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ABSTRACT
We present a framework for verifying systems composed of het-
erogeneous reasoning agents, in which each agent may have differ-
ing knowledge and inferential capabilities, and where the resources
each agent is prepared to commit to a goal (time, memory and com-
munication bandwidth) are bounded. The framework allows us to
investigate, for example, whether a goal can be achieved if a par-
ticular agent, perhaps possessing key information or inferential ca-
pabilities, is unable (or unwilling) to contribute more than a given
portion of its available computational resources or bandwidth to the
problem. We present a novel temporal epistemic logic, BMCL,
which allows us to describe a set of reasoning agents with bounds
on time, memory and the number of messages they can exchange.
The bounds on memory and communication are expressed as ax-
ioms in the logic. As an example, we show how to axiomatize a
system of agents which reason using resolution and prove that the
resulting logic is sound and complete. We then show how to encode
a simple system of reasoning agents specified inBMCL in the de-
scription language of a model checker, and verify that the agents
can achieve a goal only if they are prepared to commit certain time,
memory and communication resources.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]; F.3 [Logics and Meanings of Pro-
grams]

General Terms
Theory

Keywords
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1. INTRODUCTION
A key application of multiagent systems research is distributed

problem solving. Distributed approaches to problem solving allow
groups of agents to collaborate to solve problems which no sin-
gle agent could solve alone (e.g., because no single agent has all
the information necessary to solve the problem), and/or to solveCite as: Verifying time, memory and communication bounds in systems
of reasoning agents, Natasha Alechina, Brian Logan, Nguyen Hoang Nga
and Abdur Rakib, Proc. of 7th Int. Conf. on Autonomous Agents and
Multiagent Systems (AAMAS 2008), Padgham, Parkes, Müller and Par-
sons (eds.), May, 12-16., 2008, Estoril, Portugal, pp. XXX-XXX.
Copyright c© 2008, International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights re-
served.

problems more effectively, e.g., in less time than a single agent.
For a given problem and system of reasoning agents, many dif-
ferent solution strategies may be possible, each involving different
commitments of computational resources (time and memory) and
communication by each agent. For different multiagent systems,
different solution strategies will be preferred depending on the rel-
ative costs of computational and communication resources for each
agent. These tradeoffs may be different for different agents (e.g.,
reflecting their computational capabilities or network connection)
and may reflect the agent’s commitment to a particular problem.
For a given system of agents with specified inferential abilities and
resource bounds it may not be clear whether a particular problem
can be solved at all, or, if it can, what computational and communi-
cation resources must be devoted to its solution by each agent. For
example, we may wish to know whether a goal can be achieved if
a particular agent, perhaps possessing key information or inferen-
tial capabilities, is unable (or unwilling) to contribute more than a
given portion of its available computational resources or bandwidth
to the problem.

There has been considerable work in the agent literature on dis-
tributed problem solving in general (for example, [18, 23, 25, 28])
and on distributed reasoning in particular ([1, 11]). Much of this
work analyses the time and communication complexity of distributed
reasoning algorithms. However, while we have upper (and some
lower) bounds on time and memory requirements for reasoning
in distributed systems, we lack tools for reasoning about tradeoffs
between computational and communication resources. In this pa-
per we present a framework for reasoning about tradeoffs between
time, memory and communication in systems of distributed rea-
soning agents. We introduce a novel epistemic logic, BMCL,
for specifying resource-bounded reasoners. Critically, the logic al-
lows upper bounds on the resource commitments (time, memory
and communication) of each agent in the system to be specified.
We prove that the logic is sound and complete. Using simple res-
olution examples, we show how to encode systems of distributed
reasoning agents specified in the logic in a model checker, and ver-
ify some example properties. In contrast to previous work, e.g., [4,
5, 6, 2]) which focused primarily on memory limitations of single
reasoners, our approach allows us to specify bounds on the number
of messages the agents can exchange, allowing the investigation of
tradeoffs between different resources. This allows us to determine
whether, for example, giving a reasoner more memory will result
in a shorter proof, or whether communication between agents can
reduce either time or memory requirements or both.

The structure of the paper is as follows. In section 2 we introduce
the problem of resource bounds in distributed reasoning and in sec-
tion 3 we explain how we measure time, space and communication



costs for a distributed reasoning problem. In section 4 we intro-
duce the epistemic logic BMCL. Model-checking experiments
are described in section 5. We survey related work in section 6 and
conclude in section 7.

2. DISTRIBUTED REASONERS
We define the ‘shape’ of a proof in terms of the maximum space

requirement at any step in the proof and the number of inference
steps it contains. The lower bound on space for a given problem
is then the least maximum space requirement of any proof, and the
lower bound on time is the least number of inference steps of any
proof. In general, a minimum space proof and a minimum time
proof will be different (have different shapes). Bounding the space
available for a proof will typically increase the number of inference
steps required and bounding the number of steps will increase the
space required. For example, a proof which requires only the min-
imum amount of space may require rederivation of intermediate
results.

We define the bounds on a reasoning agent in terms of its avail-
able resources expressed in terms of memory, time and communi-
cation. We assume that the memory required for a particular proof
can be taken to be its space requirement (e.g., the number of for-
mulas that must be simultaneously held in memory) times some
constant, and the number of inference steps executed times some
constant can be taken as a measure of the time necessary to solve
the problem. The communication requirement of a proof is taken to
be the number of messages exchanged with other agents. In what
follows, we ignore the constants and assume that the units of prob-
lem size and resources are the same.

For a particular agent solving a particular problem, the space
available for any given proof is ultimately bounded by the size of
the agent’s memory and the number of inference steps is bounded
by the time available to the agent, e.g., by a response time guarantee
offered by the agent, or simply the point in time at which the so-
lution to the problem becomes irrelevant. The question then arises
of whether a proof can be found which falls within the resource
envelope defined by the agent’s resource bounds.

For a single agent which processes a single goal at a time, the
lower bounds on space for the goal determines the minimum amount
of memory the agent must have if it is to solve the problem (given
unlimited time); and the lower bound on time determines the time
the agent must commit to solving the problem (given unlimited
memory). In the general case in which the agent is attending to
multiple goals simultaneously, the memory and time bounds may
be given not by the environment, but by the need to share the avail-
able resources between multiple tasks. For example, the agent may
need to share memory between multiple concurrent tasks and/or
devote no more than a given proportion of CPU to a given task.
In both cases, the agent designer may be interested in tradeoffs
between resource bounds; for example, whether more timely re-
sponses can be provided by pursuing fewer tasks in parallel (thereby
making more memory available to each task) or whether more tasks
can be pursued in parallel if each task is allowed to take longer.

In the distributed setting we distinguish between symmetric prob-
lem distributions, where all agents have the same premises, and
asymmetric problem distributions where different premises may be
assigned to different agents. We also distinguish between homo-
geneous reasoners (when all agents have the same rules of infer-
ence and resource bounds) and heterogeneous reasoners, (when
different agents have different rules of inference and/or resource
bounds).

Distribution does not necessarily change the shape (maximum
space requirement and number of inference steps) of a proof. How-

ever, in a distributed setting the tradeoffs between memory and time
bounds are complicated by communication. Unlike memory and
time, communication has no direct counterpart in the proof. How-
ever like memory, communication can be substituted for time (e.g.,
if part of the proof is carried out by another agent), and, like time,
it can be substituted for memory (e.g., if a lemma is communicated
by another agent rather than having to be remembered). In the dis-
tributed setting, each agent has a minimum memory bound which is
determined by its inference rules and which may be smaller than the
minimum space requirement for the problem. If the memory bound
for all agents taken individually is less than the minimum space re-
quirement for the problem, then the communication bound must
be greater than zero. (If the memory bound for all agents taken to-
gether is less than the minimum space requirement for the problem,
then the problem is insoluble for any communication bound).

With a symmetric problem distribution, if the memory bound for
at least one agent is greater than the minimum space requirement
for the problem, the minimum communication bound is zero (with
unbounded time). If the problem distribution is asymmetric, i.e.,
not all agents have all the premises, then the lower bound on com-
munication may again be non-zero, if a necessary inference step
requires premises from more than one agent.

In the next section, we present measures of space, time and com-
munication for distributed reasoning agents which allow us to make
these tradeoffs precise.

3. MEASURING RESOURCES
We assume a set of n agents. Each agent i has a set of proposi-

tional inference rules Ri (for example, Ri could contain conjunc-
tion introduction and modus ponens, or it could contain just a single
rule of resolution) and a set of premises Ki.

For a single agent, the notion of a derivation, or a proof of a
formula G from Ki is standard, and the time and space complexity
of proofs are well studied. Our model of space complexity is based
on [9]. We view the process of producing a proof ofG fromKi as a
sequence of configurations or states of a reasoner, starting from an
empty configuration, and producing the next configuration by one
of the following operations:

Read copies a formula fromKi into the current configuration (pos-
sibly overwriting a formula from the previous configuration)

Infer applies a rule from Ri to formulas in the current configura-
tion (possibly overwriting a formula from the previous con-
figuration)

The sequence of configurations constitutes a proof of G if G ap-
pears in the last configuration. Time complexity corresponds to the
length of the sequence, and space complexity to the size of con-
figurations.1 The size of a configuration can be measured either in
terms of the number of formulas appearing in the configuration or
in terms of the number of symbols required to represent the config-
uration. Clearly, for some inference systems, for example, where
the set of inference rules contains both conjunction introduction
and conjunction elimination, the first size measure results in con-
stant space usage. However, for other systems, such as resolution,
counting formulas results in non-trivial space complexity [16]. In
this paper, we take the size of a configuration to be the maximal
1Note that we deviate from [9] in that we do not have an explicit
erase operation, preferring to incorporate erasing (overwriting) in
the read and infer operations. This obviously results in shorter
proofs; however including an explicit erase operation gives proofs
which are no more than twice as long as our proofs if we don’t
require the last configuration to contain only the goal formula.



number of formulas, since all the reasoning systems we consider
have a non-trivial space complexity for this measure.

# Configuration Operation
1 { }
2 {A1} Read
3 {A1, A2} Read
4 {A1, A1 ∧ A2} Infer
5 {A1 ∧ A2, A1 ∧ A2 → B1} Read
6 {A1 ∧ A2, B1} Infer

Figure 1: Example derivation using
∧
I and MP

As an illustration, Figure 1 shows the space and time complexity
of the derivation of the formula B1 from A1, A2, A1 ∧A2 → B1

in an inference system which contains only conjunction introduc-
tion and modus ponens. The length of the proof is 6 and the space
usage is 2 (at most 2 formulas need to be present in the configura-
tion at any given time). It is worth observing that the inference sys-
tem consisting of just conjunction introduction and modus ponens
does not have constant space complexity when space is measured as
the number of formulas; a sequence of derivation examples requir-
ing (logarithmically) growing space can easily be constructed start-
ing from the example above, and continuing with a derivation ofC1

fromA1, A2, A3, A4, A1∧A2 → B1, A3∧A4 → B2, B1∧B2 →
C1, etc.

# Configuration Operation
1 { }
2 {A1 ∨ A2} Read
3 {A1 ∨ A2,¬A1 ∨ A2} Read
4 {A1 ∨ A2, A2} Infer
5 {A2, A1 ∨ ¬A2} Read
6 {A2, A1 ∨ ¬A2,¬A1 ∨ ¬A2} Read
7 {A2,¬A2,¬A1 ∨ ¬A2} Infer
8 {∅,¬A2,¬A1 ∨ ¬A2} Infer

Figure 2: Example derivation using resolution

Most research in time and space complexity of proofs has fo-
cused on the lower bounds for the inference system as a whole.
While we are interested in the lower bounds, we are also interested
in the trade-offs between time and space usage for particular deriva-
tions. For example, consider a set of premises A1, A2, A3, A4,
A1∧A2 → B1,A3∧A4 → B2,B1∧B2 → C1 and a goal formula
A1 ∧A2∧C. It is possible to derive the goal from the premises us-
ing conjunction introduction and modus ponens and configurations
of size 3 in 17 steps (deriving A1 ∧ A2 twice). On the other hand,
with configurations of size 4 the proof is 3 steps shorter.

Different inference systems have different complexity and differ-
ent tradeoffs. Figure 2 illustrates the (non-trivial) space complexity
of resolution proofs in terms of the number of formulas in a config-
uration. The example, which is due to [16], shows the derivation of
an empty clause by resolution from the set of all possible clauses
of the form

∼A1∨ ∼A2 ∨ . . .∨ ∼An
(where ∼Ai is either Ai or ¬Ai), for n = 2. Its space usage is 3
and the length of the proof is 8.

In the multiagent case, when several reasoners can communi-
cate to derive a common goal, an additional resource of interest is
how many messages the reasoners must exchange in order to derive
the goal. In the distributed setting, we assume that each agent has
its own set of premises and inference rules and its own configura-
tion, and that the reasoning of the agents proceeds in lock step. In

addition to Read and Infer, each reasoner can perform two extra
operations:

Skip which leaves its configuration unchanged

Copy if agent i has a formula A in its current configuration, then
agent j can copy it to its next configuration

The goal formula is derived if it occurs in the configuration of one
of the agents. Our model of communication complexity is based on
[29], except that we count the number of formulas exchanged by the
agents rather than the number of bits exchanged. The communica-
tion complexity of a joint derivation is then the (total) number of
Copy operations in the derivation.

Agent 1 Agent 2
# Configuration Op. Configuration Op.
1 {} {}
2 {A1 ∨ A2} Read {A1 ∨ ¬A2} Read
3 {A1 ∨ A2, ¬A1 ∨ A2} Read {¬A1 ∨ ¬A2, A1 ∨ ¬A2} Read
4 {A1 ∨ A2, A2} Infer {¬A2, A1 ∨ ¬A2} Infer
5 {A1 ∨ ¬A2, A2} Read {¬A2, A2} Copy
6 {A1, A2} Infer {{}, A2} Infer

Figure 3: Example derivation using resolution with two agents

In general, in a distributed setting, trade-offs are possible be-
tween the number of messages exchanged and the space (size of
a single agent’s configuration) and time required for a derivation.
The total space use (the total number of formulas in all agent’s
configurations) clearly cannot be less than the minimal configura-
tion size required by a single reasoner to derive the goal formula
from the union of all knowledge bases using all of the available in-
ference rules, however this can be distributed between the agents
in different ways, resulting in different numbers of exchanged mes-
sages. Similarly, if parts of a derivation can be performed in par-
allel, the total derivation will be shorter, though communication of
the partial results will increase the communication complexity. As
an illustration, figure 3 shows one possible distribution of the res-
olution example in figure 2. As can be seen, two communicating
agents can solve the problem faster than a single agent.

4. A BOUNDED MEMORY AND COMMU-
NICATION LOGIC BMCL

In this section we present BMCL, a temporal epistemic logic
which allows us to describe a set of reasoning agents with bounds
on memory and on the number of messages they can exchange. In
this logic, we can express statements like ‘the agents will be able
to derive the goal formula in n inference steps’. The bounds on
memory and communication ability are expressed as axioms in the
logic. In this paper, as an example, we have chosen to axiomatise a
set of agents reasoning using resolution. Other reasoning systems
can be axiomatised in a similar way, and we briefly sketch how to
add model conditions and axioms for reasoners which reason using
conjunction introduction and modus ponens to our logic at the end
of this section.

Let the set of agents be AG = {1, 2, .., nAG}. For simplic-
ity, we assume that they agree on a finite set PROP of proposi-
tional variables (this assumption can easily be relaxed, so that only
some propositional variables are shared). Since each agent uses
resolution for reasoning, we assume that all formulas of the inter-
nal language of the agents are in the form of clauses. For conve-
nience, we define a clause as a set of literals in which a literal is
a propositional variable or its negation. Then the set of literals is
defined as LPROP = {p,¬p|p ∈ PROP}. If L is a literal, then



¬L is ¬p if L is a propositional variable p, and p if L is of the
form ¬p. Let Ω be the set of all possible clauses over PROP , i.e.,
Ω = ℘(LPROP ). Note that Ω is finite.

The only rule of inference that each agent has is the resolution
rule which is defined as follows:

α � L β � ¬L
(α \ {L}) ∪ (β \ {¬L}) Res

which states that if there are two clauses α and β such that one
contains a literal L and the other contains ¬L, then we can derive
a new clause (α \ {L}) ∪ (β \ {¬L}).

Each agent i has a memory of size nM (i) where one unit of
memory corresponds to the ability to store an arbitrary clause. Agent
i can read clauses from its set of premises Ki. We assume that
each Ki is finite. The communication ability of the agents is ex-
pressed by the copy action which copies a clause from another
agent’s memory. The limit on each agent’s communication abil-
ity is nC(i): in any valid run of the system, agent i can perform at
most nC(i) copy actions.

4.1 Syntax of BMCL

The syntax of BMCL is defined inductively as follows.

• 	 is a well-formed formula (wff) of BMCL.

• Ifα is a clause, thenBri α is a wff ofBMCL, for all i ∈ AG.

• Ifα is a clause, thenBciα is a wff ofBMCL, for all i ∈ AG.

• If φ and ψ are wff, then so are ¬φ, φ ∧ ψ.

• If φ and ψ are wff, then so areXφ, φUψ, Y φ, φSψ and Aφ.

Classical abbreviations for ∨, →, ↔ and ⊥ are defined as usual.
The language contains both temporal and epistemic modalities.

For the temporal part of BMCL, we have PCTL∗, a branching
time temporal logic with the past operator.2 Intuitively, PCTL∗

describes infinite trees, or all possible runs of the system, over dis-
crete time. In the temporal logic part of the language, X stands
for next step, U for until, Y for previous step, S for since and A
for ‘on all paths’. We will also use abbreviations Fφ ≡ 	Uφ for
‘some time in the future’, Pφ ≡ 	Sφ for ‘some time in the past’,
Eφ ≡ ¬A¬φ for ‘on some path’ and start ≡ ¬Y	 for the start-
ing state of the system. The epistemic part of the language consists
of belief modalitiesBri α, which means that agent i has read α from
its knowledge base or derived it, and Bciα, which means that i has
copied α from another agent. We define Biα (agent i believes α)
to be Bri α ∨Bciα.

4.2 Semantics of BMCL

The semantics of BMCL is defined by BMCL transition sys-
tems. ABMCL transition systemM = (S,R, V r, V c) is defined
as follows.

• S is a non-empty set of states.

• R ⊆ S × S is a total binary relation, i.e. for any s ∈ S,
there exists t ∈ S such that (s, t) ∈ R. Moreover, it is
also required that (S,R) is a tree-frame. A branch σ is an
infinite sequence (s0, s1, ..) such that (si, si+1) ∈ R for all
i ≥ 0, σi denotes the element si of σ and σ≤i is the prefix
(s0, s1, .., si) of σ. The set of all branches is denoted as
BR. Note that since (S,R) is a tree-frame every state s has
a unique past past(s) = σ≤i where σi = s.

2The reason we use PCTL∗ rather than CTL∗ is that we need the
past operator to express the bound on agent communication.

• V r : S × AG → ℘(Ω), is a mapping that defines for each
state which formulas an agent believes due to reading or in-
ference.

• V c : S × AG → ℘(Ω), is a mapping that defines for each
state which formulas an agent copied from the memories of
other agents.

The truth of a BMCL formula in a state at point n of a path σ
of M is defined inductively as follows:

• M,σ, n |= Bri α iff α ∈ V r(σn, i),

• M,σ, n |= Bciα iff α ∈ V c(σn, i),

• M,σ, n |= ¬φ iff M,σ, n �|= φ,

• M,σ, n |= φ ∧ ψ iff M,σ, n |= φ and M,σ, n |= ψ,

• M,σ, n |= Xφ iff M,σ, n+ 1 |= φ,

• M,σ, n |= φUψ iff ∃m ≥ n such that ∀k ∈ [n,m)M,σ, k |=
φ and M,σ,m |= ψ,

• M,σ, n |= Y φ iff n > 0 and M,σ, n− 1 |= φ,

• M,σ, n |= φSψ iff ∃m ≤ n such that ∀k ∈ (m,n]M,σ, k |=
φ and M,σ,m |= ψ,

• M,σ, n |= Aφ iff ∀σ′ ∈ BR such that σ′
≤n = σ≤n,

M,σ′, n |= φ.

Now we describe conditions on the models. The first set of con-
ditions refers to the accessibility relation R. The intuition behind
the conditions is that R corresponds to the agents executing ac-
tions 〈a1, . . . , anAG〉 in parallel, where action ai is a possible ac-
tion (transition) for the agent i in a given state. Actions of each
agent i are: Readi,α,β (reading a clause α from the knowledge
base and erasing β), Resi,α1,α2,L,β (resolving α1 and α2 on L
and erasing β),Copyi,α,β (copying α from another agent and eras-
ing β), Erasei,α (erasing α), and Nulli (doing nothing), where
α, α1, α2, β ∈ Ω and L ∈ LPROP .3 Intuitively, β is an arbitrary
clause which gets overwritten if it is in the agent’s memory. If the
agent’s memory is full (|V r(s, i)| + |V c(s, i)| = nM (i)), then β
has to be in V r(s, i) ∪ V c(s, i), otherwise we cannot add an extra
formula to it (this would violate the condition on memory defined
below). Not all actions are possible in any given state (for example,
to perform a resolution step from state s, the agent has to have two
resolvable clauses in s). Let us denote the set of all possible actions
by agent i in state s by Ri(s).

Below is the definition of Ri(s):

DEFINITION 1 (AVAILABLE ACTIONS). For every state s and
agent i,

1. Readi,α,β ∈ Ri(s) iff α ∈ Ki and β ∈ Ω, or if |V r(s, i)|+
|V c(s, i)| = nM (i) then β ∈ V r(s, i) ∪ V c(s, i).

2. Resi,α1,α2,L,β ∈ Ri(s) iff α1, α2 ∈ Ω, α1 � L, α2 � ¬L,
α1, α2 ∈ V r(s, i) ∪ V c(s, i), α = (α1 \ {L}) ∪ (α2 \
{¬L}) /∈ Ki and β is as before.

3The Erasei,α action is introduced for purely technical reasons,
to obtain a simpler axiomatisation of the system. The optimal se-
quences of actions found by the system when verifying properties
of agents will contain no Erase actions so will not affect the veri-
fication process.



3. Copyi,α,β ∈ Ri(s) iff there exists j �= i such that α ∈
V r(s, j)∪V c(s, j) and past(s) does not contain more than
nC(i) − 1 transitions of the form Copyi,β , and β is as be-
fore.4

4. Nulli is always in Ri(s).

5. There are no conditions on Erasei,α ∈ Ri(s).

Now we define effects of actions on the agent’s state (assign-
ments V r(s, i) and V c(s, i)).

DEFINITION 2 (EFFECTS OF ACTIONS). For each i ∈ AG,
the result of performing an action a in state s is defined if a ∈
Ri(s) and has the following effect on the assignment of clauses to
i in the successor state t:

1. if a is Readi,α,β: V r(t, i) = (V r(s, i) \ {β}) ∪ {α} and
V c(t, i) = V c(s, i) \ {β}.

2. if a is Resi,α1,α2,L,β: V r(t, i) = (V r(s, i) \ {β}) ∪ {α}
and V c(t, i) = V c(s, i) \ {β}, where α = (α1 \ {L}) ∪
(α2 \ {¬L}).

3. if a is Copyi,α,β: V c(t, i) = (V c(s, i) \ {β}) ∪ {α} and
V r(t, i) = V r(s, i) \ {β}.

4. if a is Nulli: V r(t, i) = V r(s, i) and V c(t, i) = V c(s, i)

5. if a isErasei,α then V r(t, i) = V r(s, i)\{α} and V c(t, i) =
V c(s, i) \ {α}, where α ∈ Ω.

DEFINITION 3. BMCM(K1, .., KnAG , nM , nC) is the set of
models M = (S,R, V,C) such that:

1. For every s and t, R(s, t) iff for some tuple of actions
〈a1, . . . , anAG〉, ai ∈ Ri(s) and the assignment in t satisfies
the effects of ai for every i in {1, . . . , nAG}.

2. For every s and a tuple of actions 〈a1, . . . , anAG〉, if ai ∈
Ri(s) for every i in {1, . . . , nAG}, then there exists t ∈ S
such that R(s, t) and t satisfies the effects of ai for every i in
{1, . . . , nAG}.

3. The bound on each agent’s memory is set by the following
constraint on the mappings V r and V c:

|V r(s, i)| + |V c(s, i)| ≤ nM (i) for all s ∈ S and i ∈ AG

Note that the bound nC(i) on each agent i’s communication ability
(no branch contains more than nC(i) Copy actions by agent i)
follows from the fact that Copyi is only enabled if i has performed
fewer than nC(i) copy actions in the past.

4.3 Axiomatisation of BMCL

Before we give an axiomatisation for the set of models defined
above, we need the following abbreviations for expressing that i has
performed at least k copy actions in the past. A successful copying
of a clause α by agent i from an agent j is defined by the following
formula:

copied(i, j, α) ≡ Bjα ∧ ¬Biα ∧XBciα
4Assume that the state contains a communication counter for each
agent i, which is set to 0 in the start state and is incremented every
time i performs a copy action. After the counter reaches nC(i),
agent i cannot perform any more copy actions.

Copying of any clause from any agent by agent i is defined as fol-
lows:

copiedi ≡
∨

j∈AG, α∈Ω

copied(i, j, α)

So to say that there are at least k copy actions in agent i’s past, we
can use

C≥
i (k) = (Y P (copiedi ∧ Y P (copiedi ∧ . . . Y P (copiedi) . . .)︸ ︷︷ ︸

k times

and to say that there are fewer than k copy actions in agent i’s past,
we can say

C≤
i (k) = ¬(Y P (copiedi ∧ Y P (copiedi ∧ . . . Y P (copiedi) . . .)︸ ︷︷ ︸

k+1 times

To define exactly k copies, we can useCi(0) = C≤
i (0) andCi(k) =

C≥
i (k) ∧ C≤

i (k) for k > 0.
Consider the following set of axiom schemata:

A1 Axioms and rules of PCTL∗ as given in [27].

A2
∧
αq∈QBiαq ∧Ci(n) → EX(

∧
αq∈QBiαq ∧Ci(n)∧Bri α)

for all α ∈ Ki, i ∈ AG, Q ⊆ Ω with |Q| < nM (i), and
n ≥ 0.

A3
∧
αq∈QBiαq∧Ci(n)∧Biα1∧Biα2 → EX(

∧
αq∈QBiαq∧

Ci(n)∧Biα) for any α1 and α2 such that α1 � L and α2 �
¬L for some literal L, α = (α1 \{L})∪(α2 \{¬L}) �∈ Ki,
Q ⊆ Ω with |Q| < nM (i), and n ≥ 0.

A4
∧
αq∈QBiαq∧Ci(n)∧Bjα∧C≤

i (nC(i)) → EX(
∧
αq∈QBiαq∧

Ci(n + 1) ∧ Bciα) for all i �= j ∈ AG, Q ⊆ Ω with
|Q| < nM (i), and n ≥ 0.

A5 EX(Biα1 ∧Biα2) → Biα1 ∨Biα2

A6 EX(¬Biα1 ∧ ¬Biα2) → (¬Biα1 ∨ ¬Biα2)

A7 EX(Bri α∧Ci(n)) → Bri α∨(¬Bri α∧Ci(n)) for all α ∈ Ki

A8 EX(Bri α∧Ci(n)) → Bri α∨(¬Bri α∧
∨

(α1,α2)∈Res(α)(Biα1∧
Biα2 ∧Ci(n))) for all α /∈ Ki and Res(α) = {(α1, α2) ∈
Ω×Ω|α1 � L, α2 � ¬L and α = (α1\{L})∪(α2\{¬L})}
for some literal L and n ≥ 0

A9 EX(Bciα∧Ci(n)) → Bciα∨(¬Bci α∧Ci(n−1)∧(
∨
j∈AGBjα))

A10 Biα1 ∧ .. ∧ BiαnM → ¬BiαnM +1 where i = 1, .., nAG,
and αi �= αj for all i �= j

A11 C≤
i (nC(i))

A12
∧
j∈J EX(

∧
q∈QBjαq∧Cj(kj)) → EX

∧
j∈J(

∧
q∈QBjαq∧

Cj(kj)) where J ⊆ AG and all indices j are distinct, and
Q ⊆ Ω.

A13 φ→ EXφ

LetBMCL(K1, .., KnAG , nM , nC) be the logic defined by the
our axiomatization. Then we have the following result.

THEOREM 1. BMCL(K1, .., KnAG , nM , nC) is sound and weakly
complete with respect to BMCM(K1, ..,KnAG , nM , nC).



PROOF. The proof of soundness is standard. Due to lack of
space, we only prove validity of the first BMCL axiom.

Let us consider A2 and a modelM = (S,R, V r, V c) ofBMCM
(K1, . . . ,KnAG , nM ). Let σ = (s0, s1, . . .) ∈ BR. We need
to prove for any m, that if M,σ,m |= ∧

αq∈QBiαq ∧ Ci(n),
then M,σ,m |= EX(

∧
αq∈QBiαq ∧ Ci(n) ∧ Brα) where α ∈

Ki, i ∈ AG, Q ⊆ Ω with |Q| < nM (i) and n ≥ 0. Since
α ∈ Ki, Readi,α,β ∈ Ri(σn) for some β ∈ Ω \ Q. Therefore,
there exists t ∈ S such that R(s, t) and t satisfies the effects of
Readi,α,β . In other words, we obtain V r(t, i) = V r(s, i)∪ {α} \
{β} and V c(t, i) = V c(s, i)\{β}, this shows V r(t, i) � α. Since
M,σ,m |= ∧

αq∈QBiαq, V r(s, i)∪V c(s, i) � αq for all q ∈ Q.
Moreover, since |Q| < nM (i), we have β ∈ Ω \ Q, therefore
V r(t, i) ∪ V c(t, i) � αq . Then, M,σ′,m+ 1 |= ∧

αq∈QBiαq ∧
Brα for some σ′ ∈ BR such that σ′

≤m+1 = (σ1, . . . , σm, t).
Since M,σ,m |= Ci(n), we have that agent i has performed

exactly n copy actions on the prefix (σ1, . . . , σm). Moreover, the
action that agent i performs between σm and t is to read α fromKi,
therefore it has still performed exactly n copy actions on the prefix
(σ1, . . . , σm, t). Then, it is straightforward that M,σ′, m + 1 |=
Ci(n). That gives us M,σ′,m + 1 |= ∧

αq∈QBiαq ∧ Brα ∧
C(i, n). Since σ′

≤m = σ≤m and R(σm, t), we obtain M,σ,m |=
EX(

∧
αq∈QBiαq ∧ Ci(n) ∧Brα).

To prove completeness, a satisfying model for a consistent for-
mula is constructed as in the completeness proof ofPCTL∗ from [27].
Then we use the axioms to show that this model is inBMCM(K1, . . .,
KnAG , nM , nC).

4.4 Systems of heterogeneous reasoners
Changing the logic to accommodate agents which reason us-

ing a different set of inference rules rather than resolution is rel-
atively straightforward. As an illustration, we show how to add
model conditions and axioms for agents which use modus ponens
and conjunction introduction. We assume that the knowledge base
of these reasoners contains literals and implications of the form
L1 ∧ . . . ∧ Ln → L.

First of all, we need to change the conditions on models so that
instead of using the Res action, a agent could change its state by
performing MP and AND actions. Let i be an (MP , AND) rea-
soner. Define Ωi asKi closed under subformulas and the following
conjunction introduction: if Q is a set of distinct literals from Ki,
then ∧Q ∈ Ωi. An agent i has actionsReadi,φ,ψ for any formula φ
in Ki and ψ ∈ Ω (where ψ is the overwritten formula), Copyi,φ,ψ
for any formula φ ∈ Ωi, Nulli, Erasei, and instead of Res it has
MPi,φ1,φ1→φ2,ψ and ANDi,φ1,φ2,ψ.

DEFINITION 4 (AVAILABILITY OF MP AND AND). For any
s ∈ S:

1. MPi,φ1,φ1→φ2,ψ ∈ Ri(s) iff φ1, φ1 → φ2 ∈ V r(s, i) ∪
V c(s, i) and ψ ∈ Ωi.

2. ANDi,φ1,φ2,ψ ∈ Ri(s) iff φ1, φ2 ∈ V r(s, i)∪V c(s, i) and
ψ ∈ Ωi.

DEFINITION 5 (EFFECTS OF MP AND AND). For every s ∈
S, the result of performing action a is defined if a ∈ Ri(s) and has
the following effect on the resulting state t:

1. if a isMPi,φ,φ→φ2,ψ then V r(t, i) = V r(s, i)∪{φ2}\{ψ}
and V c(s, i) = V c(t, i) \ {ψ}.

2. if a is ANDi,φ1,φ2,ψ iff V r(t, i) = V c(s, i) ∪ {φ1 ∧ φ2} \
{ψ} and V c(s, i) = V c(t, i) \ {ψ}.

The corresponding axioms for the (MP , AND) reasoner are as
follows:

A13
∧
q∈QBiφq ∧ Ci(n) ∧Biφ1 ∧Bi(φ1 → φ2) →
EX(

∧
q∈QBiφq ∧ Ci(n) ∧ Biφ2) where Q ⊆ Ωi with

|Q| < nM (i)

A14
∧
q∈QBiφq ∧Ci(n)∧Biφ1 ∧Biφ2 → EX(

∧
q∈QBiφq ∧

Ci(n) ∧ Bi(φ1 ∧ φ2)) where Q ⊆ Ωi with |Q| < nM (i),
and φ1, φ2 ∈ Ωi.

A15 EX(Bi(φ1 ∧ φ2) ∧ Ci(n)) → (Bi(φi ∧ φ2) ∨ (¬Bi(φi ∧
φ2) ∧Biφ1 ∧Biφ2 ∧ Ci(n)))

A16 EX(Biφ2 ∧ Ci(n)) → (Biφ2 ∨ (¬Biφ2 ∧ Ci(n)∧∨
φ1→φ2∈Ki

(Biφ1 ∧ Bi(φ1 → φ2))) for all φ2 �∈ Ki.

Now we can add the conditions and axioms for the (MP ,AND)
reasoner to the system for resolution reasoners and obtain an ax-
iomatisation for the heterogeneous system of reasoners.

5. VERIFYING RESOURCE BOUNDS
The logic BMCL allows us to express precisely how beliefs of

a set of resource-bounded agents change over time, and, given a
memory and communication bound for each agent, to verify for-
mulas which state that a certain belief will or will not be acquired
within a certain number of steps. For example, given a system of
two agents with premises K1 = {{p1, p2}, {¬p1, p2}} and K2 =
{{p1,¬p2}, {p1,¬p2}}, with bounds nM (1) = 2, nM (2) = 2
(both agents have 2 memory cells) and nC(1) = 0, nC(2) = 1
(agent 1 cannot copy anything and agent 2 can copy one clause),
we can prove that start → EX5B2({}) (i.e., from the start state,
the agents can derive the empty clause in 5 steps).

However, rather than deriving such properties by hand, it is more
convenient to use an automatic method to verify them. In this sec-
tion, we describe how the models inBMCM(K1, ..,KnAG , nM , nC)
can be encoded as an input to a model-checker to allow the auto-
matic verification of the properties expressing resource bounds.

5.1 Model checker encoding
It is straightforward to encode a BMCM model of such a sys-

tem for a standard model checker, and to verify resource bounds
using existing model checking techniques. For the examples re-
ported here, we have used the Mocha model checker [10].

States of the BMCM models correspond to an assignment of
values to state variables in the model-checker. The state variables
representing an agent’s memory are organised as a collection of
‘cells’, each holding at most one clause. For an agent i with mem-
ory bound nM (i), there are nM (i) cells. Each cell is represented
by a pair of bitvectors, each of length k = |PROP |, represent-
ing the positive and negative literals in the clause in some standard
order (e.g., lexicographic order). For example, if PROP contains
the propositional variables A1, A2 and A3 with index positions 0,
1 and 2 respectively, the clause A1 ∨ ¬A3 would be represented
by two bitvectors: “100” for the positive literals and “001” for the
negative literals. This gives reasonably compact states.

Actions by each agent such as reading a premise, resolution and
communication with other agents are represented by Mocha atoms
which describe the initial condition and transition relation for a
group of related state variables. Reading a premise (Readi,α,β)
simply sets the bitvectors representing an arbitrary cell in agent
i’s memory to the appropriate values for the clause α. Resolu-
tion (Resi,α1,α2,L,β) is implemented using simple bit operations
on cells containing values representing α1 and α2, with the results



# agents Distrib. Memory Comm. Time

1 Symmetric 3 – 8
2 Symmetric 2, 2 1, 0 6
2 Symmetric 3, 3 1, 0 6
2 Symmetric 3, 3 0, 0 8
2 Symmetric 2, 1 1, 1 9
2 Asymmetric 2, 2 2, 1 7
2 Asymmetric 3, 3 2, 1 7
2 Asymmetric 3, 1 1, 0 8

Table 1: Tradeoffs between resource bounds

being assigned to an arbitrary cell in agent i’s memory. Commu-
nication (Copyi,α,β) is implemented by copying the values repre-
senting α from a cell of agent j to an arbitrary cell of agent i. To
express the communication bound, we use a counter for each agent
which is incremented each time a copy action is performed by the
agent. After the counter for agent i reaches nC(i), the Copyi,α,β
action is disabled.

Mocha supports hierarchical modelling through composition of
modules. A module is a collection of atoms and a specification of
which of the state variables updated by those atoms are visible from
outside the module. In our encoding, each agent is represented by
a module. A particular distributed reasoning system is then simply
a parallel composition of the appropriate agent modules.

The specification language of Mocha is ATL, which includes
CTL. We can express properties such as ‘agent imay derive belief
φ in n steps’ asEF tr(Biα) where tr(Biα) is a suitable encoding
of the fact that a clause α is present in the agent’s memory (either
as a disjunction of possible values of cell bitvectors, or as a special
boolean variable which becomes true when one of the cells contains
a particular value, for example all 0s for the empty clause). To
obtain the actual derivation we can verify the negation of a formula,
for example AG ¬tr(Biα), and use the counterexample trace to
show how the system reaches the state where α is proved.

5.2 Examples
Consider a single agent (agent 1) whose knowledge base con-

tains all clauses of the form ∼A1∨ ∼A2 where ∼Ai is either Ai
or ¬Ai, and which has the goal of deriving the empty clause. We
can express the property that agent 1 will derive the empty clause
at some point in the future as EF B1{}.

Using the model checker, we can show that deriving the empty
clause requires a memory bound of 3 and 8 time steps (see Figure
2).5 We can also show that these space and time bounds are min-
imal for a single agent; i.e., increasing the space bound does not
result in a shorter proof.

With two agents and a symmetric problem distribution (i.e., each
agent has all the premises ∼A1∨ ∼A2), we can show that a mem-
ory bound of 2 (i.e., the minimum required for resolution) and a
communication bound of 1 gives a proof of 6 steps (see Figure 3).
Reducing the communication bound to 0 results in no proof, as,
with a memory bound of 2 for each agent, at least one clause must
be communicated from one agent to the other. Increasing the space
bound to 3 (for each agent) does not shorten the proof, though it
does allow the communication bound to be reduced to 0 at the cost
of increasing the proof length to 8 (i.e., the single agent case). Re-
ducing the total space bound to 3 (i.e., 2 for one agent and 1 for
the other, equivalent to the single agent case) increases the number
of steps required to find a proof to 9 and the communication bound
to 1 for each agent. In effect, one agent functions as a cache for a

5The space required for problems of this form is known to be log-
arithmic in the number of premises [16].

clause required later in the proof, and this clause must be copied in
both directions.

If the problem distribution is asymmetric, e.g., if one agent has
premises A1 ∨ A2 and ¬A1 ∨ ¬A2 and the other has premises
¬A1 ∨A2 and A1 ∨¬A2, then with a memory bound of 2 for each
agent, we can show that the time bound is 7, and the communication
bound is 2 for the first agent and 1 for the second. Increasing the
memory bound for each agent to 3 does not reduce the time bound.
However the memory bound can be reduced to 1 and the commu-
nication bound reduced to 1 for one agent and 0 for the other, if the
time bound is increased to 8 (again this is equivalent to the single
agent case, except that one agent copies the clause it lacks from
the other rather than reading it). These tradeoffs are summarised in
Table 1.

Increasing the size of the problem increases the number of possi-
ble tradeoffs, but similar patterns can be seen to the 2-variable case.
For example, if the agent’s knowledge base contain all clauses of
the form ∼A1∨ ∼A2∨ ∼A3, then a single agent requires a mem-
ory bound of 4 and 16 steps to achieve the goal. In comparison,
two agents, each with a memory bound of 2, require 13 steps and 4
messages to derive the goal.

While extremely simple, these examples serve to illustrate the
interaction between memory, time and communication bounds, and
between the resource distribution and the problem distribution.

6. RELATED WORK
There exist several approaches to epistemic logic which model

reasoners as resource-bounded (not logically omniscient), includ-
ing the deduction model of belief [24], step logic and active logic
[15, 20], algorithmic knowledge [21, 17, 26], and other syntactic
epistemic logics [14, 3, 8, 22] where each inference step takes the
agent into the next (or some future) moment in time. A logic where
the depth of belief reasoning is limited is studied in [19].

A considerable amount of work has also been done in the area of
model-checking multi-agent systems (see, e.g., [13, 12]). However,
this work lacks a clear connection between the way agent reason-
ing is modelled in the agent theory (which typically assumes that
the agents are logically omniscient) and the formalisations used for
model checking, and emphasises correctness rather than the inter-
play between time, memory and communication, and the ability of
agents to derive a certain belief.

The current paper extends the work of [4] which proposed a
method of verifying memory and time bounds in a single reasoner
which reasons in classical logic using natural deduction rather than
resolution. We also extend the work in [7] which analyses a system
of communicating rule-based reasoners and verifies time bounds
for those systems, but assumes unlimited memory. As far as we
are aware, the logic we propose in this paper is the first attempt to
analyse time, space and communication bounds of reasoners in one
logical system, and verify properties relating to all three resources
using a model-checker.

7. CONCLUSION
In this paper, we analyse the time, space and communication re-

sources required by a system of reasoning agents to achieve a goal.
We give a rigorous definition of the measures for each of those re-
sources, and introduce the epistemic logic BMCL in which we
can express properties of a system of resource-bounded reasoning
agents. In particular, we can express bounds on memory and com-
munication resources as axioms in the logic. We axiomatise a sys-
tem of agents which reason using resolution (other reasoning sys-
tems can be axiomatised in a similar way), prove that the resulting



logic is sound and complete, and show how to express properties of
the system of reasoning agents in BMCL. Finally, we show how
BMCL transition systems can be encoded as input to the Mocha
model-checker and how properties, such as existence of derivations
with given bounds on memory, communication, and the number of
inference steps, can be verified automatically.

In future work, we plan to consider logical languages containing
primitive operators which would allow us to state the agents’ re-
source limitations as formulas in the language rather than axioms,
and consider agents reasoning about each other’s resource limita-
tions. We also would like to consider agents reasoning in a simple
epistemic or description logic.
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