
Extended subdomains: a solution to a problem
of Hernández-Orallo and Dowe

Samuel Allen Alexander1

The U.S. Securities and Exchange Commission samuelallenalexander@gmail.com

https://philpeople.org/profiles/samuel-alexander/publications

Abstract. This is a paper about the general theory of measuring or esti-
mating social intelligence via benchmarks. Hernández-Orallo and Dowe
described a problem with certain proposed intelligence measures. The
problem suggests that those intelligence measures might not accurately
capture social intelligence. We argue that Hernández-Orallo and Dowe’s
problem is even more general than how they stated it, applying to many
subdomains of AGI, not just the one subdomain in which they stated it.
We then propose a solution. In our solution, instead of using test-cases
within the given AGI subdomain to estimate an AI’s intelligence, one
would use test-cases in an extended subdomain where test-cases have
the ability to simulate the AI being tested. Surprisingly, AIs only de-
signed for the original subdomain can be tested with test-cases in the
extended subdomain anyway. By extending the subdomain in this way,
we might avoid Hernández-Orallo and Dowe’s problem.

Keywords: Social intelligence · Intelligence measurement · Universal
intelligence.

1 Introduction

The problem of designing AGI goes hand-in-hand with the problem of measur-
ing the intelligence of artificial agents. After all, without the ability to measure
intelligence, it would be hard to even know whether progress is being made
toward AGI. For the diverse and wide-ranging types of intelligent agents con-
sidered by AGI researchers as a whole, the intelligence-measurement problem is
quite difficult (it is not clear to what extent objective intelligence measurement
is even possible in such a general context). Concrete progress can be made by re-
stricting attention to narrow, well-defined subdomains of AGI. Within a narrow
subdomain of AGI, one can measure (or at least estimate) intelligence by using
benchmarks: how well does the agent perform on such-and-such test-cases? For
example, how well does a given AI perform at Atari games? Such subdomains of
AGI can be considered as (in Goertzel’s words) “idealized case[s] of AGI, similar
to assumptions like the frictionless plane in physics” [4].

Hernández-Orallo and Dowe pointed out [6] a problem in certain theoreti-
cal intelligence-measurement benchmarks. We will argue that the problem they

2 Samuel Allen Alexander

point out is actually much more general: they posed it in the context of one par-
ticular subdomain of AGI but it is not limited to that subdomain. A benchmark
generally consists of a battery of simple test-cases, or a simple procedural method
for randomly generating test-cases. But this seems to prevent the test-cases from
having genuine social aspects, for the following reason. To include genuine so-
cial aspects in a test-case would (apparently) require that genuine intelligence
be somehow built into that test-case. For example, in an Atari game, enemy
(or ally) Non-Player Characters (NPCs) are simplistic automatons. Simplistic
automatons are not genuinely social. To add genuine social aspects to an Atari
game, one would need to replace those automatons with genuinely intelligent
agents. But the complexity of such agents would far exceed the complexity of the
Atari game! Or, if test-cases are generated procedurally, perhaps the procedure
could randomly generate test-cases with genuine social aspects, but the odds of
this would be extremely small. One could replace an Atari NPC’s script with a
randomly-generated script, but the odds are negligible that the NPC would thus
become genuinely intelligent. So then, how can our benchmarks capture social
intelligence?

We will propose a general solution where AIs in one subdomain are bench-
marked against test-cases in an extended subdomain. In the extended subdo-
main, test-cases have the ability to secretly simulate the agent being measured.
For example, to measure AIs in the subdomain of Atari games, we would run
those AIs against extended Atari games. An extended Atari game is just like an
Atari game, except that the game’s mechanics are allowed to use an oracle to
query what the AI playing the game would do in arbitrary situations. We will
argue that in the extended subdomain, genuine social aspects can be built into
simple test-cases. Furthermore, this solution is surprisingly quite practical. In
the Atari subdomain, for example, if we have an AI’s source-code, we can use
that source-code to realize the oracle needed to run the AI in an extended Atari
game. By contrast, it would be virtually impossible for a human to play extended
Atari games in general, because it would be virtually impossible to realize an
oracle that could predict the human’s actions in arbitrary situations1.

2 Background: The Hernández-Orallo and Dowe Problem

‘How can we create environments so that they have intelligent agents
inside? It is enlightening (but perhaps of little practical use) to think
that some extremely complex infinite environments we consider as pos-
sible in the test could contain “life”. In some of them, we could even find
“intelligent beings” ... When we say that it is perhaps of little practical
use, it is because the complexity of these environments is extremely high
and the probability of one of them appearing by chance is almost zero.

1 Even a perfect genetic clone of the human player would not be enough, since a human
player’s actions are not determined by genetics alone but depend on a whole lifetime
of previous learning and interaction with the world.

Extended subdomains 3

Therefore, we cannot bind the evaluation of social intelligence to this re-
mote chance. However, this a priori remote probability is in fact a much
higher a posteriori probability if we think in terms of evolution. ... Con-
sequently, we require inserting these other agents into the environments’
—Hernández-Orallo and Dowe [6]

Hernández-Orallo and Dowe did not state their problem in its full generality.
They stated it [6] in the universal intelligence context of [10], essentially a very
formal, theoretical version of the reinforcement learning (RL) context. We will
avoid spelling everything out in full detail as the details are verbose and unim-
portant. Roughly speaking, in the universal intelligence context, agents interact
with environments. They take turns. On the agent’s turn, the agent takes an
action. On the environment’s turn, the environment gives the agent an observa-
tion and a reward. Certain technical constraints are placed on the rewards which
the environment can output, in order to ensure certain convergence properties.
The agent is considered to perform better or worse in a given environment if the
rewards it receives are bigger or smaller, respectively.

Legg and Hutter proposed [10] defining the numerical intelligence level of
such an agent to be the average total reward the agent receives across the space
of all computable environments, weighting environments with some distribution.
A uniform distribution would be no good because No-Free Lunch theorems imply
all agents would end up with the same exact intelligence measure, see [8]. Legg
and Hutter instead proposed giving each environment µ a weight of 2−K(µ) where
K(µ) is the Kolmogorov complexity of µ (the length of the shortest computer
program for µ). Note thatK(µ) depends implicitly on the choice of a background
Universal Turing Machine (UTM). Intuitively one can think of a UTM as a
programming language, so the choice amounts to choosing: which programming
language should environments be programmed in? This choice is non-trivial, see
[12]2.

Other methods have also been proposed for measuring intelligence in the uni-
versal intelligence context. The Legg-Hutter intelligence definition is impractical
because, mathematically, the average performance of the agent across the whole
space of computable environments, is an infinite sum, each term of which involves
the Kolmogorov complexity function (itself already non-computable). More prac-
tical methods involve running the agent for bounded numbers of turns against
randomly-generated environments. Universal intelligence measures of this type
are proposed by Legg and Veness [11] and by Hernández-Orallo and Dowe them-
selves [6]. Hernández-Orallo and Dowe further refine the idea, proposing to dy-
namically adjust the complexity of the randomly-generated environments based
on the agent’s performance, an idea motivated by human psychometrics.

All these methods of measuring universal intelligence are highly susceptible
to Hernández-Orallo and Dowe’s problem. Environments containing genuinely-
intelligent built-in NPCs must be highly complicated. So in the Legg-Hutter infi-
nite sum, any such environment would contribute very little, because its weight

2 Some progress on UTM-choice was presented at last year’s AGI conference [3].

4 Samuel Allen Alexander

2−K(µ) would be extremely small. In intelligence measures based on running
the agent in randomly-generated environments, the odds are quite small that a
randomly-generated environment would contain a genuinely intelligent NPC. So
all these intelligence measures would seem to poorly capture social intelligence.

Hernández-Orallo et al [7] proposed using multi-agent environments to solve
the problem. In their proposal, in order to quantitatively estimate the intelli-
gence of an agent, one would randomly generate multi-agent environments, and
also randomly select agents for each multi-agent role (except for the role to be
filled by the agent being measured). Despite this solution’s inherent beauty, it
is not very practical. Either the randomly-generated agents are generated com-
pletely at random (e.g., they have random source-codes), in which case the odds
of such an agent being genuinely intelligent are extremely small; or, they are
generated in some way such that with non-negligible probability they are gen-
uinely intelligent. But the latter seems almost as difficult as creating AGI in the
first place, so an intelligence measure dependent on it might not be very helpful
as a step toward AGI. We will propose a different solution to Hernández-Orallo
and Dowe’s problem, which does not involve randomly generating agents.

2.1 The Generalized Hernández-Orallo and Dowe Problem

Nothing about the Hernández-Orallo and Dowe Problem inherently depends on
the particular background of universal intelligence in which they stated it. The
problem applies any time we would use simple test-cases (or a simple procedure
for generating test-cases) to benchmark AIs in any subdomain of AGI. We would
state the general problem as follows:

Problem 1 (The Generalized Hernández-Orallo and Dowe Problem) Assume
we are working in some subdomain of AGI where we want to benchmark AIs
against test-cases. Any test-case with genuine intelligence built into it must nec-
essarily be highly complex. Thus, no such test-case can occur in any fixed library
of simple test-cases, and no such test-case can be generated with non-negligible
probability by any simple procedure for generating test-cases. Thus, no such li-
brary or procedure can be used to reliably benchmark social intelligence (since
social intelligence requires interaction with other genuine intelligences).

Note that when we say “no such test-case can be generated with non-negligible
probability...” we assume a certain sparseness condition. For any n, if S1 is the
set of all length-n computer programs, and S2 is the set of all length-n computer
programs of AGIs, then presumably |S2|/|S1| ≈ 0. Given an algorithm for an
AGI, one could contrive a programming language falsifying this (e.g., contrive
the language so that said algorithm can be written in just 1 character). We be-
lieve this sparseness assumption is plausible for natural programming languages
whose semantics do not depend on any already-known AGI.

Example 2 (Image classification) Consider a subdomain of AGI where image
classifiers can be trained on labeled images and asked to predict labels of unlabeled

Extended subdomains 5

images. Fix some genuinely intelligent classifier A0 and some finite set T of
images with labels from {0, 1}. Assume A0 has been trained on T . Suppose A
is a classifier whose intelligence we are trying to measure. As one test-case, we
could systematically investigate how well A learns to classify images as either
“images A0 classifies as 0” or “images A0 classifies as 1”.

The test-case in Example 2 is presumably complicated, because it depends
on the genuinely intelligent classifier A0. Thus, the test-case would never be
included in any simple test-case library, and there is low probability it would
be generated by any simple test-case-generating procedure. Thus, any estimate
of a classifier’s intelligence based on a simple test-case library, or on test-cases
generated by a simple procedure, would fail to reliably capture the classifier’s
performance on the test-case in question. One could argue that the test-case in
question is a social intelligence test-case, because it tests how well the classifier
learns to anticipate its colleague A0.

3 Extending Subdomains to Solve the Hernández-Orallo
and Dowe Problem

We propose to solve Problem 1 by extending the subdomain in question so
as to admit simple new test-cases capable of incorporating social aspects, in
such a way that a given AI (only designed for the original subdomain) can still
attempt test-cases in the extended subdomain. The intuitive idea is that, in the
extended domain, when an AI is being tested on a test-case, the test-case is
allowed to query an oracle which tells the test-case what the AI would output
in response to arbitrary inputs. This allows for self-play to be incorporated into
the test-cases (below, we address the anticipated objection that self-play is not
genuinely social). Certainly we are not claiming that self-play is a new innovation.
It has been widely used to train agents for specific individual environments,
from Backgammon all the way to StarCraft II, and in a sense it is also used in
adversarial techniques such as GAN (see [5]). What is new in our proposal is that
we suggest self-play can be applied to general social intelligence measurement,
where, instead of having a specific environment in mind, we are interested in an
agent’s general performance over the whole space of all environments.

Definition 3 A subdomain of AGI is a tuple D = (A , UA ,T , UT , L) where:

1. A is a set of computer programs (called AIs) in programming language UA ;
2. T is a set of computer programs (called test-cases) in programming language

UT which extends UA (possibly including some oracles);
3. For all UA -programs a1, a2, if a1 and a2 both compute the same function,

then a1 ∈ A iff a2 ∈ A .
4. For all UT -programs t1, t2, if t1 and t2 both compute the same function, then

t1 ∈ T iff t2 ∈ T .
5. L is a computable function which takes a ∈ A , t ∈ T , n ∈ N, and outputs a

rational number L(a, t, n) ∈ Q which we call a measure of a’s performance
on t at step n.

6 Samuel Allen Alexander

We say D is code-independent if the following requirement holds: for all a1, a2 ∈
A , for all t1, t2 ∈ T , if a1 and a2 compute the same function, and t1 and t2
compute the same function, then for all n ∈ N, L(a1, t1, n) = L(a2, t2, n).

Example 4 Take A to be the set of programs defining RL agents (in some
formalization of RL) and T to be the set of programs defining RL environments,
both in some common language UA = UT . Let L(a, t, n) be the nth reward a gets
in an interaction with t. The resulting code-independent subdomain D could be
called the RL subdomain of AGI.

Definition 5 Suppose D = (A , UA ,T , UT , L) is a subdomain of AGI. The
extension of D is the subdomain D ′ = (A , UA ,T ′, UT ′ , L′) where:

1. UT ′ is the extension of UT by a new oracle a.
2. T ′ is the set of all UT ′ programs t with the following property: for each

a ∈ A , if ta is the UT program obtained from t by replacing all instances of
a by a, then ta ∈ T .

3. L′ is the computable function which, on input a ∈ A , t ∈ T ′, and n ∈ N,
outputs L′(a, t, n) = L(a, ta, n), where ta is as above.

If D is the RL subdomain of AGI (Example 4), then D ′ is a variation of RL
in which environments can simulate agents in order to base their rewards and
observations not only on what actions the agent has actually taken, but also on
what actions the agent would hypothetically take in counterfactual scenarios3.

Lemma 6 If D is a subdomain of AGI, then D ′ really is a subdomain of AGI.

Proof. The only nontrivial part of the claim is that L′ is a computable function
which, given a ∈ A , t ∈ T ′, n ∈ N, outputs L′(a, t, n) ∈ Q. Clearly the operation
of replacing instances of oracle a by a, is computable. So the computability of
L′ follows from the computability of L. By definition, t ∈ T ′ means ta ∈ T , so
L′(a, t, n) = L(a, ta, n) exists and is in Q since L satisfies Definition 3. ⊓⊔

Even though Lemma 6 is trivial, it has profound implications. It says that
even though an AI is designed for the original, un-extended subdomain of AGI,
that AI can nevertheless be tested using test-cases in the extended subdomain.

While clearly not a perfect solution, the following theorem at least partly
solves Problem 1.

Theorem 7 (Deparametrization Theorem) Let D = (A , UA ,T , UT , L) be a
code-independent subdomain of AGI. Suppose F is a UT program which takes as
input an AI a ∈ A and outputs a test-case F (a) ∈ T . In the extended subdomain
D ′ = (A , UA ,T ′, UT ′ , L′), there is a test-case F ∗, of approximately the same
complexity as F , such that for all a ∈ A and n ∈ N, L′(a, F ∗, n) = L(a, F (a), n).
3 Alexander et al explore this RL variation in [1], suggesting a variation of the Legg-
Hutter intelligence measure that might measure an agent’s self-reflection intelligence
via its performance in extended RL environments (if these environments could be
further pared down to just those of a social nature, the same idea could lead to a
formal measure of RL agent social intelligence, but we do not currently know how
to so pare them down).

Extended subdomains 7

Proof. Let F ∗ be the UT ′ program:

1. Take input X⃗.
2. Output the result of running F (a) on X⃗.

Clearly F ∗ has approximately the same complexity as F . For each a ∈ A , F ∗
a is

the T -program:

1. Take input X⃗.
2. Output the result of running F (a) on X⃗.

Clearly F ∗
a and F (a) compute the same function. Thus by condition 4 of Def-

inition 3, F ∗
a ∈ T . By arbitrariness of a, this shows F ∗ ∈ T ′. For any a ∈ A

and n ∈ N, L′(a, F ∗, n) = L(a, F ∗
a , n) by Definition 5, which equals L(a, F (a), n)

since F ∗
a and F (a) compute the same function and D is code-independent. ⊓⊔

Theorem 7 says that any AI-parametrized procedure for generating test-cases
in the original subdomain can be replaced by a single test-case, in the extended
subdomain, roughly as complex as the original procedure. In the single test-
case, the AI-parameter is replaced by a simulated copy of the very AI we are
trying to test. For example, suppose we want to test an Atari-playing AI’s social
intelligence. We could take F (a) to be an Atari game in which the player plays
“Super Breakout” with a as partner. Then F ∗ is a single extended Atari game in
which the player plays “Super Breakout” with a clone of herself as her partner.
Thus, the infinite test-case family, “Play Super Breakout with partner a” (each
one of whose complexity is approximately the complexity of Super Breakout plus
the complexity of a), is replaced by the single test-case, “Play Super Breakout
with a clone of yourself as partner”, roughly as complex as Super Breakout.

We would argue that test-cases produced by Theorem 7 are appropriate for
benchmarking intelligence in a super-general context4. If we design an NPC op-
ponent using a huge neural network, the resulting test-case has an inherent bias
toward neural networks. That would be inappropriate for measuring alien intel-
ligences based on some other technology. It would be rather arbitrary to judge
a Martian life form by how well it can raise a human baby, or to judge a human
by how well he can raise a Martian baby. But it would be quite appropriate to
judge each by how well it can raise a baby version of itself.

The reader might object that there is nothing social about interacting with
one’s own clone. But in general, AIs act based not only on immediate stimulus,
but on the whole history of prior stimuli. In short: AIs train. This is abstracted
away in Definition 3. One should not think of the AIs in Definition 3 as taking
immediate observations as sole inputs, but rather as taking entire histories as
inputs. In Theorem 7, F (a) might output a test-case where one plays chess
against an instance of a that has been trained on, say, 50 years of random stimuli
(generated dynamically, to keep F simple). Then F ∗ is a test-case where one

4 Provided the test-cases F (a) are nontrivial; Tic-Tac-Toe would be a poor social
intelligence benchmark regardless of the opponent’s intelligence.

8 Samuel Allen Alexander

plays chess against a clone of oneself trained with 50 years of random stimuli5.
This could be quite different than playing against oneself directly. When Silver
et al declare that

“The agent consists solely of the decision-making entity; anything outside
of that entity (including its body, if it has one) is considered part of the
environment,” [13]

that body would certainly include the brain and the hippocampus. So if I am
being driven by an agent in Silver et al’s sense, then a clone of that agent
needn’t share my memories. And to the extent that my personality depends on
my memories (including what I was taught in school, etc.), said clone needn’t
share my personality. Indeed, if personality is a function of training, the following
Paper-Rock-Scissors example illustrates how one could apply different training
to a self-play opponent, encouraging the opponent to differ in personality from
the agent.

Example 8 (Paper-Rock-Scissors Python Example, see Listing 1.1) Consider
a concrete formalization of RL in which environments are instances of Python
environment-classes and agents are instances of agent-classes. An environment-
class is required to implement a “start” method (outputting an initial observa-
tion) and a “step” method (which takes the agent’s latest action and outputs
an observation and a reward). An agent-class is required to implement an “act”
method (which takes an observation and outputs an action) and a “train” method
(which takes a prior observation, an action, a reward, and a next observation,
the intent being that the agent should update its neural net, Q-table, etc., based
on the fact that it took the given action in response to the given prior obser-
vation and this resulted in the given reward and the given next observation).
This is a subdomain of AGI. The extended subdomain is identical except that an
extended environment-class’s methods have access to an oracle AgentClass (the
a in Definition 5) for the agent-class used to instantiate the agent. Its methods
can thus instantiate independent agent-clones for use in its reward-observation
calculations. Listing 1.1 defines an extended environment-class where the agent
plays Paper-Rock-Scissors against a clone of itself, but every move, the clone
gets trained twice instead of once.

Example 8 gives a single test-case in an extended subdomain. It corresponds
to an infinite family of unextended test-cases, indexed by AgentClass. It tests
the player’s performance in the task6: “Play Paper-Rock-Scissors against a clone
of yourself that trains twice as much as you.” The extended environment has low
complexity (≈ 10 or 20 lines of code), far simpler than a non-extended version

5 If the player is human-like, 50 years of such training might even make the clone so
different that the player doesn’t realize the opponent is a clone.

6 The example is not trivialized by the random strategy. A good RL agent should
balance exploitation of known good strategies (like random play) against exploration.
Otherwise the agent would be suboptimal against certain flawed opponents. Indeed,
this line of thought leads to Hibbard’s hierarchical intelligence measures [9] [2].

Extended subdomains 9

Listing 1.1. An extended environment in which the agent plays Paper-Rock-Scissors
against a clone of itself, but the clone trains twice as much.

class PaperRockScissors DoubleTrainingEnemy :
def s t a r t (s e l f) :

In s t a n t i a t e a c lone o f the agent . This c lone w i l l p l ay
the r o l e o f the agent ' s enemy .
s e l f . sim = AgentClass ()
Sta r t i n t e r a c t i o n wi th both p l aye r & enemy see ing paper
s e l f . p r e v p l a y e r a c t i on = PAPER
return { ' obs ' : PAPER}

def s tep (s e l f , p l a y e r a c t i o n) :
Figure out which ac t i on the agent ' s enemy take s
enemy action = s e l f . sim . act (obs=s e l f . p r e v p l a y e r a c t i on)

p layer reward = compute reward (p l aye r a c t i on , enemy action)

Train the enemy based on how the enemy see s t h i n g s
(the enemy g e t s the oppo s i t e reward as the p layer , e t c .)
s e l f . sim . t r a i n (prev obs=s e l f . p r ev p l ay e r a c t i on ,

act=enemy action , reward=−player reward ,
next obs=p l ay e r a c t i o n)

Train again , so the enemy t r a i n s tw ice as much
s e l f . sim . t r a i n (prev obs=s e l f . p r ev p l ay e r a c t i on ,

act=enemy action , reward=−player reward ,
next obs=p l ay e r a c t i o n)

s e l f . p r e v p l a y e r a c t i on = p l ay e r a c t i o n
return { ' reward ' : p layer reward , ' obs ' : enemy action }

with a fixed genuinely intelligent enemy built-in. Because the opponent is trained
differently than the player, we would expect the opponent to develop a different
personality than the player (except in some degenerate cases)—this gives the
test-case a social aspect. The reader can easily imagine more ambitious exam-
ples where entire communities (or even civilizations) of entities interact with
themselves and the player, each entity instantiated as AgentClass(), but differ-
ent entities trained differently and therefore having distinct personalities. With
some creativity, such ambitious extended environments could be programmed
with relatively low complexity: the most complicated part (how the entities be-
have) is delegated away.

4 Conclusion

Hernández-Orallo and Dowe described [6] a problem which may prevent certain
intelligence measures from measuring social intelligence. They stated the prob-

10 Samuel Allen Alexander

lem in the universal intelligence context [10]. We pointed out that the problem is
more general. It arises any time we try to use simple test-cases (or a simple pro-
cedure for generating test-cases) to estimate intelligence in any AGI subdomain.
The problem is that building genuine intelligence into a test-case (apparently
necessary for the test-case to measure social intelligence) would make that test-
case complicated, not simple. We propose a high-level solution. Instead of de-
signing test-cases in the subdomain in question, design test-cases in an extended
subdomain where test-cases can simulate the AI being tested. Such extended
test-cases can incorporate social interaction by delegating competitors’ or col-
laborators’ intelligence to a clone (or clones) of the AI being tested. For example,
instead of testing, “How well can the AI negotiate with such-and-such human?”
(a question involving a complex arbitrary parameter), instead, test: “How well
can the AI negotiate with its clone?” (a simple non-parametrized question).

Acknowledgments

We acknowledge José Hernández-Orallo and the reviewers for valuable feedback.

References

1. Alexander, S.A., Castaneda, M., Compher, K., Martinez, O.: Extending environ-
ments to measure self-reflection in reinforcement learning. Preprint (2022)

2. Alexander, S.A., Hibbard, B.: Measuring intelligence and growth rate: Variations
on Hibbard’s intelligence measure. JAGI 12(1), 1–25 (2021)

3. Alexander, S.A., Hutter, M.: Reward-punishment symmetric universal intelligence.
In: CAGI (2021)

4. Goertzel, B.: Artificial general intelligence: concept, state of the art, and future
prospects. JAGI 5, 1–48 (2014)

5. Hernández-Orallo, J.: Twenty years beyond the Turing test: Moving beyond the
human judges too. Minds and machines 30(4), 533–562 (2020)

6. Hernández-Orallo, J., Dowe, D.L.: Measuring universal intelligence: Towards an
anytime intelligence test. AI 174(18), 1508–1539 (2010)

7. Hernández-Orallo, J., Dowe, D.L., Espana-Cubillo, S., Hernández-Lloreda, M.V.,
Insa-Cabrera, J.: On more realistic environment distributions for defining, evalu-
ating and developing intelligence. In: CAGI (2011)

8. Hibbard, B.: Bias and no free lunch in formal measures of intelligence. JAGI 1(1),
54 (2009)

9. Hibbard, B.: Measuring agent intelligence via hierarchies of environments. In:
CAGI (2011)

10. Legg, S., Hutter, M.: Universal intelligence: A definition of machine intelligence.
Minds and machines 17(4), 391–444 (2007)

11. Legg, S., Veness, J.: An approximation of the universal intelligence measure. In:
Algorithmic Probability and Friends, pp. 236–249. Springer (2013)

12. Leike, J., Hutter, M.: Bad universal priors and notions of optimality. In: Conference
on Learning Theory. pp. 1244–1259. PMLR (2015)

13. Silver, D., Singh, S., Precup, D., Sutton, R.: Reward is enough. AI (2021)

