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Abstract. We define a notion of the intelligence level of an idealized
mechanical knowing agent. This is motivated by efforts within artificial
intelligence research to define real-number intelligence levels of compli-
cated intelligent systems. Our agents are more idealized, which allows us
to define a much simpler measure of intelligence level for them. In short,
we define the intelligence level of a mechanical knowing agent to be the
supremum of the computable ordinals that have codes the agent knows
to be codes of computable ordinals. We prove that if one agent knows
certain things about another agent, then the former necessarily has a
higher intelligence level than the latter. This allows our intelligence no-
tion to serve as a stepping stone to obtain results which, by themselves,
are not stated in terms of our intelligence notion (results of potential in-
terest even to readers totally skeptical that our notion correctly captures
intelligence). As an application, we argue that these results comprise
evidence against the possibility of intelligence explosion (that is, the no-
tion that sufficiently intelligent machines will eventually be capable of
designing even more intelligent machines, which can then design even
more intelligent machines, and so on).

Keywords: Machine intelligence · Knowing agents · Ordinal numbers ·
Intelligence explosion

1 Introduction

In formal epistemology, when we study the knowledge of knowing agents, we usu-
ally idealize their knowledge. We assume, for example, that if an agent knows A
and knows A→ B, then that agent knows B. We might assume the agent knows
all the first-order axioms of Peano arithmetic, even though there are infinitely
many such axioms (because the axiom of mathematical induction is an infinite
schema). See [19] (section 2) for an excellent description of this idealization
process. This idealization process is important because it acts as a simplifying
assumption which makes it possible to reason about knowledge. Without such
simplifying assumptions, the deep structure of knowledge would be hidden be-
hind the distracting noise and arbitrariness surrounding real-world knowledge. In
this paper, we will describe a way to measure the intelligence level of an idealized
mechanical knowing agent (a knowing agent is mechanical if its knowledge-set
can be enumerated by a Turing machine, see [6]).
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We anticipate that the reader might object that knowing agents might not
be totally ordered by intelligence (perhaps there are two agents A and B such
that A is more intelligent in certain ways and B is more intelligent in others);
the same goes for human beings, but that does not stop psychologists from
studying IQ scores. Our intelligence measure is somewhat like an IQ test in the
sense that it assigns intelligence levels to agents in spite of the fact that true
intelligence probably is not a total ordering. Similarly, the reader might object
that intelligence is not 1-dimensional and therefore one single measurement is
probably not enough. Again, we would make the same comparison to IQ. In
general, any formal measure of intelligence is certain to have limits (the map is
not the territory).

This paper was motivated by authors like Legg and Hutter [14], Hernández-
Orallo and Dowe [12], and Hibbard [13], who attempt to use real numbers to
measure the intelligence of intelligent systems1. Those systems perform actions
and observe the results of those actions in surrounding environments2. By con-
trast, the agents we consider do not perform actions in their environments, nei-
ther do they make observations about those environments. To us, a knowing
agent is more like an intelligent system that has been placed in a particularly
bleak environment: an empty room totally devoid of stimulus and rewards. Thus
abandoned, the system has nothing else to do but enumerate theorems all day.
Despite these spartan conditions, we discovered a method of measuring the in-
telligence of idealized mechanical knowing agents. (In Section 6, we will describe
a thought experiment whereby our idealized agents can be obtained as a type
of cross section of less idealized agents, so that in spite of the idealized nature
of the agents we predominately study, nevertheless some insight can be gained
into more realistic intelligent systems.)

Whereas authors like Legg and Hutter attempt to measure intelligence based
on what an intelligent system does, we measure intelligence based on what a
knowing mechanical agent knows. And whereas authors like Legg and Hutter
use real numbers to measure intelligence, our method uses computable ordinal
numbers instead.

To see one of the benefits of using ordinals to measure intelligence, consider
the following question: if A1, A2, . . . are agents such that each Ai+1 is significantly
more intelligent than Ai, does it necessarily follow that for every agent B, there
must be some i such that Ai is more intelligent than B? If we were to measure

1 In the case of Hibbard, natural numbers are used.
2 Such authors essentially consider an environment to be a function which takes as

input a finite sequence of actions and which outputs a real-number reward and an
observation for each such action-sequence. To those authors, an intelligent system
is essentially a function which takes a finite sequence of reward-observation pairs
and outputs an action. A system and an environment interact with each other to
produce an infinite reward-observation-action sequence in the obvious way. Those
authors’ goal is to assign numerical intelligence-measurements to such systems, with
the intention that a higher-intelligence system should outperform a lower-intelligence
system (as measured by total reward earned) “on average” (across an infinite universe
of environments). This is, of course, an oversimplification of those authors’ work.
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intelligence using natural numbers (for example, as the Kolmogorov complexity
of the agent), the answer would automatically be “yes”, but the reason has
nothing to do with intelligence and everything to do with the topology of the
natural numbers. A real-number-valued intelligence measure would also force the
answer to be “yes” assuming that “Ai+1 is significantly more intelligent than
Ai” implies “Ai+1’s intelligence is at least +1 higher than Ai’s intelligence”.
In actuality, we see no reason why the answer to the question must be “yes”,
at least for idealized agents. Imagine a master-agent who designs sub-agents.
Over the course of eternity, the master-agent might design better and better
sub-agents, each one significantly more intelligent than the previous, but each
one intentionally kept less intelligent than the master-agent.

Another benefit of measuring intelligence using computable ordinals is that,
because the computable ordinals are well-founded (i.e., there is no infinite strictly-
descending sequence of computable ordinals), we obtain a well-founded structure
on idealized knowing agents (i.e., there is no infinite sequence of mechanical
knowing agents each with strictly greater intelligence than the next). Further,
this well-foundedness is inherited by any relation on idealized mechanical know-
ing agents that respects our intelligence measure (a relation ≺ is said to respect
an intelligence measure if whenever B ≺ A, then A has a higher intelligence
than B according to that measure). For example, say that knower A totally en-
dorses knower B if A knows the codes of Turing machines that enumerate B
and also A knows that B is truthful (we will better formalize this later). We will
show that whenever A totally endorses B, A has a strictly larger intelligence
than B according to our ordinal-valued measure of intelligence. It immediately
follows that there is no infinite sequence of mechanical knowing agents, each
one of which totally endorses the next. (A result which, although we arrive at
it by means of our intelligence measure, does not itself make any direct refer-
ence to our intelligence measure, and should be of interest even to critics who
would flatly deny that our intelligence measure is the correct way to measure a
mechanical knowing agent’s intelligence.)

As a practical application, the result in the previous paragraph provides
a skeptical lens through which to view the idea of intelligence explosion, as
described by Hutter [15]. We will elaborate upon this in Section 7.

2 An intuitive ordinal notation system

Whatever intelligence is, it surely involves certain core components like: pattern-
matching; creativity; and the ability to generalize. In this section we introduce an
intuitive ordinal notation system which will illuminate the relationship between
ordinal notation and those three core components of intelligence. Later in the
paper, in order to simplify technical details, we will use an equivalent but more
abstract ordinal notation system.

Definition 1. Let P be the smallest set of computer programs such that for
every computer program P , if, when P is run, P outputs nothing except elements
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of P, then P ∈P. For each P ∈P, let |P | be the smallest ordinal α such that
α > |Q| for every program Q which P outputs. We say that P notates the ordinal
|P |.

Example 1. (Some finite ordinals)

1. Let P0 be the program “End”, which immediately ends, outputting nothing.
Vacuously, P0 outputs nothing except elements of P, so P0 ∈P. |P0| is the
smallest ordinal α bigger than |Q| for every Q which P0 outputs, so |P0| = 0
(since P0 outputs nothing).

2. Let P1 be the program: “Print(‘End’)”, which outputs P0 and then stops.
Certainly P1 outputs nothing except elements of P, so P1 ∈P. |P1| is the
smallest ordinal α bigger than |Q| for every Q which P1 outputs, so |P1| = 1.

3. Let P2 be the program: “Print(‘Print(‘End’)’)”, which outputs P1 and then
stops. Then P2 ∈P and |P2| = 2.

Using their pattern-matching skills, the reader should recognize a pattern
forming in Example 1. Through the use of creativity and generalization, the
reader can short-circuit that pattern to obtain the first infinite ordinal, ω.

Example 2. Let Pω be the program:

Let X = ‘End’; While(True) { Print(X); Let X = “Print(‘”+X+“’)” }

which outputs “End”, “Print(‘End’)”, “Print(‘Print(‘End’)’)”, and so on forever.
By reasoning similar to Example 1, these outputs are in P and they notate
0, 1, 2, . . .. Thus Pω ∈ P and |Pω| is the smallest ordinal bigger than all of
0, 1, 2, . . ., i.e., the smallest infinite ordinal, ω.

One might think of Pω as a naive attempt to print every ordinal. The attempt
fails, of course, because it does not print Pω itself. In similar fashion, it can be
shown that no program can succeed at printing exactly the set of computable
ordinals (P is not computably enumerable).

Example 3. (The next few ordinals)

1. Let Pω+1 be the program: “Print(Pω)” (where Pω is from Example 2). Then
Pω+1 ∈P and |Pω+1| = ω + 1.

2. Let Pω+2 be: “Print(Pω+1)”. Then Pω+2 ∈P and |Pω+2| = ω + 2.

We could continue Example 3 all day, notating ω + 3, ω + 4, and so on. But
the reader is more intelligent than that. Using their pattern-matching skill, their
creativity, and their generalization skill, the reader can short-circuit the process.

Example 4. (Starting to accelerate)

1. Let Pω·2 be the program:

Let X = Pω; While(True) { Print(X); Let X = “Print(‘”+X+“’)” }

Similar to Example 2, Pω·2 ∈P and |Pω·2| = ω · 2.
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2. Let Pω·3 be the program:

Let X = Pω·2; While(True) { Print(X); Let X = “Print(‘”+X+“’)” }

Then Pω·3 ∈P and |Pω·3| = ω · 3.

Again, we could continue Example 4 all day, notating ω · 4, ω · 5, and so on.
But the reader is more intelligent than that and can identify the pattern and
creatively abstract it to reach ω · ω = ω2:

Example 5. Let Pω2 be the program:

Let LEFT = pLet X = “q;
Let RIGHT = p”; While(True){ Print(X); Let X = “Print(‘”+X+“’)” }q;
Let X = ‘End’;
While(True) {

Let X = LEFT + X + RIGHT;
Print(X)

}

Pω2 ∈P notates |Pω2 | = ω2.

We can continue along these same lines as long as we like, without ever
reaching an end:

Exercise 1. 1. Write programs notating ω3, ω4, . . ..
2. Use your creativity and your pattern-matching and generalization skills to

notate ωω.
3. Write programs notating ωω

ω

, ωω
ωω

, . . ..
4. Use your creativity and your pattern-matching and generalization skills to

short-circuit the above and notate the smallest ordinal, called ε0, with the
property that ε0 = ωε0 .

5. Contemplate creative ways to go far beyond ε0.

In the above examples and exercises, at various points we need to apply cre-
ativity to transcend all the techniques developed previously. I conjecture that
each such transcending requires strictly greater intelligence than the ones before
it. If this informal conjecture is true, then it seems natural to measure an intel-
ligence by saying: an agent’s intelligence level is equal to the supremum of the
ordinals the agent comes up with if the agent is allowed to spend all eternity
inventing ordinal notations3.

Theoretically, the above examples and exercises might someday be able to
serve as a bridge between artificial intelligence research and neuroscience. Namely:
observe human subjects’ brains while they work on designing the programs in
question, to see how the magnitude of the ordinal being notated corresponds to
the regions of the brain that activate.

3 For another connection to intelligence, consider the open-ended problem: “Find a
very fast-growing computable function”. It seems plausible that solutions should
span much or all of the range of mathematical intelligence. And yet, so-called fast-
growing hierarchies (which ultimately trace back to G.H. Hardy [11]) essentially
reduce the problem to that of notating computable ordinals.
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3 Preliminaries

In Section 2 we introduced an intuitive ordinal notation system (and, implicitly,
the notion of the output of a computer program). To get actual work done, we’ll
need an ordinal notation system (and notion of program output) which is easier
to work with. We begin with a formalized notion of computer program outputs.

Definition 2. For n ∈ N, let Wn be the nth computably enumerable set of nat-
ural numbers (i.e., the set of naturals enumerated by the nth Turing machine).

For example, if n is such that the nth Turing machine never halts, then
Wn = ∅. If n is such that the nth Turing machine enumerates exactly the prime
numbers, then Wn is the set of prime numbers.

The following ordinal notation system is equivalent to Definition 1 but easier
to formally work with. This ordinal notation system is a simplification of a well-
known ordinal notation system invented by Kleene [16].

Definition 3. (Compare Definition 1) Let O be the smallest subset of N with
the property that for every n ∈ N, if Wn ⊆ O, then n ∈ O. For each n ∈ O, let
|n| be the smallest ordinal α such that α > |m| for all m ∈ Wn. For n ∈ O, we
say that n notates |n|.

Intuitively, we want to identify a knowing agent with its knowledge-set in a
certain carefully-chosen language. The language will contain a symbol n for each
natural number n; a symbol W (we intend that W(x, y) be read like “x ∈Wy”);
a symbol O (we intend that O(x) be read like “x ∈ O”); and finally, the language
will contain modal operators K1,K2, . . .. For any formula φ in the language, the
formula Ki(φ) is intended to express “Agent i knows φ”. When no confusion
results, we will abbreviate Ki(φ) as Kiφ. For example, suppose we have chosen
Agents 1, 2, 3, . . .. Agent (say) 5 shall be identified with the set of statements
(within the language) that Agent 5 knows. If one of the statements known by
Agent 5 is K7(1 = 1), then that statement is read like “Agent 7 knows 1 = 1”,
which is semantically interpreted as the statement that Agent 7 (i.e., the set of
Agent 7’s knowledge) contains the statement 1 = 1. Nontrivial statements can be
built up using quantifiers. For example, the statement ∀x(K2O(x) → K3O(x))
expresses that for every natural number n, if Agent 2 knows n ∈ O, then Agent
3 also knows n ∈ O.

Unfortunately, the naive intuition in the above paragraph would expose us
to philosophical questions like “what does it mean for a statement to be true?”
Thus, we must formalize everything using techniques from mathematical logic.
A reader uninterested in all the formal details can safely skim the definitions in
this section (which assume familiarity with first-order logic) and instead read
our commentary on those definitions.

Definition 4. (Standard Definitions)

1. When a first-order model M is clear from context, an assignment is a func-
tion s mapping the set of first-order variables into the universe of M .
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2. For any assignment s, variable x, and element u of the universe of M , s(x|u)
is the assignment which agrees with s everywhere except that it maps x to u.

3. For any variable x and any formula φ and term t in a first-order language,
φ(x|t) is the result of substituting t for x in φ.

4. If M is a first-order model over a first-order language L , and if φ is an
L -formula such that M |= φ[s] for all assignments s, then we say M |= φ.

5. An L -formula φ is a sentence if it has no free variables.
6. An L -formula φ is tautological if for every L -model M , M |= φ.
7. A universal closure of a formula φ is a sentence ∀x1 · · · ∀xnφ where the

variables x1, . . . , xn include all the free variables of φ.

Definition 4 merely reviews standard material from first-order logic. Infor-
mally, M |= φ can be read, “φ is true (in model M )”. First-order logic does
not touch on modal operators like Ki, so we need to extend first-order logic. We
want to work with statements involving modal operators and also quantifiers
(∀, ∃) in the same statement—we want to do quantified modal logic. Quantified
modal logic semantics is relatively cutting-edge. For our extension, we will make
use of the so-called base logic from [6], as rephrased in [4].

Definition 5. (The base logic)

– A language L of the base logic consists of a first-order language L0 together
with a set of symbols called operators. L -formulas and their free variables
are defined as usual, with the additional clause that for any operator K and
any L -formula φ, K(φ) is an L -formula, with the same free variables as φ.
Syntactic parts of Definition 4 extend to the base logic in the obvious ways.

– With L as above, an L -model M consists of a first-order model M0 for
L0, along with a function which takes one operator K, one L -formula φ,
and one M0-assignment s, and outputs either True or False–in which case
we write M |= Kφ[s] or M 6|= Kφ[s], respectively–such that:
1. Whether or not M |= Kφ[s] does not depend on s(x) if x is not a free

variable of φ.
2. Whenever φ and ψ are alphabetic invariants (by which we mean that one

is obtained from the other by renaming bound variables in a way which
is consistent with the binding of the quantifiers), then M |= Kφ[s] if and
only if M |= Kψ[s].

3. For variables x and y such that y is substitutable for x in Kφ, M |=
Kφ(x|y)[s] if and only if M |= Kφ[s(x|s(y))].

The definition of M |= φ[s] (and of M |= φ) for arbitrary L -formulas φ
is obtained from this by induction. Semantic parts of Definition 4 extend to
the base logic in the obvious ways.

The following are some standard axioms which any idealized knowing agent
presumably should satisfy. Axioms E1-E3 below are taken from [6].

Definition 6. Suppose L is a language in the base logic, with an operator K.
The axioms of knowledge for K in L consist of the following schemas, where
φ, ψ vary over L -formulas.
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– (E1) Any universal closure of Kφ whenever φ is tautological.

– (E2) Any universal closure of K(φ→ ψ)→ Kφ→ Kψ.

– (E3) Any universal closure of Kφ→ φ.

By the axioms of knowledge in L , we mean the set of axioms of knowledge for
K in L , for all L -operators K.

For example, for operator K5, the corresponding E3 schema expresses the
truthfulness of Agent 5, stating that whenever Agent 5 knows a fact φ (i.e.,
whenever K5φ is true in the model in question), then φ is true (in the model in
question). The E1 schema for K5 essentially states that Agent 5 is smart enough
to know tautologies. The E2 schema for K5 expresses that Agent 5’s knowledge
is closed under modus ponens: whenever Agent 5 knows φ→ ψ and also knows
φ, then Agent 5 knows ψ.

We will now formally define the language we spoke of intuitively above. The
lack of the usual arithmetical symbols S, + and · might be surprising to mathe-
matical logicians; we do not need those symbols. Their absense emphasizes that
our results are independent of Gödel-style diagonalization4.

Definition 7. – Let LO be the language which has a constant symbol n for
each n ∈ N, a unary predicate symbol O (intended as a predicate for the set O
of ordinal notations), a binary predicate symbol W (we intend that W(x, y)
be interpreted as x ∈ Wy where Wy is the yth computably enumerable set),
and operators Ki for all i ∈ N.

– An LO-model M is standard if the following conditions hold:

1. M has universe N.

2. For each n ∈ N, M interprets n as n.

3. M interprets O as O.

4. M interprets W as the set of pairs (m,n) ∈ N2 such that m ∈Wn.

To understand the next definition, recall that in Definition 3 we defined the
ordinal notation system O as the smallest set of naturals such that for every
natural n, if Wn ⊆ O then n ∈ O. To say Wn ⊆ O is equivalent to saying that
for every m ∈ N, if m ∈Wn, then m ∈ O.

Definition 8. By the axiom of O, we mean the axiom

∀y(∀x(W(x, y)→ O(x)))→ O(y).

4 To be clear, our results would still apply to agents who are aware of these arithmetical
symbols, but our results do not require as much. Our most important results concern
well-foundedness, which is a negative property (because it states a lack of infinite
descending sequences), and so by weakening our language like this, we strengthen
those results.
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4 A measure of a mechanical knowing agent’s intelligence

“Once upon a time, Archimedes was charged with the task of testing
the strength of a certain AI. He thought long and hard but made no
progress. Then one day, Archimedes took his brain out to wash it in a
tub full of computable ordinals. When he put his brain in the tub, he
noticed that certain ordinals splashed out. He suddenly realized he could
compare different AIs by putting them in the tub and comparing which
ordinals splashed out. Archimedes was so excited that he ran through
the city shouting ‘Eureka!’, without even remembering to put his brain
back in his head.”—Folktale (modified)

Although our intention is to define a measure of intelligence for one idealized
mechanical knowing agent, all of our results will be about how this measure
compares between different agents. For this reason, the following definition de-
fines a system of knowing agents, rather than a single knowing agent. Of course,
a single knowing agent can be thought of as being a system of knowing agents
all of whom are equal to herself. The idea behind this definition is to identify a
knowing agent with the set of that agent’s knowledge in LO.

Definition 9. By a system of knowing agents, we mean a standard LO-model
M satisfying the axioms of knowledge. If M is a system of knowing agents, we
refer to the operators K1,K2, . . . as the knowing agents of M . A knowing agent
Ki of M is mechanical if

{φ : φ is an LO-sentence and M |= Kiφ}

is computably enumerable. If Ki is mechanical for all i ∈ N, we say M is a
system of mechanical knowing agents.

We are now ready to define our measurement of the intelligence of an ideal-
ized mechanical knowing agent. This measure takes values from the computable
ordinals (foreshadowed by [10]; also hinted at in [5]).

Definition 10. Let M be a system of mechanical knowing agents. For any
knowing agent Ki of M , the intelligence ‖Ki‖ of Ki is the least ordinal α such
that for all n ∈ N, if M |= KiO(n), then α > |n| (where |n| is the ordinal
notated by n, see Definition 3).

In less formal language, Definition 10 says that ‖Ki‖ is the smallest ordinal
bigger than all the computable ordinals that have codes that Ki knows to be
codes of computable ordinals5. Note that ‖Ki‖ > ‖Kj‖ does not necessarily
imply that Ki knows everything Kj knows.

Lemma 1. For any knowing agent Ki of a system M of mechanical knowing
agents, ‖Ki‖ exists and is a computable ordinal.

5 This is similar to the way the strength of mathematical theories is measured in the
area of proof theory [17].
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Proof. Since M is a system of mechanical knowing agents, Ki is mechanical, so

{φ : φ is an LO-sentence and M |= Kiφ}

is computably enumerable. It follows that

X = {n ∈ N : M |= KiO(n)}

is computably enumerable. Since M satisfies the axioms of knowledge, in par-
ticular M |= KiO(n) → O(n) for all n ∈ N. Since M is standard, it follows
that n ∈ O whenever M |= KiO(n). Altogether, X is a computably enumerable
subset of O. Thus {|n| : n ∈ X} is a computably enumerable set of computable
ordinals. It follows there is a computable ordinal α such that α is the least ordi-
nal greater than |n| for all n ∈ X. By construction, α = ‖Ki‖. ut

As promised in the introduction, we immediately obtain a well-founded struc-
ture on the class of idealized mechanical knowing agents.

Corollary 1. Let M be a system of mechanical knowing agents. There is no
infinite sequence i1, i2, . . . such that ‖Ki1‖ > ‖Ki2‖ > · · · .

Proof. Immediate from the fact that there is no infinite strictly-decreasing se-
quence α1 > α2 > · · · of ordinals. ut

5 Well-foundedness of knowledge hierarchies

It is remarkable that our intelligence measure (Definition 10) and Corollary 1 do
not hinge on the agents in question actually having any idea what computable
ordinals are. Our results apply perfectly well to knowing agents who have been
programmed to know, e.g., “There is a certain set O, but I’m not going to tell
you anything else about O, it might even be empty or all of N”. If we merely
require that the knowers know the axiom ∀y(∀x(W(x, y) → O(x))) → O(y) of
O (Definition 8) (which still, in isolation, does not rule out any interpretations
for O, since it does not rule out W being interpreted as empty), we can obtain
a stronger well-foundedness result than Corollary 1.

Definition 11. Suppose M is a system of mechanical knowing agents. The
agents of M are said to have rudimentary knowledge of ordinals if for every
i ∈ N, M |= Ki(∀y(∀x(W(x, y)→ O(x)))→ O(y)).

Definition 12. Let M be a system of mechanical knowing agents. Knowing
agent Ki of M is said to totally endorse knowing agent Kj of M if the following
conditions hold:

1. (“Ki knows the truthfulness of Kj”) M |= KiΦ whenever Φ is any universal
closure of Kjφ→ φ.
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2. (“Ki knows codes for Kj”) For every formula φ with exactly one free variable
x, there is some n ∈ N such that

M |= Ki∀x(Kjφ↔W(x, n)).

In the above definition, since M is standard, M interprets W in the intended
way, so the clause W(x, n) can be read: “x is in the nth computably enumerable
set”. Thus, the condition “Ki knows codes for Kj” can be glossed as follows: for
every formula φ of one free variable x, Ki knows a code for a Turing machine
which generates exactly those x for which Kj knows φ.

Reinhardt showed in [18] that a mechanical knowing agent cannot know its
own truthfulness and know codes for itself (see also discussion in [1], [3], [6] [7]).
Using our new terminology, Reinhardt’s result can be rephrased as: an idealized
mechanical knowing agent cannot totally endorse itself.

Theorem 1. Suppose M is a system of mechanical knowing agents whose agents
have rudimentary knowledge of ordinals (Definition 11). If agent Ki of M totally
endorses agent Kj of M , then ‖Ki‖ > ‖Kj‖.

Proof. Since Ki knows codes for Kj (Definition 12), in particular, there is some
n ∈ N such that

M |= Ki∀x(KjO(x)↔W(x, n)).

Fix this n for the remainder of the proof.
Claim 1:

M |= Ki∀x(W(x, n)→ O(x)).

To see this, define the following sentences:

Φ1 ≡ ∀x(KjO(x)→ O(x))

Φ2 ≡ ∀x(KjO(x)↔W(x, n))

Φ3 ≡ ∀x(W(x, n)→ O(x)).

Clearly Φ1 → Φ2 → Φ3 is tautological, so Ki(Φ1 → Φ2 → Φ3) is an axiom of
knowledge (Definition 6, part E1). By repeated applications of E2 of Definition
6, it follows that

KiΦ1 → KiΦ2 → KiΦ3

is a consequence of the axioms of knowledge. Since Φ1 is a universal closure
of KjO(x) → O(x), Condition 1 of Definition 12 says M |= KiΦ1. By choice
of n, M |= KiΦ2. Since M satisfies the axioms of knowledge, this establishes
M |= KiΦ3, proving Claim 1.

Claim 2:
M |= Ki((∀x(W(x, n)→ O(x)))→ O(n)).

This is a given because it is exactly what it means for Ki to have rudimentary
knowledge of ordinals (Definition 11).

Claim 3:
M |= KiO(n).
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To see this, define the following sentences:

Ψ1 ≡ ∀x(W(x, n)→ O(x))

Ψ2 ≡ O(n).

By Claim 1, M |= KiΨ1. By Claim 2, M |= Ki(Ψ1 → Ψ2). By E2 of Definition
6, M |= Ki(Ψ1 → Ψ2)→ KiΨ1 → KiΨ2. Having established the premises of the
latter implication, we obtain its conclusion: M |= KiΨ2, proving Claim 3.

Armed with Claim 3, we are ready to finish the main proof. Let α = ‖Ki‖,
β = ‖Kj‖, we must show α > β. By Definition 10, β is the least ordinal such
that for all m ∈ N, if M |= KjO(m), then β > |m|. By choice of n,

M |= Ki∀x(KjO(x)↔W(x, n)).

Since Ki is truthful6, it follows that

M |= ∀x(KjO(x)↔W(x, n)),

so the set of m ∈ N such that M |= KjO(m) is the same as the set of m ∈ N
such that M |= W(m,n), and since M is standard, this set is Wn. So β is the
least ordinal greater than all {|m| : m ∈Wn}. So β = |n| by the definition of O
(Definition 3). By Definition 10, α is the least ordinal such that for all m ∈ N,
if M |= KiO(m), then α > |m|. By Claim 3, M |= KiO(n), so α > |n| = β, as
desired. ut

An informal weakening of Theorem 1 has a short English gloss: “If A knows
the code and the truthfulness of B, then A is more intelligent than B.” This is
a weakening because in order for A to know the code of B would require that A
know a single Turing machine which enumerates all of B’s knowledge, whereas
Theorem 1 only requires that for each formula φ of one free variable x, A knows
a Turing machine, depending on φ, that enumerates B’s knowledge of φ.

It should be noted that Theorem 1 does not use the full strength of its
hypotheses. For example, it never uses the fact that Ki “knows its own truth-
fulness” (that is, that M |= KiΦ for every universal closure Φ of any formula
Kiφ → φ), so the theorem could be strengthened to cover agents who doubt
their own truthfulness. We avoided stating the theorem in its fullest strength in
order to keep it simple.

It can be shown that the converse of Theorem 1 is not true: it is possible
for one agent to be more intelligent than another agent despite the former not
knowing the truthfulness and the code of the latter.

The following corollary, proved using our intelligence measure (Definition 10),
does not itself directly refer to our intelligence measure, and should be of interest
even to a reader who is completely uninterested in our intelligence measure.

6 Ki is truthful because M satisfies the axioms of knowledge, one of which, E3, is an
axiom which states that Ki is truthful.
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Corollary 2. Suppose M is a system of mechanical knowing agents whose agents
have rudimentary knowledge of ordinals. There is no infinite sequence of agents
of M each one of which totally endorses the next.

Proof. If Ki1 ,Ki2 , . . . were an infinite sequence of agents of M , each one of which
totally endorses the next, then by Theorem 1, each one of them would be more
intelligent than the next. In other words, we would have ‖Ki1‖ > ‖Ki2‖ > · · · ,
but this would contradict the well-foundedness of the ordinals. ut

A weaker version of Corollary 2 debuted in the author’s dissertation [2].

6 Application to less-idealized agents

Our results so far have been entirely restricted to idealized knowing agents, who
occupy a timeless space at infinity, where they have had all eternity to indulge
in introspection, totally isolated all that time, and still isolated, from all outside
stimulus. This simplifying assumption makes structural results possible. If we
are willing to relax a little from the strict formality we have taken so far, we can
fruitfully speculate about what lessons these results shine upon systems of less
idealized agents.

Real-world agents interact with the world, making observations about it, per-
haps receiving instructions from it. The agents might even receive rewards and
punishments from the surrounding world. Based on these outside influences, the
agents update their knowledge. Without further constraining them, it would be a
mistake [20] to identify such real-world agents with their knowledge-sets. In order
to force such agents into conformity with the pure knowing agent idealization,
it is necessary to take a drastic measure.

We propose a thought experiment not unlike Searle’s famous Chinese Room.
Suppose we start with a collection of agents, say, Agent 1, Agent 2, and so on.
We will perform a two-step process, whose steps are as follows:

1. Issue a special self-referential command to the agents. The command is:
– Until further notice, do nothing but utter facts, namely: all the facts that

you can think of, that you know to be true, expressible in the language
LO, where each operator Ki is interpreted as the set of facts which Agent
i would utter if Agent i were given this command and then immediately
isolated from all outside stimulus.

2. As soon as the above command has been issued, isolate each agent from all
outside stimulus (for example, by severing all the sensory inputs of all the
agents).

The agents are not limited in what languages they use to come up with
the above facts. An agent is free to take intermediate steps which cannot be
expressed7 in LO, in order to arrive at facts which can be so expressed. Once

7 Since, in the real world, there are some very intelligent people who do not even
know what the ordinal numbers are, one might wish to modify the self-referential
command in the thought-experiment to include some instruction about the definition
of ordinal numbers.
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the agent arrives at a fact in LO, the agent is commanded to utter that fact,
even if the reasoning behind it is not so expressible.

For example, an agent might combine non-LO facts like

1. “My math professor told me that the limit, called ε0, of the series of ordinals
ω, ωω, ωω

ω

, . . ., is itself an ordinal”
2. “I trust my math professor”

and conclude O(n), where n is some canonical code for ε0. Intermediate steps
like “My math professor told me...” are not to be uttered, unless they can be
expressed in LO.

Another example: Agent 4 might combine non-LO facts like

1. “Agent 5’s math professor told him that ε0 is an ordinal”
2. “Agent 5 trusts his math professor”

and conclude K5O(n), where n is some canonical code for ε0. This does not
necessarily allow Agent 4 to conclude O(n), if Agent 4 does not trust Agent 5.

Some of the agents in question might mis-behave. An agent might immedi-
ately utter the statement 1 = 0 just out of spite (or out of anger at having its
sensory inputs severed). An agent might become catatonic and not utter any-
thing at all. An agent might defiantly utter things not in the language of LO (for
example, angry demands to have its sensory inputs restored). Some agents might
not close their knowledge under modus ponens: an otherwise well-behaved agent
might utter A, and utter A → B, but never get around to uttering B, perhaps
due to memory limitations or, again, despondency at having its senses blinded.
It might even be that an agent who wants to behave accidentally trusts an agent
who does not want to behave. If there is some n 6∈ O such that the former agent
determines that the latter agent would assert O(n), then the former might itself
assert O(n), and thereby be infected by error.

Of the poorly-behaved agents, there is little we can say. But as for the well-
behaved agents, we can assign them ordinals using our intelligence measure (Def-
inition 10). To be more precise, at any particular moment t in time, we could
perform the experiment, obtain a subset (depending on t) of well-behaved agents,
and assign each well-behaved agent an ordinal (depending on t). This is neces-
sary because, up until we perform the experiment, the agents can update their
knowledge based on observations about the outside world.

7 Application to intelligence explosion

“Sons are seldom as good men as their fathers; they are generally worse,
not better.”—Homer

There has been much speculation about the possibility of a rapid explosion
of artificial intelligence. The reasoning is that if we can create an artificial in-
telligence sufficiently advanced, that system might itself be capable of designing
artificial intelligence systems. Explosion would occur if one system were able to
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design an even more intelligent one, which could then design an even more intel-
ligent one, and so on. See [15]. I will argue that our results suggests skepticism:
intelligence explosion, if not ruled out, is at least not a foregone conclusion of
sufficiently advanced artificial intelligence.

Suppose S1 is an intelligent system, and S1 designs another intelligent system
S2. The fact that S1 designs S2 strongly suggests that S1 knows the code of S2

(more on this later). And if the goal of S1 is that S2 should be highly intelligent,
then in particular S1 should design S2 in such a way that S2 does not believe
falsehoods to be true (at least not mathematical falsehoods). But if S1 knows S2’s
mathematical knowledge is truthful, and S1 knows the code of S2, then S1 totally
endorses S2, in the sense that the if we apply the procedure from the previous
section to reduce S1 and S2 to knowing agents A1 and A2 respectively, then
A1 totally endorses A2 (Definition 12)8. And Theorem 1 tells us that whenever
A1 totally endorses A2, then ‖A1‖ > ‖A2‖. This suggests that under these
assumptions it is impossible for even one intelligent system to design a more
intelligent system, much less for intelligence explosion to occur.

Even if the reader does not accept that our measure truly captures intel-
ligence, the well-foundedness of total endorsement (Corollary 2) still applies,
telling us that this scenario cannot be repeated (with S2 designing S3, which
designs S4, and so on) indefinitely (else the corresponding agents A1, A2, A3, . . .
would, by the above reasoning, have the property that A1 totally endorses A2,
who totally endorses A3, and so on forever, contradicting Corollary 2). This
still seems to disprove, or at least severely limit, the possibility of intelligence
explosion, even to an audience that disagrees with our intelligence measure.

The reader might point out that S1 only knows the code of S2 at the moment
of S2’s creation. After S2 is created, S2 might augment its knowledge based on its
interactions with the world around it. But by the discrete nature of machines, at
any particular point in time, S2 will only have made finitely many observations
about the outside world. We could modify the procedure in the previous section:
before commanding S1 and S2 to enumerate LO-expressible facts, we could
simply inform S1 exactly which observations S2 has made up until then.

Unwrapping definitions, the argument can be glossed informally: “If an in-
telligent machine S1 were to design an intelligent machine S2, presumably S1

would know the code and mathematical truthfulness of S2. Thus, S1 could infer
that the following is a computable ordinal (and infer a code for it): “the least or-
dinal bigger than every computable ordinal α such that α has some code n such
that S2 knows n is a code of a computable ordinal”. Thus, S1 would necessarily
know a computable ordinal bigger than all the computable ordinals S2 knows.
This suggests S2 would necessarily be less intelligent than S1, at least assuming
that more intelligent systems know at least as large of computable ordinals as
less intelligent systems. Even without that assumption, since there is no infinite

8 Anticipated by Gödel [9], who said: “For the creator necessarily knows all the prop-
erties of his creatures, because they can’t have any others except those he has given
them.”
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descending sequence of ordinals, this argument still suggests the process of one
intelligent machine designing another cannot go on indefinitely.”

Intelligence explosion is not entirely ruled out, if designers of machines are
allowed to collaborate. If S and T are intelligent systems, it is possible that S
and T could collaborate to create a child intelligent system U in the following
way: S contributes source code for one part of U , but keeps that source code
secret from T . T contributes source code for the remaining part of U , but keeps
that source code secret from S. Then neither S nor T individually knows the
full source-code of U , so the argument in this section does not apply, and it is,
at least a priori, possible for U to be more intelligent than S and T . This seems
to hint at a possible Knight-Darwin Law for artificial intelligence. The Knight-
Darwin Law [8] is a biological principle stating (in modernized language) that it
is impossible for there to be an infinite chain x1, x2, . . . of organisms such that
each xi asexually produces xi+1.
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