that for all 1 ≤ i < n, yi = ρ(x1y1 . . . xi). To see
this, choose any 1 ≤ i < n. Then for all 1 ≤ j < i, yj = π(x1y1 . . . xj) because otherwise j
would be a counterexample to (∗). Thus x1y1 . . . xi is possible for π, thus:

ρ(x1y1 . . . xi) = π(x1y1 . . . xi) (By definition of ρ)

= yi, (By ∗)

proving the claim. Now, since we have proved that for all 1 ≤ i < n, yi = ρ(x1y1 . . . xi), and
since our induction hypothesis guarantees that each such ρ(x1y1 . . . xi) = πRC(x1y1 . . . xi),
we conclude: for all 1 ≤ i < n, we have yi = πRC(x1y1 . . . xi). Thus x1y1 . . . xn is possible
for πRC and we have

πRC(x1y1 . . . xn) = π(x1y1 . . . xn) = ρ(x1y1 . . . xn)

as desired.

Case 2: x1y1 . . . xn is impossible for π. By definition this means there is some 1 ≤ i < n
such that yi 6= π(x1y1 . . . xi). We may choose i as small as possible. Thus, for all 1 ≤ j < i,
yj = π(x1y1 . . . xj). By similar logic as in Case 1, it follows that for all 1 ≤ j < i,
yj = ρ(x1y1 . . . xj). Our induction hypothesis says that for each such j, ρ(x1y1 . . . xj) =
πRC(x1y1 . . . xj). So for all 1 ≤ j < i, yj = πRC(x1y1 . . . xj). In other words: x1y1 . . . xi is
possible for πRC. By definition of πRC, this means πRC(x1y1 . . . xi) = π(x1y1 . . . xi). But
yi 6= π(x1y1 . . . xi), so therefore yi 6= πRC(x1y1 . . . xi). Thus x1y1 . . . xn is impossible for
πRC. Thus by definition of πRC, πRC(x1y1 . . . xn) = π(〈x1〉). Likewise, by definition of ρ,
ρ(x1y1 . . . xn) = π(〈x1〉). So ρ(x1y1 . . . xn) = πRC(x1y1 . . . xn) as desired.

(Part 2) To show that each

πRC(x1y1 . . . xn) = (πRC)RC(x1y1 . . . xn),

we use induction on n. For the base case, this is trivial, both sides evaluate to π(〈x1〉). For
the induction step, assume n > 1 and that the claim holds for all shorter sequences.

Case 1: x1y1 . . . xn is possible for πRC. This means that yi = πRC(x1y1 . . . xi) for all
1 ≤ i < n. Then by induction, yi = (πRC)RC(x1y1 . . . xi) for all 1 ≤ i < n. In other

14

Extending Environments

words: x1y1 . . . xn is possible for (πRC)RC. Thus (πRC)RC(x1y1 . . . xn) = πRC(x1y1 . . . xn),
as desired.

Case 2: x1y1 . . . xn is impossible for πRC. This means there is some 1 ≤ i < n such
that yi 6= πRC(x1y1 . . . xi). By induction, yi 6= (πRC)RC(x1y1 . . . xi). Thus x1y1 . . . xn
is impossible for (πRC)RC. Therefore by definition, (πRC)RC(x1y1 . . . xn) = πRC(〈x1〉) =
π(〈x1〉), which also equals πRC(x1y1 . . . xn) since x1y1 . . . xn is impossible for πRC.

(Part 3) We must show that π(x1y1 . . . xn) = πRC(x1y1 . . . xn) whenever x1y1 . . . xn is
possible for π. Assume x1y1 . . . xn is possible for π. Then clearly for all 1 ≤ i < n,
x1y1 . . . xi is possible for π. By induction we may assume πRC(x1y1 . . . xi) = π(x1y1 . . . xi)
for all such i. For any such i, since x1y1 . . . xn is possible for π, we have yi = π(x1y1 . . . xi),
thus yi = πRC(x1y1 . . . xi). Thus x1y1 . . . xn is possible for πRC. Thus πRC(x1y1 . . . xn) =
π(x1y1 . . . xn) as desired.

(Part 4) Follows immediately from Part 3.

(Part 5) Let µ be a non-extended environment, let x1y1x2y2 . . . be the result of π interacting
with µ, and let x′1y

′
1x
′
2y
′
2 . . . be the result of πRC interacting with µ. We will show by

induction that each xn = x′n and each yn = y′n. For the base case, x1 = x′1 = µ(〈〉) (the
environment’s initial percept does not depend on the agent), and therefore y1 = π(〈x1〉) =
π(〈x′1〉) = πRC(〈x′1〉) = y′1. For the induction step,

xn+1 = µ(x1y1 . . . xnyn) (Definition 1 part 3)

= µ(x′1y
′
1 . . . x

′
ny
′
n) (By induction)

= x′n+1, (Definition 1 part 3)

yn+1 = π(x1y1 . . . xn+1) (Definition 1 part 3)

= π(x′1y
′
1 . . . x

′
n+1), (Induction plus xn+1 = x′n+1)

and the latter is πRC(x′1y
′
1 . . . x

′
n+1) since for all 1 ≤ i < n + 1, y′i = πRC(x′1y

′
1 . . . x

′
i) (so

x′1y
′
1 . . . x

′
n+1 is possible for πRC). Finally, πRC(x′1y

′
1 . . . x

′
n+1) is y′n+1, so yn+1 = y′n+1.

Note that part 4 of Theorem 9 shows that πRC never freezes in reality (if π does not):
πRC merely commits to freeze in impossible hypothetical scenarios.

We informally conjecture that if π is intelligent but not self-reflective, then in any
extended environment which bases its rewards and observations on π’s performance in
hypothetical alternate scanarios that might not be possible for π, πRC is likely to enjoy
better performance than π. Such extended environments include those of Examples 1
(“Ignore Rewards”), 3 (“Reverse History”) and 4 (“Incentivize Learning Rate”). Rewards
and observations so determined might be hard to predict if π does not self-reflect on its
own behavior in such hypothetical alternate scenarios. But if those hypothetical alternate
scenarios happen to be impossible for π (as often happens in extended environments
like Examples 1, 3, and 4), then πRC’s hypothetical behavior in such alternate scenarios
is trivial: blind repetition of one fixed action. This in turn trivializes the extended

15

Alexander et al.

environment’s dependency on said hypothetical actions (for dependencies on trivial things
are trivial dependencies), making those extended environments more predictable. And if π
is intelligent, then presumably π, and thus (by Theorem 9 part 4) πRC, can take advantage
of such increased predictability.

For example, let π be a deterministic Q-learner and let x1y1 . . . be πRC’s interaction with
Example 1 (“Reward Agent for Ignoring Rewards”). For any particular n, the environment
computes xn+1 = µ(x1y1 . . . xnyn) by checking whether or not yn = πRC(x′1y1 . . . x

′
n), where

each x′i is the result of zeroing the reward in xi. If so, xn+1’s reward is +1, otherwise it is −1
(the agent is incentivized to act as if all past rewards were 0). For large enough n, since π is a
Q-learner, there is almost certainly some m < n such that π(x1y1 . . . xm) 6= π(x′1y1 . . . x

′
m)—

i.e., a Q-learner’s behavior depends on past rewards2. Thus by part 1 of Theorem 9,
πRC(x1y1 . . . xn) = πRC(〈x1〉) = y1. Thus eventually the environment becomes trivial when
πRC interacts with it: “reward action y1 and punish all other actions”. A Q-learner, and
thus (by Theorem 9 part 4) πRC, would thrive in such simple conditions.

Remark 10 If we pick some fixed action y, then a simpler variation on the reality check
transformation could be defined. Namely: for any agent π, we could define the reality check
defaulting to y of π, πRC(y), recursively by:

• πRC(y)(x1y1 . . . xn) = π(x1y1 . . . xn) if x1y1 . . . xn is possible for πRC(y).

• πRC(y)(x1y1 . . . xn) = y otherwise.

Theorem 9 and its proof would be easy to modify to apply to πRC(y), and the same goes for
our above informal conjecture about the relative performance of π and πRC. We prefer to
define πRC the way we have done so (Definition 8) in order to avoid the arbitrary choice
of fixed action y. This is also more appropriate for practical RL implementations (such as
those based on OpenAI gym (Brockman et al., 2016)) where there generally is not one single
fixed action-space, but rather, the action-space varies from environment to environment, and
practical agents (such as those in Stable Baselines3 (Raffin et al., 2019)) must therefore be
written in a way which is agnostic to the action-space.

In (Alexander et al., 2022) we implement reality-check as a function taking an agent-
class Π as input. It outputs an agent-class Σ. A Σ-instance σ computes actions using
a Π-instance π which it initializes once and then stores. Thus, an extended environment
simulating a Σ-instance indirectly simulates a Π-instance: a simulation within a simulation.
When trained, σ checks if the training data is consistent with its own action-method. If so,
it trains π on that data. Otherwise, σ freezes, thereafter ignoring future training data and
repeating its first action blindly. If Π is semi-deterministic (Definition 7), it follows that Σ
is too.

5.1 Does Reality Check increase self-reflection?

We informally argued above that if π is intelligent and not already self-reflective, then in
any extended environment which bases its rewards and observations on π’s performance

2. Alexander and Hutter (2021) show that if the background model of computation is unbiased in a certain
sense then all reward-ignoring agents have Legg-Hutter intelligence 0. This suggests that any intelligent
agent π must base its actions on its rewards.

16

Extending Environments

in hypothetical alternate scanarios that might not be possible for π, πRC is likely to enjoy
better performance than π. Does this imply that πRC is more self-reflective than π as
measured by Υext?

The answer depends on the choice of the background UTM behind the definition of
Υext (Definition 3). Fix π. In general, the set of all well-behaved computable extended
environments can be partitioned into three subsets:

1. Extended environments where πRC outperforms π.

2. Extended environments where π outperforms πRC.

3. Extended environments where π and πRC perform equally well.

If the most highly-weighted extended environments (i.e., the simplest extended environ-
ments, as measured by Kolmogorov complexity, based on the background UTM) are
dominated by those of type (1), then that would suggest Υext(πRC) > Υext(π). On the other
hand, if the highly-weighted extended environments are dominated by those of type (3), then
that would suggest Υext(πRC) < Υext(π). One could artificially contrive background UTMs
of either kind (once again proving Leike and Hutter’s observation (Leike and Hutter, 2015)
that Legg-Hutter-style intelligence is highly UTM-dependent, in the sense that different
UTMs yield qualitatively different intelligence measures).

Environments like those of Examples 1, 3, and 4 (where we informally conjecture
πRC tends to outperform π when π is intelligent and not already self-reflective) do seem
natural, in some subjective sense. On the other hand, we are not aware of any natural-
seeming environments where πRC would generally underperform π. One could contrive
such environments, e.g., environments which simulate the agent in impossible scenarios
and deliberately punish the agent for seemingly freezing in those scenarios. But such
environments seem contrived and unnatural. And the spirit of the Legg-Hutter intelligence
measurement idea is to weigh environments based on how natural they are (Kolmogorov
complexity serving as a proxy for naturalness, at least ideally—but this depends on the
background UTM being natural, and no-one knows what it really means for a background
UTM to be natural, see Leike and Hutter (2015)).

Thus it at least seems plausible that if the background UTM were chosen in a sufficiently
natural way then Υext(πRC) would tend to exceed Υext(π) for intelligent agents π not
already self-reflective. This would make sense, as the process of looking back on history and
verifying that one would really have performed the actions which one supposedly performed,
is an inherently self-reflective process. To answer the question with perfect accuracy, the
agent would have to “put itself in its own earlier self’s shoes,” asking: “What would I
hypothetically do in response to such-and-such history?” But again, it all depends on the
choice of the background UTM.

6. Toward practical benchmarking

Our abstract measure Υext (Definition 3) is not practical for performing actual calculations.
Kolmogorov complexity is non-computable, so Υext cannot be computed in practice
(although there has been work on computably approximating Legg-Hutter intelligence (Legg
and Veness, 2013), and the same technique could be applied to approximate Υext).

17

Alexander et al.

In actual practice, the performance of RL agents is often estimated by running the
agents on specific environments, such as those in OpenAI gym (Brockman et al., 2016).
Such benchmark environments should ideally not be overly simplistic, because it is possible
for very simple (and obviously not intelligent) agents to perform quite well in simplistic
environments just by dumb luck. The example environments from Section 3 are theoretically
interesting, but are far too simplistic to serve as good practical benchmarks.

Therefore for practical benchmarking purposes, we propose combining extended environ-
ments with OpenAI gym environments. We will define such combinations, not for arbitrary
extended environments, but only for extended environments with a special form.

Definition 11 Assume E is a practical extended environment-class (as in Section 4). We
say that E is adaptable with OpenAI gym if the following requirements hold.

1. When E’s init method is called with agent-class A, the method initiates a single
instance self.sim of A and does nothing else.

2. In E’s step method, a variable reward is initiated and its value is not modified for the
remainder of the step call. All invocations of self.sim.train occur after the initiation
of reward, and all other code (except for the method’s final return statement) occurs
before the initiation of reward. Finally, reward is the reward which the step call
returns.

3. The rewards output by E are always in {−1, 0, 1}.

For example, the practical implementation of IgnoreRewards in Listing 1 is adaptable
with OpenAI gym.

Recall that in Section 2 we assumed fixed finite sets of actions and observations. Thus
the notion of extended environments implicitly depends upon that choice, and a different
choice of actions and observations would yield a different notion of extended environments.
In the following definition, we may therefore speak of the actions and observations of a given
extended environment-class E, and define a new extended environment-class with different
actions and observations. Note that OpenAI gym environments also come equipped with
action- and observation-spaces.

Definition 12 Suppose G is an OpenAI gym environment-class (whose action-space and
observation-space are finite) and E is a practical extended environment-class (as in Section
4). Assume E is adaptable with OpenAI gym (Definition 11). We also assume E does
not use the variables self.G instance or self.prev obs. We define a new practical extended
environment-class G ∗ E, the combination of G and E, as follows.

• Actions in G ∗ E are pairs (aG, aE) where aG is a G-action and aE is an E-action.

• Observations in G ∗ E are pairs (oG, oE) where oG is a G-observation and oE is an
E-observation.

• In its init method, G ∗E instantiates a G-instance self.G instance, and then runs
the code in E’s init method (so self.sim is defined when self is the resulting G ∗ E-
instance).

18

Extending Environments

• G ∗ E begins the agent-environment interaction with initial observation (o0,G, o0,E),
where o0,G and o0,E are the initial observations output by G and E, respectively.

• G∗E maintains a variable self.prev obs which is always equal (in any G∗E-instance)
to the G-observation component of the previous observation which the G ∗E-instance
output.

• When its step method is called on the agent’s latest action (aG, aE), G ∗ E does the
following:

– Pass aG to self.G instance.step and let rG and oG be the resulting reward and
observation. If G is episodic and the output of self.G instance.step indicates the
episode ended, then let oG = self.G instance.reset().

– Run E’s step method (with action replaced by aE) up to and including the
initiation of reward therein; whenever E’s step method would call self.sim.act
with observation o, instead call self.sim.act with observation (self.prev obs, o)
and take only the E-action component of its output.

– If reward = −1 then redefine reward = min(rG − 1,−1), otherwise redefine
reward = rG.

– Run the remaining part of E’s step method (the code after reward was initiated).
Whenever E’s step method would call self.sim.train with input (o1, a, r, o2), in-
stead call self.sim.train with input ((self.prev obs, o1), (aG, a), r, (oG, o2)). When
E’s step method would return (reward, o), instead return (reward, (oG, o)).

For example, Listing 2 is code for the combination of OpenAI gym’s CartPole
environment with the practical implementation of IgnoreRewards from Listing 1.

One can think of G ∗ E (Definition 12) as follows. Imagine that the OpenAI gym
environment is intended to be run on a screen with a joystick attached to allow player
interaction. Instead of attaching one joystick, we attach n joysticks (where n is the number
of the actions {a1, . . . , an} in E), colored with n different colors but otherwise identical.
We also add a second monitor for displaying observations from E. When the player pushes
button i on joystick j, action i is sent to G and action aj is sent to E. The player sees
the original monitor update with the new observation from G, and the additional monitor
update with the new observation from E. The player receives the reward from G, except
that if E outputs reward −1 then a penalty is applied to the reward from G. Thus the
player is incentivized to interact with G as usual, but to do so using joysticks in the way
incentivized by E.

For example, if E is “IgnoreRewards” (Example 1) and the action-space contains 2
actions, then the player has two joysticks, identical except for their color, and each joystick
has the same effect on G, but the player is penalized any time the player uses a different
joystick than the player would hypothetically have used if everything that has happened
so far happened except with all rewards 0. To master such a game, the player would
apparently require the practical intelligence necessary to master G, along with the self-
reflection required to figure out (and avoid) the penalties from E.

To illustrate the usage of Definition 12 for practical benchmarking purposes, we have
used it to combine:

19

Alexander et al.

Listing 2 The combination of IgnoreRewards with OpenAI gym’s CartPole environment.

class CartPole IgnoreRewards :
def i n i t (s e l f , A) :

s e l f . G instance = gym . make(’ CartPole−v0 ’)
s e l f . sim = A()

def s t a r t (s e l f) :
s e l f . prev obs = s e l f . G instance . r e s e t ()
return (s e l f . prev obs , 0)

def s tep (s e l f , a c t i on) :
a G , a E = act i on
o G , r G , episode done , m i s c i n f o = s e l f . G instance . s tep (a G)
i f ep i sode done :

o G = s e l f . G instance . r e s e t ()

h y p o t h e t i c a l a c t = s e l f . sim . act (obs=(s e l f . prev obs , 0))
h y p o t h e t i c a l a c t = h y p o t h e t i c a l a c t [1] # Take E−ac t i on component
reward = 1 i f a E==h y p o t h e t i c a l a c t else −1

i f reward == −1:
reward = min(r G −1, −1)

else :
reward = r G

s e l f . sim . t r a i n (o prev=(s e l f . prev obs , 0) , a=(a G , a E) , r =0, o next=(o G , 0))
return (reward , (o G , 0))

• OpenAI gym’s CartPole environment with the “IgnoreRewards” extended environ-
ment (Example 1).

• OpenAI gym’s CartPole environment with the “Incentivize Learning Rate” extended
environment (Example 4).

We took implementations of DQN and PPO from Stable-Baselines3 (Raffin et al., 2019)
and we modified them to be semi-deterministic (Definition 7) and to be able to interact
with extended environment-classes. We ran them, and their reality checks (Definition
8) for 10,000 CartPole-episodes each on the above two combined extended environments
(and we repeated the whole experiment 10 times with different RNG seeds). Figure 1
shows the results for CartPole-IgnoreRewards, and Figure 2 shows the results for CartPole-
IncentivizeLearningRate. As expected based on the discussion in Section 5, we see that for
both DQN and PPO, the reality check transformation significantly improves performance
in the combined environments.

7. Conclusion

We introduced extended environments for reinforcement learning. When computing rewards
and observations, extended environments can consider not only actions the RL agent has
taken, but also actions the agent would hypothetically take in other circumstances. Despite
not being designed with such environments in mind, RL agents can nevertheless interact
with such environments.

20

Extending Environments

Figure 1: Performance of DQN, PPO, and their reality-checks on an extended environment
combining OpenAI gym’s CartPole and our IgnoreRewards. Episode number is plotted on the
horizontal axis, and average episode reward is plotted on the vertical axis.

Figure 2: Performance of DQN, PPO, and their reality-checks on an extended environment
combining OpenAI gym’s CartPole and our IncentivizeLearningRate. Episode number is plotted
on the horizontal axis, and average episode reward is plotted on the vertical axis.

21

Alexander et al.

An agent may find an extended environment hard to predict if the agent only considers
what has actually happened, and not its own hypothetical actions in alternate scenarios.
We argued that for good performance (on average) across many extended environments,
an agent would need to self-reflect to some degree. Thus, we propose that an abstract
theoretical measure of an agent’s self-reflection intelligence can be obtained by modifying
the definition of the Legg-Hutter universal intelligence measure. The Legg-Hutter universal
intelligence Υ(π) of an RL agent π is π’s weighted average performance across the space of
all suitably well-behaved traditional RL environments, weighted according to the universal
prior (i.e., environment µ has weight 2−K(µ) where K(µ) is the Kolmogorov complexity of
µ). We defined a measure Υext(π) for RL agent π’s self-reflection intelligence similarly to
Legg and Hutter, except that we take the weighted average performance over the space of
suitably well-behaved extended environments.

We gave some theoretically interesting examples of Extended Environments in Section
3. More examples are available in an open-source MIT-licensed library of extended
environments which we are publishing simultaneously with this paper (Alexander et al.,
2022).

We pointed out (Proposition 6) a key qualitative difference between our self-reflection
intelligence measure and the measure of Legg and Hutter: two agents can agree in all
“possible” scenarios (i.e., scenarios where the agents’ past actions are consistent with
their policies, Definition 4), and yet nevertheless have different self-reflection intelligence
(because they disagree on “impossible” scenarios—scenarios which cannot ever happen in
reality because they involve the agents taking actions the agents never would take, but that
nevertheless extended environments can simulate the agents in, as if to say: “I doubt this
agent would ever jump off this bridge, but I’m going to run a simulation to see what the
agent would do immediately after jumping off the bridge anyway”). With such impossible
scenarios in mind, we introduced a so-called reality check transformation (Section 5) and
informally conjectured that the transformation tends to improve the performance of agents
who are intelligent and not already self-reflective in certain extended environments. We
saw some experimental evidence in favor of this conjecture in Section 6, where we discussed
combining extended environments with sophisticated traditional environments (such as
those of OpenAI gym) to obtain practical benchmark extended environments.

Acknowledgments

We gratefully acknowledge Joscha Bach, James Bell, Jordan Fisher, José Hernández-Orallo,
Bill Hibbard, Marcus Hutter, Phil Maguire, Arthur Paul Pedersen, Stewart Shapiro, Mike
Steel, Roman Yampolskiy, and the editors and reviewers for comments and feedback.

References

Alexander, S. A., and Hutter, M. 2021. Reward-Punishment Symmetric Universal
Intelligence. In CAGI.

Alexander, S. A., and Pedersen, A. P. 2022. Pseudo-visibility: A Game Mechanic Involving
Willful Ignorance. In FLAIRS.

22

Extending Environments

Alexander, S. A.; Castaneda, M.; Compher, K.; and Martinez, O. 2022. Extended
Environments. https://github.com/semitrivial/ExtendedEnvironments.

Alexander, S. A. 2022. Extended subdomains: a solution to a problem of Hernández-Orallo
and Dowe. Preprint (accepted to CAGI-22).

Bell, J. H.; Linsefors, L.; Oesterheld, C.; and Skalse, J. 2021. Reinforcement Learning in
Newcomblike Environments. In NeurIPS.

Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M. 2013. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research 47:253–279.

Beyret, B.; Hernández-Orallo, J.; Cheke, L.; Halina, M.; Shanahan, M.; and Crosby, M.
2019. The animal-AI environment: Training and testing animal-like artificial cognition.
Preprint.

Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; and
Zaremba, W. 2016. OpenAI gym. Preprint.

Chaslot, G.; Bakkes, S.; Szita, I.; and Spronck, P. 2008. Monte-Carlo Tree Search: A New
Framework for Game AI. AIIDE 8:216–217.

Chollet, F. 2019. On the measure of intelligence. Preprint.

Cobbe, K.; Hesse, C.; Hilton, J.; and Schulman, J. 2020. Leveraging procedural generation
to benchmark reinforcement learning. In International conference on machine learning,
2048–2056. PMLR.

Gavane, V. 2013. A measure of real-time intelligence. Journal of Artificial General
Intelligence 4(1):31–48.

Hendrycks, D., and Dietterich, T. 2019. Benchmarking neural network robustness
to common corruptions and perturbations. In International Conference on Learning
Representations.

Hernández-Orallo, J., and Dowe, D. L. 2010. Measuring universal intelligence: Towards an
anytime intelligence test. Artificial Intelligence 174(18):1508–1539.

Hibbard, B. 2008. Adversarial sequence prediction. In CAGI.

Hubinger, E.; van Merwijk, C.; Mikulik, V.; Skalse, J.; and Garrabrant, S. 2019. Risks
from learned optimization in advanced machine learning systems. Preprint.

Hutter, M. 2004. Universal artificial intelligence: Sequential decisions based on algorithmic
probability. Springer.

Legg, S., and Hutter, M. 2007. Universal intelligence: A definition of machine intelligence.
Minds and machines 17(4):391–444.

23

https://github.com/semitrivial/ExtendedEnvironments

Alexander et al.

Legg, S., and Veness, J. 2013. An approximation of the universal intelligence measure.
In Algorithmic Probability and Friends: Bayesian Prediction and Artificial Intelligence.
Springer. 236–249.

Leike, J., and Hutter, M. 2015. Bad universal priors and notions of optimality. In Conference
on Learning Theory, 1244–1259. PMLR.

Li, M., and Vitányi, P. 2008. An introduction to Kolmogorov complexity and its applications.
Springer.

Nichol, A.; Pfau, V.; Hesse, C.; Klimov, O.; and Schulman, J. 2018. Gotta Learn Fast: A
New Benchmark for Generalization in RL. Preprint.

Nozick, R. 1969. Newcomb’s problem and two principles of choice. In Rescher, N., ed.,
Essays in honor of Carl G. Hempel. Springer. 114–146.

Raffin, A.; Hill, A.; Ernestus, M.; Gleave, A.; Kanervisto, A.; and Dormann, N. 2019.
Stable Baselines3. https://github.com/DLR-RM/stable-baselines3.

Sherstan, C.; White, A.; Machado, M. C.; and Pilarski, P. M. 2016. Introspective agents:
Confidence measures for general value functions. In Conference on Artificial General
Intelligence, 258–261. Springer.

Yampolskiy, R. V. 2017. Detecting qualia in natural and artificial agents. Preprint.

24

https://github.com/DLR-RM/stable-baselines3

	Introduction
	Preliminaries
	Some interesting extended environments
	A quasi-paradoxical extended environment
	A counterintuitive winning strategy
	An interesting thought experiment
	Incentivizing introspection of internal mechanisms
	Some additional examples in brief

	Extended Environments in Practice
	Determinacy and Semi-Determinacy

	The Reality Check Transformation
	Does Reality Check increase self-reflection?

	Toward practical benchmarking
	Conclusion

