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Abstract

Inspired by recent progress in multi-agent Rein-
forcement Learning (RL), in this work we exam-
ine the collective intelligent behaviour of theoret-
ical universal agents by introducing a weighted
mixture operation. Given a weighted set of
agents, their weighted mixture is a new agent
whose expected total reward in any environment
is the corresponding weighted average of the
original agents’ expected total rewards in that
environment. Thus, if RL agent intelligence is
quantified in terms of performance across envi-
ronments, the weighted mixture’s intelligence is
the weighted average of the original agents’ in-
telligences. This operation enables various inter-
esting new theorems that shed light on the ge-
ometry of RL agent intelligence, namely: re-
sults about symmetries, convex agent-sets, and
local extrema. We also show that any RL agent
intelligence measure based on average perfor-
mance across environments, subject to certain
weak technical conditions, is identical (up to a
constant factor) to performance within a single
environment dependent on said intelligence mea-
sure.

1 INTRODUCTION

Multi-agent Reinforcement Learning (or multi-agent RL)
(Weiss, 1993; Littman, 1994; Zhang et al., 2021;
Hernández-Orallo et al., 2011), as with other flavors of RL,
has been enjoying increased attention in artificial intelli-
gence research (Lanctot et al., 2017). The most obvious
way to conceive multi-agent RL, is to passively consider
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the collective behavior of aggregated intelligent agents. In
fact, multi-agent RL was first introduced as “collective
learning” (Weiss, 1993) even before being explicitly identi-
fied as multi-agent reinforcement learning (Littman, 1994).

One significant recent trend in machine learning (beyond
just RL) is Federated Reinforcement Learning (Chen et al.,
2021), which is mainly about programs physically running
on disparate devices collaborating to form a more powerful
artificial intelligence. This approach conceptually borrows
from how humans collaborate. In this regard, RL had a
much earlier head start with Feudal Reinforcement Learn-
ing (Dayan and Hinton, 1992), which borrows concepts
which have been around for many hundreds of years in hu-
man social organization, and on which research remains ac-
tive today (Johnson and Dana, 2020). Multi-agent methods
have also received considerable attention for their usage
in highly complex real-time video-games (Vinyals et al.,
2019) (building off of success in simpler games like Atari
games (Mnih et al., 2015) and Go (Silver et al., 2017)). RL
is no stranger to collaboration (Kok and Vlassis, 2006) or to
cooperation (Qiu et al., 2021), including even collaboration
with human users (Li et al., 2021).

In this work, we draw inspiration from sortition, which is
yet another way of social organization. In sortition, instead
of the whole citizenry collaborating on individual deci-
sions, citizens are chosen by lottery and granted temporary
power. Thus in a statistical sense, each citizen enjoys a cer-
tain amount of total expected power. The roots of sortition
trace back to the original Athenian democracy (Hansen,
1991), and sortition has attracted recent scientific curios-
ity, and even advocacy in real-world governance (Flanigan
et al., 2021; Sintomer, 2018; Bouricius, 2013).

More specifically, we examine the expected intelligence of
a single combined mixture agent formed from a group of
agents using sortition. Given agents π⃗ = (π1, . . . , πn),
imagine an agent σ who, at the start of each agent-
environment interaction, randomly chooses an agent πi to
act as for that entire interaction (that is, the selection only
occurs once, at the beginning, and then persists—we do not
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mean that one of the πi is randomly chosen on every sin-
gle turn). Imagine that each candidate πi is so chosen with
probability (or weight) wi (where w1 + · · · + wn = 1). If
each πi would get total expected reward Ri from an envi-
ronment, we would expect σ to get total expected reward
w⃗ · R⃗ = w1R1 + · · ·+ wnRn from that environment.

Starting from practical (e.g., conformant with OpenAI
Gym (Brockman et al., 2016)) implementations of agents
π1, . . . , πn as above, σ could easily be implemented as a
new agent who, upon instantiation, uses a random number
generator to determine which πi to act as, and stores that
decision in internal memory. But this sort of construction
is not possible in more abstract, theoretical RL frameworks
such as (Legg and Hutter, 2007, 2005), where agents are
mathematical functions which take histories as input and
output action-space probability-distributions. Such func-
tions have no “instantiation”, no access to a true random
number generator, and no concept of “internal memory”.
A key result of ours is that nevertheless, it is possible to
define an agent σ having the same exact performance as
the above-described sortition agent, entirely within an ab-
stract, theoretical RL framework. This is important because
the constraints of the theoretical framework facilitate rigor-
ous mathematical proofs of properties of σ. To see that
the construction is non-trivial, consider instead an agent ρ
who, upon instantiation, examines the computer’s system
clock, and determines to play as π1 if the clock says “AM”
or as π2 if the clock says “PM”. Such a ρ could certainly
be implemented in an OpenAI gym conformant way, but
clearly has no counterpart in a formal RL framework with
no notion of a system clock.

The fact that the weighted mixture agent σ’s expected total
reward in any environment is the corresponding weighted
average of the expected total rewards of π1, . . . , πn will
allow us to prove multiple interesting results that shed
light on the geometry of RL agent performance and
performance-based intelligence measures. We obtain the
following results and applications:

• (Section 3) By guaranteeing that “the expected reward
of a weighted mixture is the weighted average of the
expected rewards”, we establish a method of combin-
ing agents without the risk of unforeseen side-effects.
For example, if several agents have different weak-
nesses, then, a priori, one might worry that, combining
those agents, those weaknesses might compound each
other, leading to a combined weakness larger than the
sum of the individual weaknesses. Our mixture agent
construction avoids this, as well as other emergent be-
havior which would violate the above quote.

• (Section 4) We consider two different ways an intel-
ligence measure can be symmetric with respect to the
operation of interchanging rewards and punishments.
We prove that these two symmetry notions are equiva-

lent. This has implications in the search for inherently
desirable properties of universal Turing machines.

• (Section 5) We introduce notions of discernability and
separability of sets of RL agents, and characterize the
latter in terms of the former and closure under our
mixture operation. If agents are thought of as points
in space, then these properties are analogous to higher-
dimensional convexity notions from convex geometry.
These results can help determine what sort of things
can or cannot be incentivized in RL, in a formal sense
(similar to using the Pumping Lemma to show that
certain languages are not regular).

• (Section 6) We introduce a notion of an agent being a
strict local extremum of an intelligence measure, and
we show that any such agent is, in a certain formal
sense, deterministic. This result is highly applicable
in the quest to optimize RL agents, as it implies that
nothing is gained by allowing agents to invoke gen-
uine random number generators, e.g. expensive RNGs
based on quantum mechanics, etc.

• (Section 7) Finally, we use our technique to mix en-
vironments, rather than agents. Using the resulting
mixture environments, we prove that every intelli-
gence measure satisfying certain properties is neces-
sarily equivalent (up to a constant multiple) to perfor-
mance in some particular environment.

2 PRELIMINARIES

Throughout the paper, we implicitly fix non-empty finite
sets A of actions, O of observations, and R ⊆ Q∩ [−1, 1]
of rewards. By ε we mean the empty sequence. By E we
mean O × R (the set of all observation-reward pairs); el-
ements of E are called percepts. By ∆A (resp. ∆E) we
mean the set of all probability distributions on A (resp. on
E).
Definition 1. (Agents, environments, etc.)

1. We denote the set of all finite sequences of alternat-
ing percept-action pairs x1y1 . . . xtyt by (EA)∗. We
also include ε in (EA)∗. Nonempty elements of (EA)∗

have the form x1y1 . . . xtyt where each xi is a percept
and each yi is an action.

2. We denote the set of all sequences of the form sx
(where s ∈ (EA)∗, x ∈ E , and sx is the result of
appending x to s) by (EA)∗E . Elements of (EA)∗E of
length > 1 have the form x1y1 . . . xt−1yt−1xt (each
xi a percept, each yi an action).

3. An agent1 is a function π : (EA)∗E → ∆A. For any
h ∈ (EA)∗E , we write π(·|h) for the value of π at h,

1Not to be confused with a policy, which would simply be a
function O → ∆A.
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and for any y ∈ A, we write π(y|h) for (π(·|h))(y).
Intuitively, for any action y, π(y|h) is the probability
that agent π takes action y in response to history h.

4. An environment is a function µ : (EA)∗ → ∆E . For
every h ∈ (EA)∗, we write µ(·|h) for the value of µ at
h, and for any x ∈ E , we write µ(x|h) for (µ(·|h))(x).
If x = (o, r) (o ∈ O, r ∈ R), we may also write
µ(o, r|h) for (µ(·|h))(x). Intuitively, µ(o, r|h) is the
probability that environment µ issues percept (o, r)
(observation o and reward r) to the agent in response
to history h.

Remark 2. Note that in Definition 1 part 3, we require,
e.g., π(·|x1y1x2) to be defined even if π(y1|x1) = 0,
in which case the initial percept-action sequence x1y1x2

would have probability 0 of ever occurring in any agent-
environment interaction. Intuitively: an agent must choose
actions even in response to histories that would never oc-
cur with nonzero probability. This convention, in which we
follow Legg and Hutter (2007), simplifies many definitions.

Definition 3. By H we mean ((EA)∗)∪((EA)∗E), in other
words, H is the set of alternating percept-action sequences
that are empty or else start with a percept and can end with
either a percept or an action. We refer to elements h of H
as histories (a history may terminate with either a percept
or an action).

Definition 4. For all agents π, histories h, and environ-
ments µ, we define real numbers Pπ(h), Pµ(h), and Pπ

µ (h)
inductively as follows.

• If h = ε then Pπ(h) = Pµ(h) = Pπ
µ (h) = 1.

• If h = gx (some x ∈ E) then Pπ(h) = Pπ(g),
Pµ(h) = Pµ(g)µ(x|g), and Pπ

µ (h) = Pπ
µ (g)µ(x|g).

• If h = gy (some y ∈ A) then Pπ(h) = Pπ(g)π(y|g),
Pµ(h) = Pµ(g), and Pπ

µ (h) = Pπ
µ (g)π(y|g).

Intuitively: Pπ(h) is the conditional probability π will
choose the actions in h assuming the environment which
π is interacting with chooses the percepts in h; Pµ(h) is
the conditional probability µ will choose the percepts in h
assuming the agent which µ is interacting with chooses the
actions in h; and Pπ

µ (h) is the probability that π and µ will
choose h’s actions and percepts when interacting together.

Some authors, such as Hutter (2009), would write P (h) or
a variation thereof for Pπ

µ , if π and µ are clear from context.

One could alternately more directly define

Pπ(x1y1 . . . xtyt)

= π(y1|x1)π(y2|x1y1x2) · · ·π(yt|x1y1 . . . xt),

and similarly define Pπ(x1y1 . . . xt), and likewise for Pµ

and for Pπ
µ .

Lemma 5. For all h, π, µ as in Definition 4,

Pπ
µ (h) = Pπ(h)Pµ(h).

Proof. See Supplementary Materials.

In the following definition (and the rest of the paper), N
denotes the set {0, 1, 2, . . .} of non-negative integers.

Definition 6. (Performance in an environment) Let π be an
agent, µ an environment.

1. For every t ∈ N, we define

V π
µ,t =

∑
h∈Xt

R(h)Pπ
µ (h)

where Xt ⊆ H is the set of all length-2t histories (i.e.,
all h ∈ H of the form x1y1 . . . xtyt (each xi ∈ E ,
each yi ∈ A) provided t > 0) and R(h) is the sum of
the rewards in h. Intuitively, V π

µ,t is the expected total
reward if π were to interact with µ for t steps. Note
that X0 = {ε} and so V π

µ,0 = 0.

2. We define V π
µ = limt→∞ V π

µ,t, provided the limit con-
verges to a real number. Intuitively, V π

µ is the expected
total reward which π would extract from µ.

Note that it is possible for V π
µ to be undefined. For ex-

ample, if µ is an environment which always issues reward
(−1)t in response to the agent’s tth action yt, then V π

µ is
undefined for every agent π. We will only be interested
in environments µ such that V π

µ is always defined. Note
also that, following Legg and Hutter (2007), we delegate
any possible reward discounting to the environments them-
selves, rather than build a fixed reward discounting factor
into the definition of V π

µ .

Definition 7. An environment µ is well-behaved if the fol-
lowing requirements hold: µ(x|h) ∈ Q for all x ∈ E and
h ∈ (EA)∗; µ is Turing computable; and for every agent
π, V π

µ exists and −1 ≤ V π
µ ≤ 1. Let W be the set of all

well-behaved environments.

Definition 8. By a weighted intelligence measure, we mean
a function Υ : (∆A)(EA)∗E → R (where (∆A)(EA)∗E

denotes the set of all agents) such that there exist non-
negative reals {wµ}µ∈W such that the following condition
holds: for every agent π, Υ(π) =

∑
µ∈W wµV

π
µ .

The prototypical weighted intelligence measure is the
Legg-Hutter intelligence measure Υ introduced by Legg
and Hutter (2007), where each well-behaved µ is weighed
using the universal prior (Li and Vitányi, 2008; Hutter,
2003), i.e., given weight 2−K(µ) where K denotes Kol-
mogorov complexity (K(µ) exists because of the Turing
computability requirement in Definition 7). This depends
on a background universal Turing machine, the choice of
which is highly nontrivial (Leike and Hutter, 2015).
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3 MIXTURE AGENTS

Before defining mixture agents, we will first extend some
of the above definitions to vectors of agents.

Definition 9. Suppose π⃗ = (π1, . . . , πn) is a vector of
agents, µ is an environment, h ∈ H, t ∈ N, and Υ is a
weighted intelligence measure. We define:

• P π⃗(h) = (Pπ1(h), . . . , Pπn(h)).

• P π⃗
µ (h) = (Pπ1

µ (h), . . . , Pπn
µ (h)).

• V π⃗
µ,t = (V π1

µ,t , . . . , V
πn
µ,t ).

• V π⃗
µ = (V π1

µ , . . . , V πn
µ ), if V π1

µ , . . . , V πn
µ are defined.

• Υ(π⃗) = (Υ(π1), . . . ,Υ(πn)).

Definition 10. If u⃗ = (u1, . . . , un) and v⃗ = (v1, . . . , vn)
are any two equal-length vectors of real numbers, then their
dot product is defined to be u⃗ · v⃗ = u1v1 + · · ·+ unvn.

Now we are ready to define mixture agents. As a motivat-
ing example, suppose we want to combine two agents into
a joint agent, but we are worried that doing so might lead
to unexpected emergent behavior. For example, we do not
want the two agents’ weaknesses to compound each other
and give rise to a joint weakness larger than the sum of the
two agents’ weaknesses. We will show below that the fol-
lowing construction avoids such unexpected behavior.

Definition 11. (Mixture agents) Suppose π⃗ = (π1, . . . , πn)
are agents and w⃗ = (w1, . . . , wn) are positive real num-
bers with w1 + · · · + wn = 1. Define the mixture agent
w⃗ · π⃗ as follows: for all h ∈ (EA)∗E , y ∈ A, let

(w⃗ · π⃗)(y|h) =


w⃗ · P π⃗(hy)

w⃗ · P π⃗(h)
if w⃗ · P π⃗(h) ̸= 0,

1/|A| otherwise.

Remark 12. Definition 11 is complicated by the way Defi-
nition 1 part 3 forces us to include the case (w⃗ · π⃗)(y|h) =
1/|A| when w⃗ · P π⃗(h) = 0 (see Remark 2): we are obli-
gated to specify how w⃗ · π⃗ chooses actions even in response
to “impossible” histories for w⃗ · π⃗ (histories containing ac-
tions w⃗ · π⃗ would never take in those circumstances).

Intuitively, w⃗ · π⃗ can be thought of as being driven by an
entity who believes that actions are to be chosen by one
of the π⃗, but does not know which. The entitiy initially
assigns each wi to πi as a prior, and attempts to guess the
probability of each action being chosen by the unknown
agent πi, using these priors to do so. As new actions are
seen, said priors are updated using Bayes’ rule.

Lemma 13. If π⃗ and w⃗ are as in Definition 11 then the
mixture agent w⃗ · π⃗ is an agent (per Definition 1 part 3).

Proof. See Supplementary Materials.

We will frequently use Lemma 13 without explicit mention.
For example, the lemma allows us to speak of P w⃗·π⃗(h)
(Definition 4), V w⃗·π⃗

µ (Definition 6), etc., and we will freely
do so without explicitly citing Lemma 13.
Theorem 14. (Commutativity of w⃗) Let π⃗ = (π1, . . . , πn)
be agents. Let w⃗ = (w1, . . . , wn) be positive reals with
w1 + · · ·+ wn = 1. Let µ be any environment. Then:

1. For any h ∈ H, P w⃗·π⃗(h) = w⃗ · P π⃗(h).

2. For any h ∈ H, P w⃗·π⃗
µ (h) = w⃗ · P π⃗

µ (h).

3. For any t ∈ N, V w⃗·π⃗
µ,t = w⃗ · V π⃗

µ,t.

4. (“The expected reward of a weighted mixture is the
weighted average of the expected rewards”) If V π⃗

µ is
defined, then V w⃗·π⃗

µ = w⃗ · V π⃗
µ .

5. (“The intelligence of a weighted mixture is the
weighted average of the intelligences”) For any
weighted intelligence measure Υ, Υ(w⃗·π⃗) = w⃗·Υ(π⃗).

Proof. (1) By induction on h.

Case 1: h = ε. Then

P w⃗·π⃗(h) = 1 = w1 · 1 + · · ·+ wn · 1 = w⃗ · P π⃗(h).

Case 2: h = gx for some x ∈ E . Then

P w⃗·π⃗(h) = P w⃗·π⃗(g) (Definition 4)

= w⃗ · P π⃗(g) (Induction)

= w⃗ · P π⃗(gx) = w⃗ · P π⃗(h). (Definition 4)

Case 3: h = gy for some y ∈ A.

Subcase 3.1: P w⃗·π⃗(g) = 0. By induction w⃗ · P π⃗(g) = 0.
Since the wi are positive, this implies each Pπi(g) = 0.
Thus each

wiP
πi(gy) = wiP

πi(g)πi(y|g) (Definition 4)
= 0wiπi(y|g) = 0,

i.e., w⃗ · P π⃗(gy) = 0. And

P w⃗·π⃗(gy) = P w⃗·π⃗(g)(w⃗ · π⃗)(y|g) (Definition 4)
= 0(w⃗ · π⃗)(y|g) = 0,

so P w⃗·π⃗(h) = w⃗ · P π⃗(h) = 0.

Subcase 3.2: P w⃗·π⃗(g) ̸= 0. Then

P w⃗·π⃗(h) = P w⃗·π⃗(g)(w⃗ · π⃗)(y|g) (Definition 4)

= P w⃗·π⃗(g)
w⃗ · P π⃗(gy)

w⃗ · P π⃗(g)
(Definition 11)

= w⃗ · P π⃗(g)
w⃗ · P π⃗(gy)

w⃗ · P π⃗(g)
(Induction)

= w⃗ · P π⃗(gy) = w⃗ · P π⃗(h). (Basic Algebra)
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(2) Follows from (1) and Lemma 5.

(3) With Xt and R as in Definition 6, we compute:

V w⃗·π⃗
µ,t =

∑
h∈Xt

R(h)P w⃗·π⃗
µ (h) (Def. 6)

=
∑

h∈Xt
w⃗ ·R(h)P π⃗

µ (h) (By (2))

= w⃗ ·
∑

h∈Xt
R(h)P π⃗

µ (h) (Vect. algebra)

= w⃗ ·
(∑

h∈Xt
R(h)Pπi

µ (h)
)n
i=1

(Def. 9 part 2)

= w⃗ · V π⃗
µ,t. (Def. 9 part 3)

(4) Follows from (3) and Definition 6 part 2.

(5) Follows from (4) and Definition 8.

Parts 4–5 of Theorem 14 show our mixture operation (Def-
inition 11) avoids unexpected emergent behavior. Mixing
two agents in this way cannot result in a joint agent whose
weaknesses (or strengths) exceed the summed weaknesses
(or strengths) of the original two agents, at least as far as
measured by expected performance in RL environments.

4 EQUIVALENCE OF WEAK AND
STRONG SYMMETRY

In this section, we will investigate two symmetry properties
which a weighted intelligence measure might satisfy. A pri-
ori, one property seems stricly stronger, but we will show
that in fact, they are equivalent. Throughout this section,
we assume that the background set R has the following ad-
ditional property: whenever R contains any reward r, then
R also contains −r.

Definition 15. (Dual Agents)

1. For each h ∈ H, we define the dual of h, denoted h, to
be the sequence obtained by replacing every percept
(o, r) in h by (o,−r) (in other words: replacing every
reward r in h by −r).

2. Suppose π is an agent. We define the dual of π, de-
noted π, as follows: for each h ∈ (EA)∗E , for each
action y ∈ A, π(y|h) = π(y|h).

In plain language, π acts the way π would act if π wanted
to seek punishments and avoid rewards.

Lemma 16. If x is any agent or history, then x = x.

Proof. Trivial as −(−r) = r for all real r.

Lemma 17. For any agent π and any h ∈ (EA)∗E ,
Pπ(h) = Pπ(h).

Proof. By induction on h.

Definition 18. An agent π is self-dual if π = π.

In plain language, self-dual agents only seek to extremize
total reward, without caring about the sign of that total re-
ward: a self-dual agent’s actions do not change if rewards
and punishments are swapped. In particular, any reward-
ignoring agent is self-dual. It seems reasonable to expect
that an intelligence measure should assign intelligence 0
to reward-ignoring agents. This motivates us to consider
intelligence-measure symmetries with respect to duality.
The main result in this section will be the equivalence of
two such symmetry conditions. But first, we will use mix-
ture agents to characterize self-dual agents (up to equiva-
lence modulo a natural equivalence relation).

Definition 19. If π and ρ are agents, we say π ≡ ρ if the
following conditions hold:

1. For all h ∈ H, Pπ(h) = 0 iff P ρ(h) = 0.

2. For all h ∈ (EA)∗E , if Pπ(h) ̸= 0 then for all y ∈ A,
π(y|h) = ρ(y|h).

Remark 20. Intuitively, Definition 19 says that π ≡ ρ iff
the histories which are “possible” for π (in the sense of
Remark 2) are exactly the histories which are “possible”
for ρ, and π = ρ on those histories (π and ρ may differ on
“impossible” histories).

Lemma 21. ≡ (Definition 19) is an equivalence relation.

Proof. Straightforward.

Lemma 22. Let w⃗ = (w1, . . . , wn) be positive reals, w1+
· · ·+wn = 1. For every agent π, π ≡ w⃗ ·(π, . . . , π) (where
(π, . . . , π) has length n).

Proof. See Supplementary Materials.

Lemma 23. For any agent π, ( 12 ,
1
2 ) · (π, π) is self-dual.

Proof. See Supplementary Materials.

Proposition 24. (Characterization of self-dual agents
modulo ≡) For any agent π, the following are equivalent:

1. π ≡ ρ for some self-dual agent ρ.

2. π ≡ ( 12 ,
1
2 ) · (ρ, ρ) for some agent ρ.

Proof. (⇒) Assume π ≡ ρ for some self-dual agent ρ. By
Lemma 22 ρ ≡ ( 12 ,

1
2 ) · (ρ, ρ), but ρ = ρ by self-duality,

so ρ ≡ ( 12 ,
1
2 ) · (ρ, ρ). By transitivity of ≡ (Lemma 21),

π ≡ ( 12 ,
1
2 ) · (ρ, ρ).

(⇐) Assume π ≡ ( 12 ,
1
2 ) · (ρ, ρ) for some agent ρ. By

Lemma 23, ( 12 ,
1
2 ) · (ρ, ρ) is self-dual.

Proposition 24 is analogous to the fact that a function f :
R → R is even (i.e. satisfies f(x) = f(−x)) iff f(x) =
1
2 (g(x) + g(−x)) for some g : R → R.
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We will show (Theorem 26) that the following two symme-
try conditions are equivalent (improving an informal result
of Alexander and Hutter (2021)).

Definition 25. (Weighted intelligence measure symmetry
properties) Let Υ be a weighted intelligence measure.

1. Υ is weakly symmetric if Υ(π) = 0 for every self-dual
agent π.

2. Υ is strongly symmetric if Υ(π) = −Υ(π) for every
agent π.

Theorem 26. A weighted intelligence measure Υ is weakly
symmetric iff it is strongly symmetric.

Proof. (Weak ⇒ Strong) Assume Υ is weakly symmetric.
Let π be any agent. By Lemma 23, ( 12 ,

1
2 ) · (π, π) is self-

dual. So by weak symmetry, Υ(( 12 ,
1
2 ) · (π, π)) = 0. Thus

by Theorem 14 (part 5),

( 12 ,
1
2 ) ·Υ((π, π)) = 1

2Υ(π) + 1
2Υ(π) = 0.

So Υ(π) = −Υ(π). By arbitrariness of π, Υ is strongly
symmetric.

(Strong ⇒ Weak) Trivial.

The canonical weighted intelligence measure is the univer-
sal intelligence measure ΥU of Legg and Hutter (2007),
where each computable environment µ is given weight
2−K(µ), where K(µ) is µ’s Kolmogorov complexity. This
depends non-trivially on the background UTM U , prompt-
ing Leike and Hutter (2015) to ask: “What are [...] desir-
able properties of a UTM?” UTMs formalize programming
languages, so the question is equivalent to “What are de-
sirable properties of a programming language?” (i.e., in-
herently desirable properties, as opposed to subjectively
desirable properties like whether or not white-space mat-
ters). Intrinsically desirable UTM properties are elusive;
attempts—such as (Müller, 2010)—to find them confirm
the difficulty thereof. In the RL context, symmetry con-
ditions on ΥU are candidate desirable properties for the
UTM: U is weakly (resp. strongly) symmetric iff ΥU is.
The equivalence of weak and strong symmetry provides
some justification for considering this UTM property to be
inherently desirable (in the RL context).

5 DISCERNABILITY AND
SEPARABILITY

In this section, we give another application of mixture
agents. We define natural notions of discernability and sep-
arability for sets of agents, and we give an interesting char-
acterization of separability in terms of discernability and
mixtures. Essentially, we import notions from convex ge-
ometry into reinforcement learning. Below, if Π is a set of
agents, then Πc is the set of agents ρ such that ρ ̸∈ Π.

Definition 27. A set Π of agents is discernable if there ex-
ists an environment µ such that for all agents π, ρ:

1. V π
µ and V ρ

µ are defined.

2. If π ∈ Π and ρ ∈ Πc, then V π
µ ̸= V ρ

µ .

Intuitively, Π is discernable if there is some environment in
which no member of Π has the same expected performance
as any member of Πc.

For the next definition, recall that a subset I of the reals
is convex if the following requirement holds: for all real
i1 < i2 < i3, if i1 ∈ I and i3 ∈ I , then i2 ∈ I . Two sets
are disjoint if they have no point in common.

Definition 28. A set Π of agents is separable if there exists
an environment µ and disjoint convex sets I and J of reals
such that for every agent π:

1. V π
µ is defined.

2. If π ∈ Π then V π
µ ∈ I .

3. If π ∈ Πc then V π
µ ∈ J .

Equivalently, Π is separable if either: there is some en-
vironment where every member of Π outperforms every
member of Πc; or there is some environment where every
member of Π underperforms every member of Πc. Clearly
separability implies discernability, but what about the con-
verse? We will use mixtures to state a partial converse.

Definition 29. A set Π is closed under mixtures if the fol-
lowing holds: for all w⃗ = (w1, . . . , wn) with w1 + · · · +
wn = 1, for all agents π⃗ = (π1, . . . , πn), if πi ∈ Π for
every i = 1, . . . , n, then w⃗ · π⃗ ∈ Π.

If we think of agents as points in space, Definition 29 is a
universal mixture agent analog of the higher-dimensional
convexity notion from convex geometry.

Lemma 30. For every environment µ and set Π of agents,
SΠ,µ = {r ∈ R : ∃π1, π2 ∈ Π s.t. V π1

µ ≤ r ≤ V π2
µ } is

convex.

Proof. See Supplementary Material.

Theorem 31. (Characterization of Separability) For any
set Π of agents, the following are equivalent:

1. Π is separable.

2. Π is discernable, and both Π and Πc are closed under
mixtures.

Proof. (1 ⇒ 2) Assume Π is separable, and let µ, I, J be
as in Definition 28, so I and J are disjoint.



Alexander, Du, Quarel, Hutter

To see Π is discernable, let π, ρ be any agents. By condition
1 of Definition 28, V π

µ and V ρ
µ are defined. And if π ∈ Π,

ρ ∈ Πc, then by conditions 2 and 3 of Definition 28, π ∈ I
and ρ ∈ J . Since I and J are disjoint, V π

µ ̸= V ρ
µ .

To see Π is closed under mixtures, let w⃗ = (w1, . . . , wn)
and π⃗ = (π1, . . . , πn) be as in Definition 29 and assume
each πi ∈ Π. By choice of I , each V πi

µ ∈ I . By Theorem
14, V w⃗·π⃗

µ = w⃗ · V π⃗
µ . Thus V w⃗·π⃗

µ is a convex combination
of V π1

µ , . . . , V πn
µ , which are elements of I . Since I is con-

vex, it follows that V w⃗·π⃗
µ ∈ I . Since I and J are disjoint,

V w⃗·π⃗
µ ̸∈ J , so by choice of J , w⃗ · π⃗ ∈ Π, as desired. A

similar argument shows Πc is closed under mixtures.

(2 ⇒ 1) Assume Π is discernable and both Π and Πc are
closed under mixtures. Since Π is discernable, there is
some environment µ as in Definition 27. Let I = SΠ,µ,
J = SΠc,µ as in Lemma 30, so I and J are convex. From
the definition of I and J , clearly V π

µ ∈ I for all π ∈ Π
and V ρ

µ ∈ J for all π ∈ Πc. It only remains to show
I and J are disjoint. Assume not. Then there is some
r ∈ I ∩ J . By definition of I , there are π1, π2 ∈ Π such
that V π1

µ ≤ r ≤ V π2
µ , and by definition of J , there are

ρ1, ρ2 ∈ Πc such that V ρ1
µ ≤ r ≤ V ρ2

µ . By basic algebra,
there is a real α ∈ [0, 1] such that αV π1

µ +(1−α)V π2
µ = r.

Let π = (α, 1 − α) · (π1, π2). By Theorem 14 (part 4),
V π
µ = αV π1

µ + (1 − α)V π2
µ = r. And since Π is closed

under mixtures, π ∈ Π. By identical reasoning using
V ρ1
µ ≤ r ≤ V ρ2

µ , there exists some ρ ∈ Πc such that
V ρ
µ = r. But since µ satisfies condition 2 of Definition 27,

and π ∈ Π and ρ ∈ Πc, this forces V π
µ ̸= V ρ

µ , absurd.

6 LOCAL EXTREMA AND LATTICE
POINTS

Definition 32. If π is an agent, h0 ∈ (EA)∗E , and m is
a probability distribution on A, we write πh0 7→m for the
function which is identical to π except that m decides the
action distribution for h0, that is,

πh0 7→m(y|h) =

{
π(y|h) if h ̸= h0,
m(y) if h = h0.

In plain language, πh0 7→m is the result of changing π’s out-
put π(·|h0) to m, but otherwise leaving π unchanged.

Lemma 33. πh0 7→m (as in Definition 32) is an agent.

Proof. Trivial.

Definition 34. Suppose m⃗ = (m1, . . . ,mn) are probabil-
ity distributions on A and w⃗ = (w1, . . . , wn) are positive
reals with w1 + · · · + wn = 1. By w⃗ · m⃗ we mean the
function on A defined by

(w⃗ · m⃗)(y) = w1m1(y) + · · ·+ wnmn(y).

Lemma 35. If m⃗, w⃗ are as in Definition 34 then w⃗ · m⃗ is a
probability distribution on A.

Proof. See Supplementary Materials.

Definition 36. For any agent π, for any h ∈ (EA)∗E , for
any probability distributions m⃗ = (m1, . . . ,mn) on A, let
πh 7→m⃗ = (πh7→m1 , . . . , πh7→mn).

The following proposition shows that for any particular his-
tory h and agent π, for any decomposition of π(·|h) into a
weighted sum of probability distributions m1, . . . ,mn, π
has the same intelligence as the weighted mixture of the
corresponding n agents πh 7→m⃗.

Proposition 37. Let Υ be any weighted intelligence mea-
sure, let π be any agent, and let h ∈ (EA)∗E . Suppose
m⃗ and w⃗ are as in Definition 34. If w⃗ · m⃗ = π(·|h), then
Υ(π) = Υ(w⃗ · πh 7→m⃗).

Proof. See Supplementary Materials.

Definition 38. Suppose π and π1, . . . , πn are agents and
Υ is a weighted intelligence measure. We say π ≻Υ

π1, . . . , πn if both:

1. Υ(π) ≥ Υ(πi) for each i = 1, . . . , n; and

2. Υ(π) > Υ(πi) for some i = 1, . . . , n.

We define π ≺Υ π1, . . . , πn likewise (change ≥/> to ≤/<).

Proposition 39. Let Υ be any weighted intelligence mea-
sure and let π be an agent. Let h ∈ (EA)∗E . For any
probability distributions m⃗ = (m1, . . . ,mn) on A, for any
positive reals w⃗ = (w1, . . . , wn) with w1 + · · ·+ wn = 1,
if w⃗ · m⃗ = π(·|h), then π ̸≻Υ πh7→m1 , . . . , πh 7→mn and
π ̸≺Υ πh 7→m1 , . . . , πh7→mn .

Proof. If π ≻Υ πh 7→m1 , . . . , πh7→mn then this implies

Υ(π) = Υ(w⃗ · πh7→m⃗) (Proposition 37)

= w⃗ ·Υ(πh7→m⃗) (Theorem 14)
< w1Υ(π) + · · ·+ wnΥ(π) (Assumption)
= Υ(π), (w1 + · · ·+ wn = 1)

absurd. Similar reasoning holds for ≺Υ.

Definition 40. (Local intelligence extrema)

1. We make the space of all agents into a metric space
by defining the distance from agent π to agent ρ to be
d(π, ρ) = suph∈(EA)∗E,y∈A |π(y|h)− ρ(y|h)| .

2. Suppose Υ is a weighted intelligence measure. An
agent π is a strict local maximum (resp. strict local
minimum) of Υ if there is some real ϵ > 0 such
that for every agent ρ ̸≡ π (recall Definition 19), if
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d(ρ, π) < ϵ then Υ(π) > Υ(ρ) (resp. Υ(π) < Υ(ρ)).
If π is a strict local maximum or minimum of Υ then
π is a strict local extremum of Υ.

Definition 41. An agent π is deterministic in all possi-
ble histories if the following condition holds. For all h ∈
(EA)∗E , if Pπ(h) ̸= 0 then for all y ∈ A, π(y|h) ∈ {0, 1}.

Note that an agent π can be deterministic in all possible
histories (Definition 41) and still assign a probability 0 <
π(y|h) < 1, provided Pπ(h) = 0 (recall Remark 2). It is
easy to show that π is deterministic in all possible histories
iff π ≡ ρ for some strictly deterministic ρ (i.e., some ρ such
that ρ(y|h) ∈ {0, 1} for all y, h).

Theorem 42 below sheds light on the geometry of RL agent
intelligence. By considering agent π’s coordinates to be the
values π(y|h) for all y, h, we can view agents as inhabit-
ing infinite-dimensional Euclidean space. An agent π is a
lattice point (i.e., a point with integer coordinates) iff π is
strictly deterministic. We can picture z = Υ(π) as a “sur-
face” above agent-space (more precisely: a surface above
agent-space in some places, below it in others, and which
intersects it in the “z-intercept” Υ(π) = 0). Theorem 42
says that, modulo ≡, z = Υ(π) cannot have any “hyper-
ridges” or “hypertroughs” above non-lattice points.

Theorem 42. (“Strict local extrema are deterministic”)
For any weighted intelligence measure Υ, for any agent π,
if π is a strict local extremum of Υ, then π is deterministic
in all possible histories.

Proof. Assume π is not deterministic in all possible his-
tories, so there exist h ∈ (EA)∗E and y0 ∈ A such that
Pπ(h) ̸= 0 and 0 < π(y0|h) < 1. We will show π is not
a strict local maximum (a similar argument shows π is not
a strict local minimum) of Υ. Since 0 < π(y0|h) < 1 and
π(·|h) ∈ ∆A, there must be some y1 ∈ A, y1 ̸= y0, such
that 0 < π(y1|h) < 1. Let ϵ > 0. Since 0 < π(y0|h) < 1
and 0 < π(y1|h) < 1, it follows that there is some 0 < ϵ′ ≤
ϵ such that 0 < π(y0|h)±ϵ′ < 1 and 0 < π(y1|h)±ϵ′ < 1.
Define m1,m2 : A → R by

mi(y) =


π(y|h) + (−1)iϵ′ if y = y0,
π(y|h)− (−1)iϵ′ if y = y1,
π(y|h) otherwise.

By choice of ϵ′ it follows that m1,m2 ∈ ∆A. Let w⃗ =
( 12 ,

1
2 ), m⃗ = (m1,m2); clearly w⃗ · m⃗ = π(·|h). By Prop.

39, π ̸≻Υ πh7→m1 , πh7→m2 , thus Υ(π) ≤ Υ(πh7→mi) for
some i ∈ {1, 2}. Clearly π ̸≡ πh7→mi and d(π, πh7→mi) =
ϵ′ ≤ ϵ. By arbitrariness of ϵ, π is not a strict local maximum
of Υ.

In a sense, the above proof is a lack-of-emergent-behavior
proof. The non-determinacy of π allows us to perturb π
very slightly in two opposing directions, in such a way that

π is the weighted mixture of the two perturbations. If, say,
both perturbations strictly reduced π’s intelligence, then
their mixture would exhibit emergent behavior (namely:
“behave at least as intelligently as π”) of a type ruled out
by Theorem 14.

We have worked in this section using the metric of Defi-
nition 40 for simplicity. Similar reasoning would apply to
various other metrics as well.

7 UNIVERSAL
MIXTURE-ENVIRONMENTS

Definition 43. An environment µ is strongly well-behaved
if µ is well-behaved and for all agents π and all t ∈ N,
−1 ≤ V π

µ,t ≤ 1. A weighted intelligence measure Υ is
strongly well-behaved if corresponding weights {wµ}µ∈W

(as in Definition 8) exist such that
∑

µ∈W wµ = 1 and
such that wµ = 0 for all µ not strongly well-behaved (in-
formally: the weights underlying Υ sum to 1, and any en-
vironment not strongly well-behaved has weight 0).

If µ never gives negative rewards, then −1 ≤ V π
µ,t ≤ 1

is equivalent to −1 ≤ V π
µ ≤ 1. Thus if the reward-space

R is ⊆ [0, 1] (as in (Legg and Hutter, 2007)), then every
nonzero weighted intelligence measure is a constant multi-
ple of a strongly well-behaved one. We will show (Theo-
rem 49) that for every strongly well-behaved Υ, there is an
environment µΥ such that for all agents π, Υ(π) = V π

µΥ
.

In this section, let W be the set infinite sequences w⃗ =
(w1, w2, . . .) with each wi > 0 real and

∑∞
i=1 wi = 1. For

any w ∈ W and any bounded sequence v⃗ = (v1, v2, . . .),
we define the dot product w⃗ · v⃗ =

∑∞
i=1 wivi (the bound-

edness of v⃗ implies this sum converges).

Definition 44. (Compare Definition 9) Let w⃗ ∈ W , π
an agent, µ an environment, h ∈ H, t ∈ N, and µ⃗ =
(µ1, µ2, . . .) an infinite sequence of environments. Define:

• Pµ⃗(h) = (Pµ1
(h), Pµ2

(h), . . .).

• Pπ
µ⃗ (h) = (Pπ

µ1
(h), Pπ

µ2
(h), . . .).

• V π
µ⃗,t = (V π

µ1,t, V
π
µ2,t, . . .).

• V π
µ⃗ = (V π

µ1
, V π

µ2
, . . .) if every V π

µi
is defined.

Definition 45. (Mixture environments—compare Defini-
tion 11) Assume w⃗ ∈ W and µ⃗ = (µ1, µ2, . . .) is an infinite
sequence of environments. Define an environment w⃗ · µ⃗ by:

(w⃗ · µ⃗)(x|h) =


w⃗ · Pµ⃗(hx)

w⃗ · Pµ⃗(h)
if w⃗ · Pµ⃗(h) ̸= 0,

1/|E| otherwise.

Lemma 46. (Compare Lemma 13) w⃗ · µ⃗ (as in Definition
45) is indeed an environment.
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Proof. See Supplementary Materials.

To prove Lemma 48 below, we will use Tannery’s Theo-
rem, a result from real analysis (Bromwich, 2005).

Lemma 47. (Tannery’s Theorem) Let {ai : N → R}∞i=1

be a sequence of sequences such each limt→∞ ai(t) con-
verges. Assume {wi}∞i=1 satisfies

∑∞
i=1 wk < ∞ and for

all i > 0, for all t ∈ N, |ai(t)| ≤ wk. Then

lim
t→∞

∞∑
i=1

ai(t) =

∞∑
i=1

lim
t→∞

ai(t).

Lemma 48. (Compare Theorem 14) Let w⃗ ∈ W , let
µ⃗ = (µ1, µ2, . . .) be a sequence of strongly well-behaved
environments, and let π be any agent. Then:

1. For all h ∈ H, Pw⃗·µ⃗(h) = w⃗ · Pµ⃗(h).

2. For all h ∈ H, Pπ
w⃗·µ⃗(h) = w⃗ · Pπ

µ⃗ (h).

3. For all t ∈ N, V π
w⃗·µ⃗,t = w⃗ · V π

µ⃗,t.

4. V π
w⃗·µ⃗ = w⃗ · V π

µ⃗ .

Proof. For (1)–(3), see Supplementary Materials. For (4):

V π
w⃗·µ⃗ = lim

t→∞
V π
w⃗·µ⃗,t (Definition 6)

= lim
t→∞

w⃗ · V π
µ⃗,t (By (3))

= lim
t→∞

∞∑
i=1

wiV
π
µi,t. (Definition 44)

For each i ≥ 1, define ai : N → R by ai(t) = wiV
π
µi,t.

Since µi is strongly well-behaved, each −1 ≤ V π
µi,t ≤ 1.

It follows that for all t ∈ N, |ai(t)| ≤ wi. Furthermore,∑∞
i=1 wi = 1 < ∞ by Definition of W . Thus

lim
t→∞

∞∑
i=1

wiV
π
µi,t

=

∞∑
i=1

lim
t→∞

wiV
π
µi,t (Tannery’s Theorem)

=

∞∑
i=1

wi lim
t→∞

V π
µi,t (Algebra)

=

∞∑
i=1

wiV
π
µi

(Definition 6)

= w⃗ · V π
µ⃗ . (Definition 44)

So V π
w⃗·µ⃗ = w⃗ · V π

µ⃗ .

Just as Theorem 14 (parts 4–5) shows that Definition 11
provides a way to mix agents without emergent behavior, in
the same way, Lemma 48 shows that Definition 45 provides
a way to mix environments without emergent behavior.

Theorem 49. For any strongly well-behaved weighted in-
telligence measure Υ, there is an environment µΥ such that
for every agent π, Υ(π) = V π

µΥ
.

Proof. Let µ⃗ = (µ1, µ2, . . .) enumerate all strongly well-
behaved environments (a countable set since every well-
behaved environment is Turing computable). Let (wµ)µ∈W

be as in Definition 43. Let w⃗ = (wµ1
, wµ2

, . . .), thus w⃗ ∈
W . Then for any agent π,

V π
w⃗·µ⃗ = w⃗ · V π

µ⃗ (Lemma 48)

=

∞∑
i=1

wiV
π
µi

(Definition 44)

= Υ(π), (Definition 43)

so µΥ = w⃗ · µ⃗ works.

8 SUMMARY

We introduced (Definition 11) an operation which takes
a finite sequence of RL agents and a finite sequence of
weights, and which outputs a new agent, which can be
thought of as a weighted mixture agent, with the prop-
erty that in any environment, “The expected reward of a
weighted mixture is the weighted average of the expected
rewards” (Theorem 14 part 4). Thus if intelligence is
measured in terms of performance, “The intelligence of
a weighted mixture is the weighted average of the intelli-
gences” (Theorem 14 part 5). This construction enabled
us to prove a number of results about the geometry of
RL agent intelligence measures, namely, results about in-
telligence symmetry (Theorem 26), convexity (Theorem
31), and strict local extrema (Theorem 42). Finally, by
applying the same mixture idea to environments instead
of agents, we established (Theorem 49) that for a large
class of performance-based intelligence measures, there
exist universal mixture environments, i.e., environments in
which every agent’s total expected reward in fact equals the
agent’s intelligence according to said measure.
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A SUPPLEMENTARY MATERIAL

Here, we present detailed proofs missing from the main text due to length limit.

A.1 Proof of Lemma 5

Proof. By induction on h.

Case 1: h = ε. Then the lemma is trivial.

Case 2: h = gx for some x ∈ E . Then

Pπ
µ (h) = Pπ

µ (g)µ(x|g) (Definition 4)

= Pπ(g)Pµ(g)µ(x|g) (Induction)
= Pπ(h)Pµ(g)µ(x|g) (Definition 4)
= Pπ(h)Pµ(h). (Definition 4)

Case 3: h = gy for some y ∈ A. Similar to Case 2.

A.2 Proof of Lemma 13

Proof. Let h ∈ (EA)∗E . Clearly (w⃗ · π⃗)(y|h) ≥ 0 for all y ∈ A. It remains to show
∑

y∈A(w⃗ · π⃗)(y|h) = 1.

Case 1: w⃗ · P π⃗(h) = 0. Then each (w⃗ · π⃗)(y|h) = 1/|A| so the claim is immediate.

Case 2: w⃗ · P π⃗(h) ̸= 0. Then∑
y∈A

(w⃗ · π⃗)(y|h)

=
∑
y∈A

w⃗ · P π⃗(hy)

w⃗ · P π⃗(h)
(Definition 11)

=
∑
y∈A

w⃗ · (Pπ1(hy), . . . , Pπn(hy))

w⃗ · P π⃗(h)
(Definition 9)

=
∑
y∈A

w1P
π1(h)π1(y|h) + · · ·+ wnP

πn(h)πn(y|h)
w⃗ · P π⃗(h)

(Definition 4)

=
w1P

π1(h)
(∑

y∈A π1(y|h)
)
+ · · ·+ wnP

πn(h)
(∑

y∈A πn(y|h)
)

w⃗ · P π⃗(h)
(Algebra)

=
w1P

π1(h) · 1 + · · ·+ wnP
πn(h) · 1

w⃗ · P π⃗(h)
=

w⃗ · P π⃗(h)

w⃗ · P π⃗(h)
= 1. (πi are agents)

A.3 Proof of Lemma 22

Proof. Recall that the real numbers satisfy the so-called null-factor law: for all real numbers a and b, if ab = 0, then a = 0
or b = 0. In other words, the product of two nonzero real numbers can never be zero.

Write π⃗ for (π, . . . , π). We prove conditions 1 and 2 of Definition 19 simultaneously by induction on h.

Case 1: h = ε. Then Pπ(h) = w⃗ · P π⃗(h) = 1 ̸= 0, so vacuously Pπ(h) = 0 iff w⃗ · P π⃗(h) = 0 (proving condition 1). For
condition 2, there is nothing to check, since ε ̸∈ (EA)∗E .

Case 2: h = h0y0 for some h0 ∈ (EA)∗E , y0 ∈ A. For condition 2, there is nothing to prove, since h ̸∈ (EA)∗E . For
condition 1, we consider two cases.
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Subcase 2.1: Pπ(h0) = 0. By induction, condition 1 holds for h0, so w⃗ · P π⃗(h0) = 0. By Definition 4, Pπ(h) =
Pπ(h0)π(y0|h0) = 0 and P w⃗·π⃗(h) = 0(w⃗ · π⃗)(y0|h0) = 0. So Pπ(h) = 0 iff P w⃗·π⃗(h) = 0.

Subcase 2.2: Pπ(h0) ̸= 0. Then

P w⃗·π⃗(h) = w⃗ · P π⃗(h) (Theorem 14)
= w1P

π(h) + · · ·+ wnP
π(h) (Def. of w⃗ and π⃗)

= Pπ(h) (w1 + · · ·+ wn = 1)
= Pπ(h0)π(y0|h0). (Definition 4)

Since Pπ(h0) ̸= 0, by the null-factor law, it follows that P w⃗·π⃗(h) = 0 iff Pπ(h) = 0 iff π(y0|h0) = 0.

Case 3: h = h0x for some h0 ∈ (EA)∗, x ∈ E . By induction, conditions 1 and 2 hold for h0. By Definition 4,
Pπ(h) = Pπ(h0) and P w⃗·π⃗(h) = P w⃗·π⃗(h0), so condition 1 for h follows.

For condition 2, assume Pπ(h) ̸= 0 and let y ∈ A. By choice of w⃗ and π⃗, w⃗ · P π⃗(h) = w1P
π(h) + · · · + wnP

π(h) =
Pπ(h). So, since Pπ(h) ̸= 0, w⃗ · P π⃗(h) ̸= 0. Thus

(w⃗ · π⃗)(y|h) = w⃗ · P π⃗(hy)

w⃗ · P π⃗(h)
(Definition 11)

=
w1P

π(hy) + · · ·+ wnP
π(hy)

w1Pπ(h) + · · ·+ wnPπ(h)
(Def. of w⃗ and π⃗)

=
w1P

π(h) + · · ·+ wnP
π(h)

w1Pπ(h) + · · ·+ wnPπ(h)
π(y|h) (Definition 4)

= π(y|h).

A.4 Proof of Lemma 23

Proof. Let w⃗ = ( 12 ,
1
2 ). For any h ∈ (EA)∗E and y ∈ A, we claim

w⃗ · (π, π)(y|h) = (w⃗ · (π, π))(y|h).

Noting that w⃗ · P (π,π)(h) = 1
2P

π(h) + 1
2P

π(h) and w⃗ · P (π,π)(h) = 1
2P

π(h) + 1
2P

π(h), Lemmas 16 and 17 imply that

w⃗ · P (π,π)(h) = w⃗ · P (π,π)(h).

So if w⃗ · P (π,π)(h) = 0 then w⃗ · P (π,π)(h) = 0 and it follows from Definition 11 and Lemma 17 that w⃗ · (π, π)(y|h) =
(w⃗ · (π, π))(y|h) = 1/|A|. So assume w⃗ · P (π,π)(h) ̸= 0. Then:

w⃗ · (π, π)(y|h) = (w⃗ · (π, π))(y|h) (Definition 15)

=
1
2P

π(hy) + 1
2P

π(hy)
1
2P

π(h) + 1
2P

π(h)
(Definition 11)

=
1
2P

π(hy) + 1
2P

π(hy)
1
2P

π(h) + 1
2P

π(h)
(Clearly hy = hy)

=
1
2P

π(hy) + 1
2P

π(hy)
1
2P

π(h) + 1
2P

π(h)
(Lemma 17)

= (w⃗ · (π, π))(y|h) (Definition 11)
= (w⃗ · (π, π))(y|h). (Lemma 16)

A.5 Proof of Lemma 30

Proof. Assume i1 < i2 < i3 are reals with i1, i3 ∈ SΠ,µ; we must show i2 ∈ SΠ,µ. Since i1 ∈ SΠ,µ, there exist agents
π1, π2 ∈ Π such that V π1

µ ≤ i1 ≤ V π2
µ . And since i3 ∈ SΠ,µ, there exist agents ρ1, ρ2 ∈ Π such that V ρ1

µ ≤ i3 ≤ V ρ2
µ .

Then π1, ρ2 ∈ Π satisfy V π1
µ ≤ i2 ≤ V ρ2

µ , showing i2 ∈ SΠ,µ as desired.
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A.6 Proof of Lemma 35

Proof. Clearly for every y ∈ A, (w⃗ · m⃗)(y) = w1m1(y) + · · · + wnmn(y) is a nonnegative real. It remains to show∑
y∈A(w⃗ · m⃗)(y) = 1. We compute:∑

y∈A
(w⃗ · m⃗)(y)

=
∑
y∈A

w1m1(y) + · · ·+ wnmn(y) (Definition 34)

= w1

∑
y∈A

m1(y)

+ · · ·+ wn

∑
y∈A

mn(y)

 (Basic Algebra)

= w1 + · · ·+ wn (m1, . . . ,mn are probability distr’s)
= 1.

A.7 Proof of Proposition 37

The following auxiliary lemmas will be used in our proof of Proposition 37.

Lemma 50. Suppose π, h0, m are as in Definition 32. Let h ∈ H be such that for every y ∈ A, h0y is not an initial
segment of h. Then Pπh0 7→m

(h) = Pπ(h).

Proof. By induction on h.

Lemma 51. Suppose π, h0, m are as in Definition 32. For any y ∈ A, Pπh0 7→m

(h0y) = Pπ(h0)m(y).

Proof. Immediate by Definition 4 and Lemma 50.

Lemma 52. Suppose π, h0, m are as in Definition 32. Assume h ∈ H, y0 ∈ A, and h0y0 is an initial segment of h.
Assume π(y0|h0) ̸= 0. Then Pπh0 7→m

(h) = Pπ(h)m(y0)
π(y0|h0)

.

Proof. By induction on h.

Case 1: h = h0y0. Then

Pπh0 7→m

(h) = Pπh0 7→m

(h0)π
h0 7→m(y0|h0) (Definition 4)

= Pπ(h0)π
h0 7→m(y0|h0) (Lemma 50)

= Pπ(h0)m(y0) (Definition 32)

=
Pπ(h0)π(y0|h0)m(y0)

π(y0|h0)
(Basic Algebra)

=
Pπ(h)m(y0)

π(y0|h0)
. (Definition 4)

Case 2: h = h0y0h1x for some h1 ∈ H and x ∈ E . Then

Pπh0 7→m

(h) = Pπh0 7→m

(h0y0h1) (Definition 4)

=
Pπ(h0y0h1)m(y0)

π(y0|h0)
(Induction)

=
Pπ(h0a0h1x)m(y0)

π(y0|h0)
(Definition 4)

=
Pπ(h)m(y0)

π(y0|h0)
.
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Case 3: h = h0y0h1y for some h1 ∈ H and y ∈ A. Then

Pπh0 7→m

(h) = Pπh0 7→m

(h0y0h1)π
h0 7→m(y|h0y0h1) (Definition 4)

= Pπh0 7→m

(h0y0h1)π(y|h0ah1) (Definition 32)

=
Pπ(h0y0h1)π(y|h0y0h1)m(y0)

π(y0|h0)
(Induction)

=
Pπ(h0y0h1y)m(y0)

π(y0|h0)
(Definition 4)

=
Pπ(h)m(y0)

π(y0|h0)
.

Proof of Proposition 37. Subclaim: For every g ∈ H, Pπ(g) = P w⃗·πh 7→m⃗

(g). We prove this by induction on g.

Case 1: g = ε. Then Pπ(g) = 1 = P w⃗·πh7→m⃗

(g).

Case 2: g = fx for some x ∈ E . Then

Pπ(g) = Pπ(f) (Definition 4)

= P w⃗·πh7→m⃗

(f) (Induction)

= P w⃗·πh7→m⃗

(g). (Definition 4)

Case 3: g = fy for some y ∈ A.

Subcase 3.1: Pπ(f) = 0. Then

P w⃗·πh7→m⃗

(g) = P w⃗·πh7→m⃗

(f)(w⃗ · πh 7→m⃗)(y|f) (Definition 4)

= Pπ(f)(w⃗ · πh 7→m⃗)(y|f) (Induction)
= 0.

Similarly, Pπ(g) = 0. So P w⃗·πh 7→m⃗

(g) = Pπ(g).

Subcase 3.2: Pπ(f) ̸= 0 and f = h. Then:

P w⃗·πh 7→m⃗

(g) = P w⃗·πh7→m⃗

(hy)

= w⃗ · Pπh 7→m⃗

(hy) (Theorem 14)
= w1P

π(h)m1(y) + · · ·+ wnP
π(h)mn(y) (Lemma 51)

= Pπ(h)π(y|h) (w⃗ · m⃗ = π(·|h))
= Pπ(hy) = Pπ(g). (Definition 4)

Subcase 3.3: Pπ(f) ̸= 0, f ̸= h, and f has an initial segment hy0 (y0 ∈ A).

Then π(y0|h) ̸= 0, lest we would have Pπ(f) = 0. Thus:

P w⃗·πh 7→m⃗

(g) = P w⃗·πh7→m⃗

(fy)

= w⃗ · Pπh 7→m⃗

(fy) (Theorem 14)

= w1
Pπ(fy)m1(y0)

π(y0|h)
+ · · ·+ wn

Pπ(fy)mn(y0)

π(y0|h)
(Lemma 52)

=
Pπ(fy)

π(y0|h)
(w1m1(y0) + · · ·+ wnmn(y0)) (Basic Algebra)

=
Pπ(fy)

π(y0|h)
π(y0|h) (w⃗ · m⃗ = π(·|h))

= Pπ(fy) = Pπ(g).
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Subcase 3.4: Pπ(f) ̸= 0, f ̸= h, and f has no initial segment of the form hy0. Then:

P w⃗·πh7→m⃗

(g) = P w⃗·πh 7→m⃗

(fy)

= w⃗ · Pπh7→m⃗

(fy) (Theorem 14)
= w1P

π(fy) + · · ·+ wnP
π(fy) (Lemma 50)

= Pπ(fy) = Pπ(g), (w1 + · · ·+ wn = 1)

as desired.

This finishes the proof of the Subclaim. By Lemma 5, the Subclaim implies that for every well-behaved µ and every
g ∈ H, Pπ

µ (g) = P w⃗·πh 7→m⃗

µ (g). By Definition 6 (part 1), this implies that for every well-behaved µ and every t ∈ N,

V π
µ,t = V w⃗·πh7→m⃗

µ,t . The proposition follows by Definition 6 (part 2).

A.8 Proof of Lemma 46

Proof. Let h ∈ (EA)∗. Clearly (w⃗ · µ⃗)(x|h) ≥ 0 for all x ∈ E . It remains to show
∑

x∈E(w⃗ · µ⃗)(x|h) = 1. If w⃗ ·Pµ⃗(h) = 0
then each (w⃗ · µ⃗)(x|h) = 1/|E| so the claim is immediate; assume not. Then:∑

x∈E
(w⃗ · µ⃗)(x|h)

=
∑
x∈E

w⃗ · Pµ⃗(hx)

w⃗ · Pµ(h)
(Definition 45)

=
∑
x∈E

∑∞
i=1 wiPµi

(hx)∑∞
i=1 wiPµi

(h)
(Definition 44)

=
∑
x∈E

∑∞
i=1 wiPµi

(h)µi(x|h)∑∞
i=1 wiPµi

(h)
. (Definition 4)

By absolute convergence, we can rearrange the order of summation without altering the sum, so the above is∑∞
i=1 wiPµi

(h)
∑

x∈E µi(x|h)∑∞
i=1 wiPµi

,

and each
∑

x∈E µ(x|h) = 1 since each µ ∈ ∆E , so the whole fraction reduces to 1.

A.9 Proof of Lemma 48 (1–3)

Proof. (1) By induction on h.

Case 1: h = ε. Then

w⃗ · Pµ⃗(h) =

∞∑
i=1

wiPµi
(h) (Definition 44)

=

∞∑
i=1

wi (Pµi
(ε) = 1)

= 1 (Definition of W )
= Pw⃗·µ⃗(h). (Definition 4)

Case 2: h = gx for some x ∈ E .

Subcase 2.1: w⃗ · Pµ⃗(g) = 0. This means
∑∞

i=1 wiPµi
(g) = 0. Since each wi > 0, this implies each Pµi

= 0. From this it
easily follows that Pw⃗·µ⃗(gx) = w⃗ · Pµ⃗(gx) = 0.
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Subcase 2.2: w⃗ · Pµ⃗(g) ̸= 0. Then

Pw⃗·µ⃗(h) = Pw⃗·µ⃗(g)(w⃗ · µ⃗)(x|g) (Definition 4)
= w⃗ · Pµ⃗(g)(w⃗ · µ⃗)(x|g) (Induction)

= w⃗ · Pµ⃗(g)
w⃗ · Pµ⃗(gx)

w⃗ · Pµ(g)
(Definition 45)

= w⃗ · Pµ⃗(gx) = w⃗ · Pµ⃗(h).

Case 3: h = gy for some y ∈ A. Then

Pw⃗·µ⃗(h) = Pw⃗·µ⃗(g) (Definition 4)
= w⃗ · Pµ⃗(g) (Induction)

=

∞∑
i=1

wiPµi
(g) (Definition 44)

=

∞∑
i=1

wiPµi
(gy) (Definition 4)

= w⃗ · Pµ⃗(gy) = w⃗ · Pµ⃗(h). (Definition 44)

(2) Compute:

Pπ
w⃗·µ⃗(h) = Pπ(h)Pw⃗·µ⃗(h) (Lemma 5)

= Pπ(h)w⃗ · Pµ⃗(h) (By (1))

= Pπ(h)

∞∑
i=1

wiPµi
(h) (Definition 44)

=

∞∑
i=1

wiP
π(h)Pµi

(h) (Algebra)

=

∞∑
i=1

wiP
π
µi
(h) (Lemma 5)

= w⃗ · Pπ
µ⃗ (h). (Definition 44)

(3) Let Xt, R be as in Definition 6 and compute:

V π
w⃗·µ⃗,t =

∑
h∈Xt

R(h)Pπ
w⃗·µ⃗(h) (Definition 6)

=
∑
h∈Xt

R(h)w⃗ · Pπ
µ⃗ (h) (By (2))

=
∑
h∈Xt

R(h)

∞∑
i=1

wiP
π
µi
(h). (Definition 44)

Since Xt is finite, this sum is absolutely convergent, so we can rearrange terms, and the sum is equal to

∞∑
i=1

wi

∑
h∈Xt

R(h)Pπ
µi
(h) =

∞∑
i=1

wiV
π
µi,t (Definition 6)

= w⃗ · V π
µ⃗,t. (Definition 44)


