
Private memory confers no advantage

Samuel Allen Alexander1[0000−0002−7930−110X]

1The U.S. Securities and Exchange Commission, samuelallenalexander@gmail.com

Abstract. Mathematicians and software developers use the word “func-
tion” very differently, and yet, sometimes, things that are in practice
implemented using the software developer’s “function”, are mathemat-
ically formalized using the mathematician’s “function”. This mismatch
can lead to inaccurate formalisms. We consider a special case of this
meta-problem. Various kinds of agents might, in actual practice, make
use of private memory, reading and writing to a memory-bank invisible
to the ambient environment. In some sense, we humans do this when we
silently subvocalize thoughts about the actions we are taking (at least
when the environment we’re in is too primitive to probe the contents of
our brains). Mathematical function formalizations of agents often ignore
this ability. We show that in a general agent-environment framework (of
which reinforcement learning is a special case), in a technical sense, such
private memories do not enable qualitatively different agent behavior.

1 Introduction

There are many different ways to formalize the interaction between an agent
and an environment. At a high level, the idea is simple: agent and environment
take turns. On the agent’s turn, the agent takes an action. On the environment’s
turn, the environment generates a percept for the agent to see. But precisely how
to formalize this depends on various questions about things like what the agent
and environment can remember, whether or not agent and/or environment can
have an element of randomness, and so on. For example, if we are only inter-
ested in memoryless agents who see nothing but the most recent environmental
percept, then we can formalize an agent as a function which takes a percept as
input and outputs an action (or an action probability distribution). Examples
of such agents include the so-called policies in the Stable Baselines3 reinforce-
ment learning package [7]. On the other hand, if we are interested in agents who
remember the entire interaction so far, then we should formalize an agent as a
function which takes a history as input, not just a single percept. Examples of
such agents include the agents in the Legg-Hutter formalization of reinforcement
learning [4, 6].

And when formalizing agents in the latter way, there are still questions about
what needs to be included in the history which is input into the agent-function.
For example, if the agent’s actions are completely deterministic, then a history
need only include the sequence of percepts seen so far. From these, the agent’s
actions can be inferred, provided the agent is deterministic. It is superfluous

2 Samuel A. Alexander

(at least ignoring computational efficiency concerns) for a deterministic agent to
remember its own past actions, provided that it remembers the percepts that
prompted those actions: the actions themselves, being deterministic, are deter-
mined by the percepts. But, if the agent is non-deterministic (i.e., if agents are
functions that output action probability distributions rather than just actions),
then the history which we input into the agent should include both the past
environmental percepts and also the agent’s own past actions. Past actions can
not, generally, be inferred from past environmental percepts, if said actions had
an element of randomness to them.

In addition to memories of past percepts and past actions, we can also imagine
agents who have additional private memory. For example, we might imagine that
the agent has access to a piece of scratch paper stored outside of the environment
itself (and thus invisible to the environment) on which the agent can write notes
to its own future self. The human hippocampus is not, in reality, an example
of such a private memory bank, because, in reality, the human hippocampus
is part of the environment (and thus vulnerable to being observed or modified
by the outside world). But if, as simplifying assumption, the human agent is
modelled as having his brain perfectly isolated, then the human hippocampus
does become a place for such private memories to be stored. In such an idealized
model, the human agent can silently think to herself things like: “I’m going to
see what happens when I push this button. If it hurts me, then I won’t push any
more buttons like it in the future.” And then, later on, the human agent has
memory of such internal chatter that she made in the past.

In this paper, we consider agents who have memory of past environmental
percepts and of their own past actions. We are concerned with the question: does
private memory (in addition to memory of past actions and past environmental
percepts) confer any advantage? We will show that the answer is “No,” in the
following sense. We will show that if π is any agent with private memory in
addition to memory of the past agent-environment interaction, then there is
an agent π′ with only memory of past agent-environment interaction (and no
private memory), such that for every finite initial history h of percepts and
actions, the probably of h occurring when π interacts with a given environment
is exactly equal to the probably of h occurring when π′ interacts with that
environment. This is trivial if private memories are written deterministically (π′

can then reconstruct π’s private memories by simulating π on the past percepts
and actions which π′ remembers). But if private memories have an element of
randomness to them, then this result is much less obvious.

Although private memory confers no advantage in the above formal sense,
there are other senses in which is might be considered to confer advantage. First
of all, the π′ described above is not guaranteed to have as good of a runtime
complexity as the original π, and indeed, the π′ which we will construct in
our proof will generally be much more expensive than π. Second, the ability to
use private memory might simplify the task of actually implementing a given
agent. And thirdly, our proof only applies to traditional environments, not to
environments capable of simulating the agent itself, as in [1] or [3].

Private memory confers no advantage 3

2 Formal definitions

Throughout the paper, we fix a nonempty set O of percepts, a nonempty set A
of actions, and a nonempty set M of private memories. We assume O, A, and
M are pairwise disjoint.

Definition 1. If X is any set, by a probability distribution on X we mean a
function f : X → [0, 1] such that

∑
x∈X f(x) = 1. For each x ∈ X, we say

that f assigns probability f(x) to x. We write ∆(X) for the set of all probability
distributions on X.

2.1 Agents without private memory

Definition 2. (Histories)

– By an environment-seen history, we mean a sequence ⟨o1, a1, . . . , on, an⟩,
where each oi ∈ O and each ai ∈ A. We also consider the empty sequence ⟨⟩
to be an environment-seen history.

– By an agent-seen history, we mean a sequence ⟨o1, a1, . . . , on−1, an−1, on⟩,
where each oi ∈ O and each ai ∈ A. Note that for each percept o ∈ O, the
length-1 sequence ⟨o⟩ is an agent-seen history.

– By a history we mean an environment-seen history or an agent-seen history.

Definition 3. (Environments) By an environment we mean a function µ which
takes as input an environment-seen history h, and outputs a probability distri-
bution µ(h) ∈ ∆(O). If h is an environment-seen history and o ∈ O, we write
µ(o|h) for (µ(h))(o) (the probability of o according to µ(h)).

Definition 4. (Deterministic agents without private memory) By a determin-
istic agent without private memory we mean a function π which takes as input
an agent-seen history h, and outputs an action π(h) ∈ A.

Definition 5. (Non-deterministic agents without private memory) By a non-
deterministic agent without private memory we mean a function π which takes
as input an agent-seen history h, and outputs a probability distribution π(h) ∈
∆(A). If h is an agent-seen history and a ∈ A, we write π(a|h) for (π(h))(a)
(the probability of a according to π(h)).

When a deterministic agent π without private memory interacts with an en-
vironment µ, we imagine a sequence o1, a1, o2, a2, . . . chosen randomly as follows:

– o1 is chosen randomly using the probability distribution µ(⟨⟩).
– a1 = π(⟨o1⟩).
– o2 is chosen randomly using the probability distribution µ(⟨o1, a1⟩).
– a2 = π(⟨o1, a1, o2⟩).
– And so on.

4 Samuel A. Alexander

When a non-deterministic agent π without private memory interacts with an
environment µ, we imagine a sequence o1, a1, o2, a2, . . . chosen randomly as fol-
lows:

– o1 is chosen randomly using the probability distribution µ(⟨⟩).
– a1 is chosen randomly using the probability distribution π(⟨o1⟩).
– o2 is chosen randomly using the probability distribution µ(⟨o1, a1⟩).
– a2 is chosen randomly using the probability distribution µ(⟨o1, a1, o2⟩).
– And so on.

But instead of reasoning about these randomly-generated sequences, it is easier
to reason about the probability of individual finite histories. In the following
definition and throughout the rest of the paper, ⌢ denotes concatenation.

Definition 6. (The probability of a history) Suppose µ is an environment and
π is a (deterministic or non-deterministic) agent without private memory. For
every history h, let Pπ

µ (h) be the probability that h would be an initial sequence
of the sequence o1, a1, . . . randomly generated from letting π interact with µ as
described above.

Some authors, such as [5], would write P (h) or a variation thereof for Pπ
µ (h),

if π and µ are clear from context.

2.2 Agents with private memory

Definition 7. By an agent-seen private-memory-augmented history we mean a
sequence ⟨o1, a1,m1, . . . , on−1, an−1,mn−1, on⟩ where each oi ∈ O, each ai ∈ A,
and each mi ∈ M. Note that for each percept o ∈ O, the length-1 sequence ⟨o⟩
is an agent-seen private-memory-augmented history.

Definition 8. (Deterministic agents with deterministic private memory) By a
deterministic agent with deterministic private memory we mean a function π
which takes as input a private-memory-augmented agent-seen history h, and out-
puts an action-memory pair π(h) ∈ A×M.

Definition 9. (Deterministic agents with non-deterministic private memory)
By a deterministic agent with non-deterministic private memory we mean a
function π which takes as input a private-memory-augmented agent-seen history
h, and outputs π(h) ∈ A×∆(M).

Definition 10. (Non-deterministic agents with deterministic private memory)
By a non-deterministic agent with deterministic private memory we mean a
function π which takes as input an agent-seen history h, and outputs π(h) ∈
∆(A)×M.

Definition 11. (Non-deterministic agents with non-deterministic private mem-
ory) By a non-deterministic agent with non-deterministic private memory we
mean a function π which takes as input an agent-seen history h, and outputs
π(h) ∈ ∆(A×M).

Private memory confers no advantage 5

When a deterministic agent π with deterministic private memory interacts
with an environment µ, we imagine a sequence o1, a1,m1, o2, a2,m2, . . . chosen
randomly as follows:

– o1 is chosen randomly using the probability distribution µ(⟨⟩).
– (a1,m1) = π(⟨o1⟩).
– o2 is chosen randomly using the probability distribution µ(⟨o1, a1⟩) (note the

absense of m1).
– (a2,m2) = π(⟨o1, a1,m1, o2⟩).
– o3 is chosen randomly using the probability distribution µ(⟨o1, a1, o2, a2⟩)

(note the absense of m1,m2).
– (a3,m3) = π(⟨o1, a1,m1, o2, a2,m2, o3⟩).
– And so on.

When a deterministic agent π with non-deterministic private memory interacts
with an environment µ, we imagine a sequence o1, a1,m1, o2, a2,m2, . . . chosen
randomly as follows:

– o1 is chosen randomly using the probability distribution µ(⟨⟩).
– a1 = a and m1 is chosen randomly using the probability distribution f ,

where (a, f) = π(⟨o1⟩).
– o2 is chosen randomly using the probability distribution µ(⟨o1, a1⟩) (note the

absense of m1).
– a2 = a and m2 is chosen randomly using the probability distribution f ,

where (a, f) = π(⟨o1, a1,m1, o2⟩).
– o3 is chosen randomly using the probability distribution µ(⟨o1, a1, o2, a2⟩)

(note the absense of m1,m2).
– a3 = a and m3 is chosen randomly using the probability distribution f ,

where (a, f) = π(⟨o1, a1,m1, o2, a2,m2, o3⟩).
– And so on.

When a non-deterministic agent π with deterministic private memory interacts
with an environment µ, we imagine a sequence o1, a1,m1, o2, a2,m2, . . . chosen
randomly as follows:

– o1 is chosen randomly using the probability distribution µ(⟨⟩).
– m1 = m and a1 is chosen randomly using the probability distribution f ,

where (f,m) = π(⟨o1⟩).
– o2 is chosen randomly using the probability distribution µ(⟨o1, a1⟩) (note the

absense of m1).
– m2 = m and a2 is chosen randomly using the probability distribution f ,

where (f,m) = π(⟨o1, a1,m1, o2⟩).
– o3 is chosen randomly using the probability distribution µ(⟨o1, a1, o2, a2⟩)

(note the absense of m1,m2).
– m3 = m and a3 is chosen randomly using the probability distribution f ,

where (f,m) = π(⟨o1, a1,m1, o2, a2,m2, o3).
– And so on.

6 Samuel A. Alexander

When a non-deterministic agent π with non-deterministic private memory in-
teracts with an environment µ, we imagine a sequence o1, a1,m1, o2, a2,m2, . . .
chosen randomly as follows:

– o1 is chosen randomly using the probability distribution µ(⟨⟩).
– (a1,m1) is chosen randomly using the probability distribution π(⟨o1⟩).
– o2 is chosen randomly using the probability distribution µ(⟨o1, a1⟩) (note the

absense of m1).

– (a2,m2) is chosen randomly using the probability distribution

π(⟨o1, a1,m1, o2⟩).

– o3 is chosen randomly using the probability distribution µ(⟨o1, a1, o2, a2⟩)
(note the absense of m1,m2).

– (a3,m3) is chosen randomly using the probability distribution

π(⟨o1, a1,m1, o2, a2,m2, o3⟩).

– And so on.

But instead of reasoning about these randomly-generated sequences, it is
easier to reason about the probability of individual finite histories.

2.3 Conditional probabilities

Definition 12. (Conditional probabilities of histories) Suppose µ is an environ-
ment, π is an agent (deterministic or non-deterministic, with or without deter-
ministic or non-deterministic private memory), and h is a history.

– Let Pπ
µ (h) be the probability that when π interacts with µ, h is an initial

segment of the percept-action sequence randomly generated using π and µ as
described above.

– Let Pπ(h) be the probability that h would be an initial segment of the percept-
action sequence randomly generated as described above if π were to interact
with some environment, on the condition that, in said random generation
process, the percepts in h are always selected.

– Let Pµ(h) be the probability that h would be an initial segment of the percept-
action sequence randomly generated as described above if some agent were
to interact with µ, on the condition that, in said random generation process,
the actions in h are always selected.

Lemma 1. For any µ, π, h as in Definition 12, Pπ
µ (h) = Pπ(h)Pµ(h).

Proof. By the multiplication rule of probability.

Private memory confers no advantage 7

3 Private memory confers no advantage

Definition 13. (Agent equivalence) Let π be an agent (deterministic or non-
deterministic, with or without deterministic or non-deterministic private mem-
ory). Let ρ be an agent (deterministic or non-deterministic, with or without de-
terministic or non-deterministic private memory). We say π ∼ ρ if the following
requirement holds: for every environment µ, for every history h, Pπ

µ (h) = P ρ
µ (h).

Theorem 1. (Private memory confers no advantage)

1. If π is a deterministic agent with deterministic private memory, there exists
a deterministic agent π′ without private memory, such that π′ ∼ π.

2. If π is a deterministic agent with non-deterministic private memory, there
exists a non-deterministic agent π′ without private memory, such that π′ ∼
π.

3. If π is a non-deterministic agent with (deterministic or non-deterministic)
private memory, there exists a non-deterministic agent π′ without private
memory, such that π′ ∼ π.

Proof. Fix some a0 ∈ A.

First, we will prove (2) and (3) together. Then, we will prove (1).

(2) and (3). Define π′ so that for each agent-seen history h and each a ∈ A,

π′(a|h) =

Pπ(h⌢a)
Pπ(h) if Pπ(h) ̸= 0;

1 if Pπ(h) = 0 and a = a0;

0 if Pπ(h) = 0 and a ̸= a0.

Claim: π′ is a non-deterministic agent without private memory. The only
thing required to show is that π′ outputs probability distributions. Thus, we
must show that for any agent-seen history h,

∑
a∈A π′(a|h) = 1, and for all

a ∈ A, 0 ≤ π′(a|h) ≤ 1. The latter inequalities are easy to show by induction.
To show

∑
a∈A π′(a|h) = 1, it suffices to consider the case Pπ(h) ̸= 0 (the other

case is trivial). Suppose a percept-action sequence is randomly generated by
letting π interact with some environment, and that the percepts and actions so
generated initially match h. The next action must be some action in A. Thus∑

a∈A Pπ(h ⌢ a) = Pπ(h). Therefore

∑
a∈A

π′(a|h) =
∑
a∈A

Pπ(h ⌢ a)

Pπ(h)
=

1

Pπ(h)
Pπ(h) = 1,

as desired, proving the claim.

It remains to show π′ ∼ π. Let µ be any environment. We will show by
induction on h that for every history h, Pπ′

µ (h) = Pπ
µ (h).

Case 1: h = ⟨⟩. Then Pπ′

µ (h) = Pπ
µ (h) = 1.

8 Samuel A. Alexander

Case 2: h = h0 ⌢ o for some o ∈ O. Then

Pπ′

µ (h) = Pπ′

µ (h0 ⌢ o)

= Pπ′

µ (h0)µ(o|h0) (Multiplicative rule)

= Pπ
µ (h0)µ(o|h0) (Induction)

= Pπ
µ (h0 ⌢ o) = Pπ

µ (h). (Multiplicative rule)

Case 3: h = h0 ⌢ a for some a ∈ A.
Subcase 3.1: Pπ(h0) = 0. Then also Pπ(h0 ⌢ a) = 0, since one cannot

randomly generate initial percepts and actions h0 ⌢ a without generating initial
percepts and actions h0 first. Thus Pπ

µ (h0 ⌢ a) = 0 by Lemma 1. Thus

Pπ′

µ (h) = Pπ′

µ (h0 ⌢ a)

= Pπ′

µ (h0)π
′(a|h0) (Multiplicative rule)

= Pπ
µ (h0)π

′(a|h0) (Induction)

= 0π′(a|h0) = 0 = Pπ
µ (h0 ⌢ a) = Pπ

µ (h).

Subcase 3.2: Pπ(h0) ̸= 0. Then

Pπ′

µ (h) = Pπ′

µ (h0 ⌢ a)

= Pπ′

µ (h0)π
′(a|h0) (Multiplicative rule)

= Pπ
µ (h0)π

′(a|h0) (Induction)

= Pπ(h0)Pµ(h0)π
′(a|h0) (Lemma 1)

= Pπ(h0)Pµ(h0)P
π(h0 ⌢ a)/Pπ(h0) (Definition of π′)

= Pµ(h0)P
π(h0 ⌢ a) (Algebra)

= Pµ(h0 ⌢ a)Pπ(h0 ⌢ a) (Clearly Pµ(h0 ⌢ a) = Pµ(h0))

= Pπ
µ (h0 ⌢ a) = Pπ

µ (h). (Lemma 1)

(1) Let π′ be the deterministic agent without private memory, defined so that
for every agent-seen history h:

– If Pπ(h) ̸= 0 then π′(h) = a where (a,m) = π(h) ∈ A×M.
– If Pπ(h) = 0 then π′(h) = a0.

Adopt the following convention: for every action a and agent-seen history h,
write π(a|h) for 1 if π(h) = a or 0 if π(h) ̸= a. Since π is deterministic, clearly if
Pπ(h) ̸= 0 then Pπ(h) = 1. In that case, if (a,m) = π(h), then clearly Pπ(h ⌢
a) = 1, and by definition π′(h) = a, so π′(a|h) = 1 = Pπ(h ⌢ a)/Pπ(h). On the
other hand, if Pπ(h) = 0, then by definition π′(h) = a0, so that π′(a|h) = 1 if
a = a0 and π′(a|h) = 0 if a ̸= a0. So altogether,

π′(a|h) =

Pπ(h⌢a)
Pπ(h) if Pπ(h) ̸= 0;

1 if Pπ(h) = 0 and a = a0;

0 if Pπ(h) = 0 and a ̸= a0,

Private memory confers no advantage 9

exactly as in the proof of (2) and (3) above. Thus, an identical argument as
above shows that π′ ∼ π.

Note that the π′ constructed above is much more computationally expensive
than π. If M is finite, then computing Pπ(h) (in general) “merely” requires
computing π on a number of private-memory-augmented histories which is ex-
ponential in the length of h. If M is infinite, then computing Pπ(h) (in general)
requires computing π infinitely many times and summing infinite series1.

4 The reinforcement learning special case and
generalization of prior work

One special case of agents and environments is reinforcement learning (or RL), in
which the percepts generated from an environment include numerical rewards. In
RL, agents are considered to perform better or worse depending on their ability
or inability to maximize average rewards across the whole space of environments
(or some suitable subspace thereof).

At the beginning of Section 2 we assumed a nonempty set O of percepts. All
the results of the paper continue to hold if additional structure is imposed on
those percepts, e.g., if we further require that each percept include a numerical
reward. Thus, this paper’s results automatically apply to RL. Let us impose
exactly that requirement for the remainder of this section. For each o ∈ O, let
r(o) denote the numerical reward included in o.

The following notation is standard in RL.

Definition 14. If µ is an environment and π is an agent (deterministic or
non-deterministic), with or without (deterministic or non-deterministic) private
memory, let V π

µ denote the expected total reward π would obtain from µ (i.e., the
expected value of the sum r(o1) + r(o2) + · · · if we generate actions a1, a2, . . .,
percepts o1, o2, . . ., and possibly private memories m1,m2, . . ., as in Section 2),
assuming this expected value exists. If not, V π

µ is undefined.

For an example in which V π
µ might be undefined, take µ to be an environment

which, every other turn, assigns probability 100% to a percept with reward 1,
and every other turn, assigns probability 100% to a percept with reward −1. Any
agent interacting with µ would obtain expected total reward 1− 1+ 1− 1+ · · · ,
a divergent series.

Proposition 1. Suppose π, ρ are as in Definition 13. If π ∼ ρ then for every
environment µ, V π

µ = V ρ
µ (and the left-hand side is defined iff the right-hand

side is defined).

1 And if π is sophisticated enough that the machinery on which π is run somehow
experiences consciousness when π is computed on various inputs, then there could
potentially even be ethical implications about plugging so many inputs into π in
order to compute π′. This was perhapse foreshadowed by Nietzsche’s doctrine of the
eternal return.

10 Samuel A. Alexander

Proof. For each agent σ (of whatever kind), let V σ
µ,n denote the expected total

reward that σ would obtain after interacting with µ until n percepts are gener-
ated. This can be computed by considering all possible histories terminating in
an nth percept: for each such history h, multiply the probability Pσ

µ (h) of that
history by its total reward r(h) (defined as the sum of r(o) where o ranges over
the percepts in h), to obtain the expected total reward contributed by h to V σ

µ,h.
Thus,

V π
µ,n =

∑
h

Pπ
µ (h)r(h)

where h varies over the set of histories terminating in an nth percept. By identical
reasoning, V ρ

µ,h =
∑

h P
ρ
µ (h)r(h). But π ∼ ρ, so each Pπ

µ (h) = P ρ
µ (h). Thus each

V π
µ,n = V ρ

µ,n. Taking the limit as n → ∞ proves the proposition.

Proposition 1 and Theorem 1 together justify this paper’s title: private mem-
ory confers no advantage. Not only do equivalent agents have the same prob-
ability of resulting in any given history, but if different percepts come with
different numerical rewards, then Proposition 1 shows that equivalent agents
obtain the same expected total reward from each environment. Thus, as numeri-
cally measured by RL rewards, equivalent agents have the same exact numerical
performance. Theorem 1 shows that for any agent which makes use of private
memories, there is an equivalent agent which does not make use of private mem-
ories. Thus, private memories do not enable out-performance of agents without
private memories.

This work generalizes the main result of [2]. The authors of that paper con-
sidered sequences π⃗ = (π1, . . . , πn) of non-deterministic RL agents (without
private memory), along with weights w⃗ = (w1, . . . , wn) (each wi > 0, with
sum w1 + · · · + wn = 1). The authors showed that for every such weighted
distribution, there is a so-called mixture agent (a non-deterministic agent with-
out private memory) w⃗ · π⃗ with the property that for every environment µ,
V w⃗·π⃗
µ = w⃗ · (V π1

µ , . . . , V πn
µ). Expressed aphoristically: “the performance of the

weighted mixture is the weighted mixture of the performances”. But it is triv-
ial to construct such an agent if the agent is allowed to have non-deterministic
private memories. Assume |M| = n, say M = {m1, . . . ,mn}. Let π be the non-
deterministic agent, with non-deterministic private memory, defined as follows
(where h is a private-memory-augmented history).

– If h = ⟨o⟩ then let π(h) assign to each pair (a,mi) ∈ A×M the probability
π(a,mi|h) = wiπi(a|h). In plain English: with probability wi, act as πi and
remember (using private memory mi) having done so.

– Otherwise, h is of the form (o, a,mi) ⌢ h0 for some o ∈ O, a ∈ A, mi ∈ M.
Let h− be the history obtained by deleting all private memories from h. For
each pair (a,mj) ∈ A × M, let π(h) assign the probability π(a,mj |h) =
πi(a|h−) if j = i, or probability π(a,mj |h) = 0 otherwise. In plain English:
act as πi, where i is the agent which you previously remembered (and repeat
said memory).

Private memory confers no advantage 11

Informally, for its initial turn, π randomly chooses one of the agents π1, . . . , πn

(using the given weights), plays as that agent on that turn, and commits (using
private memory) to play as that agent thereafter. Clearly for every environment
µ, V π

µ = w⃗·(V π1
µ , . . . , V πn

µ). Proposition 1 and Theorem 1 together show there is a
non-deterministic agent π′ without private memory with the same performance.
Thus, the main result from [2] is a special case of this paper.

5 Further generalization

The results of this paper could be further generalized to agents who, in response
to input h:

– (Pre-rationalizing) First generate a memory m (depending on h), and then
generate an action which may depend on both h and m.

– (Post-rationalizing) First generate an action a (depending on h), and then
generate a memory which may depend on both h and a.

– (Pre-and-post-rationalizing) First generate a memory mpre (depending on
h), then an action a (depending on h and mpre), and finally a memory mpost

(depending on h, mpre, and a).

The detailed formalization, however, becomes very verbose, so we leave it, and
the corresponding version of Theorem 1, to the reader.

6 Conclusion

Mathematicians and software developers understand the word “function” in dif-
ferent ways. The software developer’s “function” can, in the process of computing
an output, do various things which the mathematician’s function cannot do, for
example, reading from or writing to a persistent memory-bank. We typically use
the mathematician’s “function” when we formalize certain things, because the
mathematician’s function is easier to reason about and prove things about. But
the mismatch could, a priori, lead to inaccurate formalisms. In this paper, we
considered agents, with or without such “private memory”, in a very general
agent-environment framework, and showed that in a technical sense, every agent
with such private memory is equivalent to one without. Thus, in some sense,
the software developer’s agent’s ability to use private memory confers no advan-
tage. This partially justifies formalizing said agents as mathematical functions.
Of course, software developers’ agents can also do various other things that a
mathematician’s agent cannot do (such as query the system clock, access the
computer’s camera, or even surf the internet). At least, they can in principle—
they might not do so very often in practice. Perhaps it is an advantage of the
mathematical formalism that, by formalizing agents as mathematical functions,
we automatically rule out things like agents who check the system clock or surf
the internet in order to compute their outputs. We also rule out private memory,
but as this paper shows, that’s not a big loss.

12 Samuel A. Alexander

Acknowledgements

We gratefully acknowledge Arthur Paul Pedersen, Len Du, Oscar Martinez, and
the reviewers for feedback and discussion.

References

1. Samuel Allen Alexander, Michael Castaneda, Kevin Compher, and Oscar Martinez.
Extending environments to measure self-reflection in reinforcement learning. Jour-
nal of Artificial General Intelligence, 13(1):1–24, 2022.

2. Samuel Allen Alexander, David Quarel, Len Du, and Marcus Hutter. Universal
agent mixtures and the geometry of intelligence. In AISTATS. PMLR, 2023.

3. James Henry Bell, Linda Linsefors, Caspar Oesterheld, and Joar Skalse. Reinforce-
ment learning in Newcomblike environments. In NeurIPS, 2021.

4. Marcus Hutter. Universal artificial intelligence: Sequential decisions based on algo-
rithmic probability. Springer, 2004.

5. Marcus Hutter. Discrete MDL predicts in total variation. Advances in Neural
Information Processing Systems, 22, 2009.

6. Shane Legg and Marcus Hutter. Universal intelligence: A definition of machine
intelligence. Minds and machines, 17(4):391–444, 2007.

7. Antonin Raffin, Ashley Hill, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto,
and Noah Dormann. Stable Baselines3. https://github.com/DLR-RM/stable-
baselines3, 2019.

