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In this article, two models of the forecast of time series obtained from the chaotic dynamic systems are presented: the Lorenz
system, the manufacture system, and the volume of the Great Salt Lake of Utah. The theory of the nonlinear dynamic systems
indicates the capacity of making good-quality predictions of series coming from dynamic systems with chaotic behavior up to a
temporal horizon determined by the inverse of the major Lyapunov exponent. The analysis of the Fourier power spectrum and
the calculation of the maximum Lyapunov exponent allow confirming the origin of the series from a chaotic dynamic system.
The delay time and the global dimension are employed as parameters in the models of forecast of artificial neuronal networks
(ANN) and support vector machine (SVM). This research demonstrates how forecast models built with ANN and SVM have
the capacity of making forecasts of good quality, in a superior temporal horizon at the determined interval by the inverse of the
maximum Lyapunov exponent or theoretical forecast frontier before deteriorating exponentially.

1. Introduction

The forecast of time series allows the decision-maker to for-
mulate strategies [1]. The qualities of the evaluated forecasts
through the indicators of performance are essential in the
atmospheric sciences and in manufacture, economy, and
physical science [2–4]. The limits of the forecasts of the cha-
otic time series are theoretically defined by the value of the
inverse of the maximum Lyapunov exponent. This value
establishes the maximum forecast steps of the time series.
The research analyzes the forecasting capacity in the steps
after the theoretical boundary using ANN and SVM.

The research addresses the chaotic time series with
defined characteristics by phase spaces and their behavior
associated with the initial conditions of the variables, and
the studied time series in the research have an erratic or
chaotic behavior. This type of series is analyzed through
algorithms to define the stable or chaotic origin of the

dynamic system, the generator of the series. The character-
ization of the dynamics of the system allows adjusting the
different models of forecast of the time series [5]. Takens’s
insert or encrust theorem is used to rebuild the dynamic
system and its phase space from a particular set of data
[5, 6]. Finally, this rebuilt system allows forecasting future
periods through the information of the m-dimensional
rebuilt dynamic system to forecast, in one or several steps,
the time series.

For the chaotic time series, the forecast models will have
an exponential divergence between the true values and the
predicted ones. According to [7, 8], the predictability time
(TP) of a system for a disturbance (ε) with an error (Δ) and
with the maximum Lyapunov exponent (λmax) is given by

TP ≈
1

λmax
ln

Δ
ε
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When modifying (1) for a time series, together with the
elimination of errors and associated disturbances, (2) can
be obtained; this equation defines the predictability time for
a chaotic temporary series or forecast horizon (FH).

FH =
1

λmax
, HP ∈ℕ 2

The forecast models used are ANN and SVM, due to their
capacity of recognizing patterns in databases. The strategies
to predict vary depending on the dynamic system and the
experiments made with the time series. The possible strate-
gies are the combinations between single or multiple inputs
and single or multiple outputs.

This research studies the forecast error and its later
exponential growth to FH in chaotic temporary series,
through the forecast models ANN and SVM. The studied
series are stationary; its probability of change of state does
not depend on time.

In [9, 10], ANN is used based on the mobile average auto-
regressive to forecast in several steps coming from the chaotic
attractor of Lorenz; it demonstrates an exponential decay
of the capacity of forecasting in the time steps after the fore-
cast frontier. The forecast of the series of Lorenz through
ANN is studied, based on functions of radial basis and hybrid
grouping methods to refine the parameters of the functions
of radial basis. The forecast capacity with a determination
coefficient of 0.9 up to 90 periods is maintained.

Authors propose the study of a series coming from a
system based on a differential equation with the Mackley-
Glass delay. This series is forecast with an ANN of 3 hidden
layers, getting capacities of forecasting up to 120 steps.
During the forecast competition NN3, the lazy method
allows forecasting the series with the symmetric mean abso-
lute percentage error (SMAPE)= 16.5%, using multiple
entries and multiple outputs.

Authors such as [11–13] use support vector machine
regression (SVMR) with different strategies, with the objec-
tive of forecasting different chaotic series. It is determined
that SVMR with multiple exits presents better results on
iterative machines.

According to [14], the chaotic system of Lorenz is used to
validate SVM with minimum squares. The structures of
Bayesian evidence have a better performance in relation to
an SVM without this structure. These authors study a series
corresponding to the process of unloading materials in a
mining industry; in this research, the phase space of the sys-
tem is rebuilt, getting from the forecast of the series a relative
error in the rank 0.1145 and 0.0162.

In [15], a series of the price of coal is forecast through the
ANN modifying the number of neurons in the hidden layer,
resulting in an optimum of 7 neurons with a mean absolute
percentage error (MAPE)=1.79% in the stage of testing.
On the other hand, authors such as [16] use an ANN with
genetic algorithms to optimize the weights of the network;
the objective is to forecast a series corresponding to the
power of the wind, and the results show that this type of
hybrid network is better than the normal ANN.

The study of [17] uses an ANN with restricted machines
of Boltzmann, with an optimization of a colony of particles to
decide the size of the network. Its objective is to forecast the
series known as “the CATS benchmark.”

In [18], a time series coming from a chaotic circuit of a
resonator diode is forecast, through a network of perceptrons
with multiple layers in two stages. This network optimizes
the combination of the prediction by nearby neighborhoods,
getting a value of the mean squared error (MSE) equal to
0.114 with a prediction up to 20 steps.

On the other hand, authors such as [19] use the same con-
cept of dynamic neighborhoods with local adaptive models to
forecast tides under different conditions in the North Sea of
Europe. Different chaotic uni- or multivariable models are
made with direct prediction andmultiple steps, with the objec-
tive of comparing them with ANN. The results of the forecast
obtained by the different ANNmodels and the chaotic models
of direct prediction do not show meaningful differences.

Authors such as [20] use SVM to predict the characteris-
tics of the channel of a communication line with low voltage
power; the results showed a decay of the capacity of the fore-
cast when prediction steps increase. The bibliographic search
does not find predictions beyond the frontiers of the forecast
for different times of sampling.

On the other hand, in [21], an ANNwith a hidden layer is
used to predict iteratively up to FH the monitoring system of
bridges, getting a MSE of 0.0185. Authors such as [22] pro-
pose a local model of polynomials of Chebyshev to predict
the fall of the water into the river using polynomials of the
second and third degree. The relative error in FH grows expo-
nentially in relation to the previous periods.

Finally, authors such as [23, 24] study the predictive
capacity of the model of ANN to evaluate the value of copper
in the international markets. They study nonlinear character-
istics of the time series and determine its behavior through
the reconstruction of the chaotic attractor and the analysis
of visual recurrence. The results allow defining two cycles
of the price of the copper and making very short-term fore-
cast of the values of the price of copper always within FH of
the maximum Lyapunov exponent.

All the researches establish the capacity of the forecast of
the ANN and SVM methods, together with their perfor-
mance indicators within FH. Based on the previous investiga-
tions, in this research, the performance of the indicators
outside of theoric FH is studied, up to the limit defined by
the exponential growth of the performance indicators.

2. Materials and Methods

2.1. Dynamic Characterization of the System. Takens’s theo-
rem is used to reproduce the geometric structure of the mul-
tidimensional dynamic or strange attractor y n , through a
temporary measurement of a variable. Equation (3) corre-
sponds to the point m-dimensional of the dynamic system
with the time n, with n-umpteenth elements of the time
series, delay time (τ), and global dimension (m).

y n = Sn, Sn+τ,… , Sn+ m−1 ∗τ 3
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According to [25, 26], the elements obtained from a time
series that characterized the dynamic system are as follows:

(1) Periodicity: the spectrum of power studies the nature
of a signal. It is calculated as the square of the abso-
lute value of the discrete Fourier transform. For series
with chaotic behavior, the spectrum will be continu-
ous in the interval of frequencies.

(2) Delay time: the delay time defines the distance
among elements of the series for the calculation of
the global dimension. The most important delay
time corresponds to the value τ where the first min-
imum of the function of the mutual average function
is obtained.

(3) Global dimension: it is the necessary dimension to be
able to reproduce the dynamic of the system. Calcu-
lated τ can use the algorithm of the next false neigh-
borhoods and corresponds to the value where the
percentage of false neighbors is zero.

(4) Maximum Lyapunov exponent: the distance of these
points in a time n is given the two next points and is
given by

δΔn ≅ δ0 ∗ eλ∗Δn, 4

where δ0 is the initial distance of the points, e is the Euler
constant, λ is the Lyapunov exponent, and Δn is the time dif-
ferential between near points. The system can have more
than one exponent, but the greatest value to evaluate the exis-
tence of a chaotic system is studied. For a chaotic system, the
value of the exponent is found in the rank 0, 1 . The Kantz
algorithm is used for the calculation of the exponent.

2.2. Forecast Models. The application of the theory of non-
linear dynamic systems allows the adjustment of the fore-
cast models. The entry of the models uses the coordinates
m-dimensional of the attractor point in a time n.

2.2.1. Artificial Neuronal Networks.A neuronal backpropaga-
tion network with only a layer of hidden neurons is used, and
a training of Bayesian regularization is performed to adjust
the weights and trends of the hidden layer and the output
layer. This procedure of learning is based on the heuristic
algorithm of nonlinear Levenberg-Marquardt optimization.
The activation function Zk is a hyperbolic tangent function
for the neurons of the hidden layer and a linear identity func-
tion for those of the output layer.

Thus, the output of the kth neuron is represented in

Zk =〠
j

θ jk ∗ tanh 〠
i

wijxi +woj + θok, 5

where θjk and θok are the weights and trends of the output
layer, respectively, wij and woj are the weights and trends of
the hidden layer, respectively, and xi are the elements of the
time series.

2.2.2. Support Vector Machines. According to [27], SVM use
the model of minimum squares, with restrictions of equality,
a function of quadratic cost and a function of nonlinear
mapping φ over the entry vectors wT due to the chaotic
characteristics of the series.

This mapping allows the containment of the points in a
superior space where they are linearly contained by hyper-
planes yk. The problem of optimization in the primal space
is defined:

min
w,b,e

 J w, e =
1
2
wTw +

1
2
γ〠

n

k=1
e2k, 6

subject to

yk =wTφ xk + b + ek, k = 1,… ,N , 7

where γ is a parameter, xk is the n-umpteenth element of
the series, b is the trend, and ek is the containment error.
Later, it is proceeded to transform the previous problem
to its version in the dual space. Besides, the expansion of
the mapping resulting in a kernel function (K) is made:
K xi, xj = φ xi

Tφ xj , i, j = 1,… ,N . The kernel function
used in this research is the function of radial basis, where
σ is a parameter of

K xi, xj = exp −
xi − xj

2

2σ2 8

Finally, in (9), the resulting approach of the optimiza-
tion problem in the dual space y x is

y x = 〠
N

j=1
αjK x, xj + b, 9

where α belongs to 0, γ .

3. Methodology

The methodology is defined by two steps: the dynamic char-
acterization of the system and its simulation, forecast, and
performance of the model. The dynamic characterization of
the system is defined by the mathematical development of
the spectrum of power, the mutual average information func-
tion, the algorithm of the near false neighbors, and finally the
calculation of the maximum Lyapunov exponent.

It is defined as an experiment Sj with j as the number of
periods to forecast. Different experiments are proposed Sj >
FH, where FH is the number of steps of the frontier of the
forecast. For each Sj, the attractor is reconstructed and, with
the information of the phase space, the model of the forecast
with its matrices IN andOUT is built ((10)). Each matrix will
have a total ofN − m − 1 ∗ τ − Sj lines, whereN is the num-
ber of elements in the series.
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IN n = Sn Sn+τ ⋯ Sn+ m−1 ∗τ ,

OUT n = Sn+ m−1 ∗τ+1 Sn+ m−1 ∗τ+2 ⋯ Sn+ m−1 ∗τ+sj

10

In the process of simulation of the parameters of each
model, the modification of the number of neurons in the hid-
den layer is made for each ANN. For the case of the SVM, γ
parameters are varied of the problem of optimization and σ
of the function of radial basis. The parameters of the SVM
were settled, and the training of the model with 80% of the
matrices IN and OUT is carried out, as well as the sampling
with the remaining 20% of the matrices. In the stage of sam-
pling for both forecast models ANN and SVM, the perfor-
mance indicators are calculated. Finally, the parameter that
has the minimum values of the indicators MSE, MAPE,
RMSE, and index aggregation (IA) is chosen.

MSE =
1
t
〠
t

i=1
yi − ŷi

2,

MAPE =
1
t
〠
t

i=1

yi − ŷi
yi

∗ 100%,

RMSE =
∑T

i=1 yi − ŷi
2

∑T
i=1 yi

2 ,

IA = 1 −
∑t

i=1 yi − ŷi
2

∑t
i=1 yi − ŷi

2
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Figure 1: Variable x t of the Lorenz system.
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Figure 2: Average of parts in the waiting line.
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Figure 3: Volume of the Great Salt Lake (acre∗feet).
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Figure 4: Power spectrum of Lorenz.

0

1010

105

100

1200 2400 3600 60004800

Figure 5: Power spectrum of the manufacturing system.
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Figure 6: Power spectrum of GSL.

Table 1: Characteristics of the series.

Series τ M λmax HP

Lorenz 10 3 1.51 1

Manufacturing system 4 5 0.43 2

Great Salt Lake 12 4 0.18 5

Table 2: Parameters for Lorenz.

Sj
SVM ANN

γ σ HN

1 3500001 0.06 62

2 3500001 0.06 77

3 3500001 0.06 36

4 3500001 0.06 47

6 3500001 0.05 62

12 3500001 0.05 70
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Figure 7: Lorenz system: indicators from ANN—(a) MSE, (b) MAPE, (c) RMSE, and (d) IA.
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Figure 8: Lorenz system: indicators from LS-SVM—(a) MSE, (b) MAPE, (c) RMSE, and (d) IA.

5Complexity



3.1. Chaotic Time Series

3.1.1. Lorenz System. According to [28, 29], the Lorenz
dynamic system is described by three nonlinear differential
equations that describe a fluid in the function of position
and time. To determine the effects of creating a strange
attractor, the following parameters are used: σL = 16, ρ =
45 92, and β = 4. With the objective of getting a series of
12001 elements, the Runge-Kutta method of the 4th order
with a step of 0.01 is used. The series used is x t (12)
(Figure 1).

x = −σLx + σLy,

y = −xz + ρx − y,

z = xy − βz

12

3.1.2. A System of Flexible Manufacture. The model of flexible
manufacture does not have a program of determined order-
ing; the assignment of operations to the machines is made
according to the stage of the production system, which is
the intrinsic characteristic of the system of flexible manufac-
ture. The assembly cell is simulated, and a time series with
12001 data corresponding to the average number of pieces
is obtained, in the waiting line of this cell (Figure 2).

3.1.3. Great Salt Lake of Utah, EEUU. Empirically, the
Great Salt Lake of Utah is the oldest time series in the
world. It corresponds to the elevation of the Great Salt Lake
(GSL). The simple form corresponds to 4029 data. With the
following polynomial transformation changes at the height
of GSL (h) at the station Saltair Boat Harbor in the total

volume of the lake, this transformation is valid for h belong-
ing to 4170, 4215 .

The transformation of h to the series of the total volume
of GSL is shown in Figure 3.

4. Results and Discussion

The spectrums of power are shown in Figure 4 for the series
x t , Figure 5 for the series of the average number of pieces in
the waiting line, and Figure 6 for the total volume of GSL.
The τ optimum,m, λmax, and FH are summarized in Table 1.

4.1. Series of the Lorenz Case. For the forecast of the series x
t with ANN, the parameter of neurons of the hidden layer
for each one of the experiments Sj is shown. This parameter
corresponds to the value with the minimum average values of
the indicators MSE, MAPE, and RMSE and the maximum
average value of IA. The indicators have the minimum values
for all the experiments for the first forecast period and the
maximum value in the last of the periods. The indicator IA
behaves in a contrary way, and its greatest value is for Sj = 1
(Table 2).

The evolution of the indicators in the different forecast
periods is shown in Figure 7. The lines of the graphic are col-
ored according to the number of steps after FH: with solid
lines in yellow for Sj = 12, black for Sj = 6, green for Sj = 4,
red for Sj = 3, and blue for Sj = 2.

The forecast of the series x t through SVM shows the
parameters chosen for each Sj. The parameters chosen repre-
sent the best performance of the forecast model with the eval-
uation of the indicators MSE, MAPE, RMSE, and IA.

The evolution of the indicators is represented through the
length of the forecast periods: dashed lines in yellow for
Sj = 12, black for Sj = 6, green for Sj = 4, red for Sj = 3, and
blue for Sj = 2. The behaviors of the characteristics of the
experiment with SVM in the twelve periods were studied
(Figure 8 and Table 3).

4.2. Series of the Average Number of Pieces in the Waiting
Line Case. Table 4 shows the forecasts of the series of the
average number of pieces in waiting line through ANN; in
this table, the parameters chosen for neurons in the hidden
layer for each one of the experiments Sj are observed. The
parameter corresponds to the lower average value of the indi-
cators MSE, MAPE, and RMSE and the maximum value of
the IA. All the indicators maintain the same decreasing
behavior for MSE, MAPE, and RMSE. The only exception
corresponds to the indicator MAPE with a minimum value
in the step Sj = 4.

Finally, the evolutions of the indicators through the fore-
cast periods are presented: solid lines for ANN and dashed
lines for SVM. The colors represent the steps for each
method: yellow for Sj = 12, black for Sj = 6, green for Sj = 4,
red for Sj = 3, and blue for Sj = 2 (Figure 9).

4.3. Total Volume of the Great Salt Lake Case. The results of
the forecast of the series of the total volume of GSL, through
ANN and SVM, are presented in Figure 10, with a maximum

Table 3: Parameters for the manufacturing system.

Sj
SVM ANN

γ σ HN

1 1001 17 27

2 1001 17 44

3 1001 16 56

4 2001 10 37

6 1001 19 48

12 1001 23 44

Table 4: Parameters for the Great Salt Lake.

Sj
SVM ANN

γ σ HN

1 1010001 201 4

3 161001 101 5

5 520001 201 5

6 330001 201 4

8 170001 201 4

10 80001 201 4

15 30001 201 7

20 10001 201 4
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step after the theoric frontier of forecast Sj = 20. Figure 10
presents the evolutions of the indicators through the forecast
periods: solid lines for ANN and dashed lines for SVM with
steps Sj = 20 (purple), Sj = 15 (orange), Sj = 10 (black), Sj =
8 (green), Sj = 6 (red), Sj = 5 (blue), and Sj = 3 (yellow).

5. Conclusions

For the three time series studied, both models have capac-
ities to forecast beyond the theoric frontier before deterio-
rating exponentially. The main results of the investigation
were as follows:

(1) The forecast of the series of Lorenz develops expo-
nential errors in period 6 with the SVM method
and in period 10 with the ANN method. This
series with the SVM forecast model has better per-
formance indicators for the period forecast in all
the experiments.

(2) The series of the manufacture system and the GSL
series required 12 and 20 periods after the theoric
limit, to obtain the exponential deterioration of the
performance indicators through the ANN method.

(3) The forecast of the series of the system of flexible
manufacture and GSL has a better performance with
the indicator of squared minimums, for most of the
periods after the theoric limit in all the experiments,
using the method ANN backpropagation in relation
to the SVM method.

(4) This study allows forecasting those series beyond
theoric FH, without an exponential deterioration
of the performance indicators.

(5) The improvement of forecasts was made using the
ANN and SVM methods adjusted with the param-
eters determined by the chaotic characteristics of
each series.

Notations

ANN: Artificial neuronal networks
SVM: Support vector machine
TP: Predictability time
ε: Disturbance
Δ: Error
λmax: Maximum Lyapunov exponent
FH: Forecast horizon
SMAPE: Symmetric mean absolute percentage error
SVMR: Support vector machine regression
MAPE: Mean absolute percentage error
RMSE: Root mean squared error
MSE: Mean squared error
y n : Strange attractor
Τ: Delay time
m: Global dimension
δ0: Initial distance of the points
e: Euler constant

λ: Lyapunov exponent
Δn: Time differential
Zk: Activation function
θ jk and θok: Weights and trends of the output layer
wij and woj: Weights and trends of the hidden layer
xi: Elements of the time series
φ: Function of nonlinear mapping
wT : Entry vectors
yk: Hyperplanes
γ: Parameter of SVM
xk: n-umpteenth element of the series of SVM
b: Trend
ek: Error of containment
K : Kernel function
σ: Parameter of kernel function
y x : Dual space
Sj: Experiment with j as the number of periods to

forecast
j: Number of periods to forecast
N: Number of elements in the series
IA: Index aggregation
σL, ρ, and β: Parameters of Lorenz systems
x t : Time series
GSL: Great Salt Lake
h: Height of the Great Salt Lake.

Data Availability

The Lorenz system data series and manufacturing system
were calculated using mathematical functions. The volume
time series of the Great Salt Lake of Utah are public and
are available on the link https://waterdata.usgs.gov/nwis/
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