
In Pursuit of Unification of Conceptual Models:

Sets as Machines

Sabah Al-Fedaghi*

Computer Engineering Department

Kuwait University

Kuwait

salfedaghi@yahoo.com, sabah.alfedaghi@ku.edu.kw

 Abstract - Conceptual models as representations of real-

world systems are based on diverse techniques in various

disciplines but lack a framework that provides multidisciplinary

ontological understanding of real-world phenomena.

Concurrently, systems’ complexity has intensified, leading to a

rise in developing models using different formalisms and diverse

representations even within a single domain. Conceptual models

have become larger; languages tend to acquire more features,

and it is not unusual to use different modeling languages for

different components. This diversity has caused problems with

consistency between models and incompatibly with designed

systems. Two main solutions have been adopted over the last few

years: (1) A currently dominant technology-based solution tries

“to harmonize or unify” models, e.g., unifies EER and UML.

This solution would solidify modeling achievements, reaping

benefits from huge investments over the last thirty years. (2) A

less prevalent solution is to pursuit deeper roots that reveal

unifying modeling principles and apparatuses. An example of

the second method is a “category theory”-based approach that

utilizes the strengths of the graph and set theory, along with

other topological tools. This manuscript is a sequel in a research

venture that belongs to the second approach and uses a model

called thinging machines (TMs) founded on Stoic ontology and

Lupascian logic. TM modeling contests the thesis that there is

no universal approach that covers all aspects of an application,

and the paper demonstrates that pursuing such universality

is anything but a dead-end method. This paper continues in this

direction, with emphasis on TM foundation (e.g., existence and

subsistence of things) and exemplifies this pursuit by proposing

an alternative representation of set theory.

 Index Terms - Conceptual model, modeling language,

software and systems development, set theory

I. INTRODUCTION

Conceptual modeling is a crucial aspect of development

for software, systems, and knowledge engineering. According

to [1], the software development process is a kind of problem-

solving process that requires understanding of all problem

components, relations, rules, constraints, etc. Such an

understanding “is a hard and time-consuming process, which

requires specialized tools for being performed. These tools,

which allow the software engineer to understand the problem

to solve, are known as conceptual models” [1].

*Retired June 2021, seconded fall semester 2021/2022

Over the past four decades, the field of conceptual

modeling has continued to evolve to be applied to important

problems in many disciplines [2]. It has shifted from being a

software engineering technique to being “a standalone

discipline that has a value proposition for any domain […]

where complexity must be managed through abstraction and

structuring” [3].

In conceptual modeling, a variety of modeling languages

were used first, giving rise to overlap of common concepts

and notions across the various modeling languages. This

revealed the need for a unification of the various languages,

notions, or models. Pursuing such a course resolved into a

standardization effort first called the ―Unified Method‖ and

later the ―Unified Modeling Language‖ (UML) [4]. UML

arose from the unification of several object-oriented design

methods. According to [4], ―during this crucial period of

unification, it became clear that defining such a standard

would not be an easy task. A research community emerged

that became interested in studying models and the UML as a

core research subject area of its own.” In their work, [5] use

multiple models in their systems analysis and design

practices; however, there is no comprehensive theory yet to

explain how practitioners would work with these models [5].

The concept was broadened to the general issues of

modeling languages as a core subject of study that is not

specifically tied to the UML [4]. Some experts call for “more

and deeper studies of [UML‟s] longer-term use in the field”

[6].

A. Problem: Fragmentation

Extending the general issues related to conceptual

modeling, this type of modeling has fragmented methods in

various disciplines, and there is no common unifying

framework that shows how concepts come together to

represent the target system. Additionally, systems‟ complexity

has increased, leading to a rise in developing models with

different intents that are written using various formalisms

that give diverse system representations [7]. With

increasingly complex system development and the need for

systems integration, conceptual models have become larger;

their languages tend to acquire more features, and it is not

unusual to use different modeling languages for different

components (ER + UML) [7].

https://www.google.com/search?sxsrf=APwXEdd5SSlA3zYgy397wVKQZxejzj5PlQ:1686324522854&q=anything+but+a+dead+avenue+philosophy&nirf=anything+but+a+death+avenue+philosophy&sa=X&ved=2ahUKEwi2maSxwLb_AhW6YqQEHV7BBG8Q8BYoAXoECAcQAg

In general, models are used to support a number of

purposes such as construction of systems, communication,

analysis, documentation, evolution, realization, and

construction [8]. According to [8], we might overburden a

model to satisfy all these purposes. Instead, we may use a

number of models for each of its purposes and then bind these

models to each other. Diversity can lead to problems with

consistency between models and incompatibility with the

designed system. This is especially true of complex systems

that can interact with humans [7].

B. In Pursuit of Unification

Accordingly, in this paper, the goal is locating a possible

unifying representation that is expressive enough to handle

diverse modeling notions. Currently, two undertakings are

directed for such a purpose. The first is technological-based

efforts “to harmonize or unify them‖ [9], described by [3] as

techniques “subordinated” to a certain discipline (e.g.,

software engineering). This approach is exemplified by

presently available modeling languages, e.g., EER and UML-

class diagrams [10], with the aim of developing full

transformation among various diagrammatic representations.

The second approach involves an attempt to develop a

unified modeling methodology from scratch to provide a

conceptual framework that may or may not apply to the

current multiplicity of models. An example of such a quest is

Reference [7]‟s work, which proposed a category theory that

“offers a point of view that allows us to use both the strengths

of the graph and set theories, along with other topological

tools […] to provide a mathematical framework for

synchronization methodologies” (italics added). Category

theory is an endeavor to formalize various mathematical

structures and their relationships. Reference [7] used graphs

and set theories to provide a framework for a unified

representation of conceptual models. Category theory seems

to be a potential tool for various unification efforts. Reference

[11] proposed using category theory to develop multi-model

data representation for transformations between models.

This manuscript is a sequel in a research venture that

belongs to the second approach to conceptual modeling

unification, aimed at exemplifying a modeling language that

promises an initial unifying thesis to disprove the common

claim that one model that can describe every application does

not exist. Of course, such a language has its limitations, but it

describes all that can be described.

In a way, our approach contests the thesis [8] that “there

is no universal approach and no universal language that

covers all aspects of an application that have a well-founded

semantics for all constructions, which reflect any relevant

facet in applications, and that support engineering.”

Admittedly, our proposed modeling methodology may not

completely satisfy Thalheim [8]‟s requirements; nevertheless,

it shows that pursuing universal modeling approach

is anything but a dead end method.

We use a model called thinging machines (TMs) founded

on Stoic ontology and Lupascian logic [12]. TM modeling

contests the thesis that there is no universal approach and no

universal language that covers all aspects of an application.

TMs have been applied in many applications (networks,

hardware, systems, story-telling, communication, railcar

systems, robotics, business, etc.) using a single diagrammatic

language based the notion of a TM. Note that UML has been

used to model such applications, but UML uses 14

diagrammatic languages (e.g., activity, sequence, state, class,

[…] diagrams). This paper continues in this direction with

emphasis on representations in the context of set theory.

C. The Paper’s Structure

The next section includes a brief review of TM modeling

with some new clarifications. Section three contains an

example of TM modeling of the process of car hire. Section

four includes theoretical issues in TM modeling, including

potentiality, actuality, existence, and subsistence. Section five

is focused on some aspects of set theory representation.

II. TM MODEL

The TM model is based on the supposition that “there is

a ready-made world” [13] that reflects some “fundamental,”

“joint-carving,” or “structural” concepts. A complete

description of reality using these concepts gives reality‟s

fundamental structure. According to [8], concepts specify

“what things are there and what properties things have.”

Structure reveals where the joints of the world can be carved,

because “structure is the right and proper way to find these

joints, and go about this carving” ([14] referencing the

philosopher Theodore Sider).

The TM model‟s basic “carving at the joints” of reality

produces what is called a thimac (thing/machine). A thimac

has a dual nature of being as a thing and simultaneously as a

machine. The goal of such duality is an attempt to create a

unifying notion that represents “entity-ness” and “process-

ness.” A thimac is a machine when it acts (subject) on other

thimacs, and it is a thing when it is the object of actions by

other thimacs. The thimac (and subthimacs) also has a dual

mode of reality (Stoic idea): subsistence static (timeless)

reality and existence event-based reality. In the context of

making models, and demonstrated in systems and software

engineering, TMs emphasize that entities and processes are

viewed as thimacs in what may be called the TM universe.

Physical particulars (e.g., a cat curled up on a sofa) and sets

(will be demonstrated in this paper for logic-based sets) can

be represented uniformly as thimacs.

https://www.google.com/search?sxsrf=APwXEdd5SSlA3zYgy397wVKQZxejzj5PlQ:1686324522854&q=anything+but+a+dead+avenue+philosophy&nirf=anything+but+a+death+avenue+philosophy&sa=X&ved=2ahUKEwi2maSxwLb_AhW6YqQEHV7BBG8Q8BYoAXoECAcQAg

A. Things and Machine

As will be argued latter, grounded on the Stoic ideas, the

world of existence spurts out of a world of subsistence.

Subsistence is the totality of timeless thimacs. In this case, the

subsistence of a thimac (its static level representation)

“involves once for all everything that will ever happen to”

that thimac (the quoted expression is borrowed from a

description of Leibniz‟s work [15]).

The thimac machine consists of five actions: create,

process, release, transfer and receive. (See Fig. 1). The

thimac thing is whatever created, processed, released,

transferred, and received. A thimac as a machine creates,

processes, releases, transfers, and receives.

TMs‗ actions are described as follows.

1) Arrive: A thing arrives to a machine.

2) Accept: A thing enters the machine. For simplification,

we assume that arriving things are accepted (see Fig. 1);

therefore, we can combine the arrive and accept stages into

the receive stage.

3) Release: A thing is ready for transfer outside the machine.

4) Process: A thing is changed, handled, and examined, but

no new thing results.

5) Transfer: A thing is input into or output from a machine.

6) Create: A new thing is manifested in a machine.

Additionally, the TM model includes a triggering

mechanism (denoted by a dashed arrow in this article‘s

figures), which initiates a (nonsequential) flow. Moreover,

each action may have its own storage (denoted by a cylinder

in the TM diagram). For simplicity, we may omit create from

some diagrams because the box representing the thimac

implies its being-ness (in the model). Fig. 2 shows the set of

TM modeling notations.

Example: Fig. 3 shows an illustrative representation of a

car as a thing and as a machine.

B. Two-level Modeling

TM modeling involves a representation with vertically

dynamic depiction over a timelessness (static) picture (see the

coin illustration in Fig. 4). In a TM, reality has two modes:

subsistence and existence.

The static model is built from subsisting regions (sub-

diagram of the static description) with a logical order

imposed by potential flows and triggers. The static model

comprises fixed parts, and it simply subsists, e.g., ―the flow of

traffic depends on cars [and flow] without being anything but

the cars‖ [16]. Traffic is not itself a solid body, but it is

nonetheless real because it depends on cars and roads for its

subsistence in reality; this subsistence is captured in the static

region. Cars are entities that exist as physical things. Traffic

is a process that subsists as a region of the existing traffic in

the dynamic level. If there are no cars, traffic still subsists as

a potential thing.

According to the Stoic, subsistence is as real as existence.

Heidegger‘s “ready-to-hand‖ hammer refers to an existing

hammer and existing hammering process. It is possible that

the hammer is too heavy; hence, it exists, but hammering

subsists as potentiality. The subsistence of hammering is as

real as its existence as a real process. It “is there,” distinct

from the hammer, analogous to the Shakespeare‟s drama of

“a pound of flesh.” Try to hit a nail with a hammer without

hammering. The hammer itself is in subsistence if the head

flies off the hammer (present-at-hand).

C. Regions

A region of thimacs forms a static structure (blueprint) in the

world. The region is the TM space-equivalent of a mesh (net)

of thimacs. TM space comprises multi-net multilevel thimacs.

Fig. 2 TM modeling notations.

 Function

Thimac, subthimac,

event and region
Boundary

context

Action

Operation

 Flow Relate/Connect

 Triggering New flow

Name

Create, process, release,

transfer, or receive

Receive

Fig. 1 Thinging machine.

Create

Process Accept

Transfer Release

Arrive

 Output Input

Fig. 3 A car as a thing and a machine.

 Body

Car

Create

 (a) A car as a thing

… Create

Engine

Create

Transfer Receive
Driver

Car Create

(b) A car as a machine.

…

Smoke

Transfer Receive
Fuel

Receive Transfer Create

OR

Coin

Create Process:

flip

Face

Writing

Create

Create

Actuality

(dynamic)

Fig. 4 Potentiality and actuality.

R
e
a

li
ty

Potentiality

(static)

https://nosweatshakespeare.com/quotes/famous/pound-of-flesh/
https://nosweatshakespeare.com/quotes/famous/pound-of-flesh/
https://nosweatshakespeare.com/quotes/famous/pound-of-flesh/
https://nosweatshakespeare.com/quotes/famous/pound-of-flesh/
https://nosweatshakespeare.com/quotes/famous/pound-of-flesh/
https://nosweatshakespeare.com/quotes/famous/pound-of-flesh/
https://nosweatshakespeare.com/quotes/famous/pound-of-flesh/
https://nosweatshakespeare.com/quotes/famous/pound-of-flesh/

There is no space in this very thick jungle of thimacs. A

region may combine with time to form a dynamic event. To

describe an event precisely, we need the region and time—the

combination itself is a thimac.

D. Existence

In a TM, a process is an event or a mesh of events, and

existence is the flow of events. Thus, existence is a huge

process. TM treats activities, objects, and states in a uniform

way as events. Objects are nothing more than long events.

The Stoic ontology has two levels of specification: (1) a

subsistence static model in which things and actions subsist

and (2) an existence dynamic model in which things and

actions exist in time. From the Stoic ontological point of

view, while a thing existing has a clear denotation,

subsistence indicates the thing is ―being there,‖ but it is

inactive. Thus, a red apple refers to a subsisting apple thimac

with a redness subthimac, while red apple on the table now

refers to an event (at a certain time, now) with the region a

red apple on the table. Dragons do not exist (now) refers to a

dragon that is not instantiated in existence now. Furthermore,

negative existence refers to a thimac being in subsistence.

Using Lupascian logic to represent negativity is a topic

discussed in previous papers.

III. EXAMPLE OF TM MODELLING

Reference [17] described UML as a semantically and

syntactically rich visual modeling language for the

architecture, design, and implementation of complex software

systems, both structurally and behaviorally. A small set of

diagrams can be used effectively to model business processes.

By having the business analyst and system developers use the

same modeling concepts, the risk of costly errors related

to different understanding of methodology concepts is

significantly mitigated.

According to [17], activity diagrams are easier than other

UML diagrams for analysts and stakeholders to fully

comprehend. They are the most suitable diagram for business

process modeling because they neatly illustrate the flow of a

process from activity to activity.

In spite of the claimed semantical and syntactical

richness, such a simple notion as activity does not have a

precise definition in UML literature [18]. According to the

philosopher Bertrand Russel [15], “Activity is, as a rule, a

cover for confused thinking; it is one of those notions which,

by appealing to psychological imagination, appear to make

things clear, when in reality they merely give an analogy to

something familiar.”

In a TM, the activity notion is built upon five generic

(have no sub-actions) actions: create, process, release,

transfer, and receive. These are static actions that become

(generic) events when they interweave with time.

Reference [17] gave an example of an activity diagram

for the process of “car hire.” The basic components in Gallia

[17]‟s example include also the notion of an event. The

(outside) event is described as a “process [that] creates an

event but the outcome of the event is outside the scope of the

activity diagram” (italics added).

A. Static Model

In a TM, an activity as a process is a thimac (with its static

and dynamic forms), and an event is a region injected with

time. To illustrate these terms, Fig. 5 shows the static model

of the Car Hire example. In the figure,

Request to hire

Process
Available?

 else

Database

T
ra

n
sf

er

P
ro

ce
ss

Release

Transfer

Transfer

Receive

C
re

at
e

?

Process

Release

Transfer

Transfer

Receive

Create

Quote

Payment

Release

Transfer

Transfer

Receive

P
ro

ce
ss

C
re

at
e

Process

Release

Transfer

Transfer

Receive

Confirm

Cars

P
ro

ce
ss

 One

car

Transfer

Process

Receive

Receive

Transfer

Transfer

Release
Customer

Sales desk

Accept

Office

Stock

manager

Release

Transfer

Transfer

Receive

Notification

Date of delivering

Create Process: delivery date?

Fig. 5 The static model of the car hire system.

Transfer

Release

R
ec

ei
v

e

Create

1 Create
9

12
6

5

10 8

4

2

11
3

7

13

17 18

16

15

14

19

20

21

22

24

23

- The customer creates a request to hire a car (grey

number 1). The request flows to the sales desk, where it

is processed (2) by comparing the request with the

database of available cars. Accordingly,

(a) If the car is not available to hire, Gallia [17]‟s example

does not indicate what to do (3).

(b) If the car is available (4), then,

 Trigger a notification that is sent to the stock

manager (5).

 The customer‟s request is further processed (6) to

create the quote for service (7) that flows to the

customer. The customer processes the quote (8) and

creates a payment (9) that flows to sales desk (10).

The payment is processed (11), and if it is accepted,

a confirmation (12) is sent to the customer (13).

Additionally, the office is triggered to prepare the

car (14).

- In the office, the stock of cars is processed (15) to select

the appropriate car (16).

 In parallel, the notification that was sent to the stock

manager previously (5) is processed (17).

Accordingly, the stock manager sets up the date to

deliver the car (18).

 Accordingly, when the date of delivery arrives, the

stock manager triggers (19) delivering the car to the

customer by the office (20 and 21).

- The customer uses the car (22) then returns it (23 and

24).

B. Dynamic Model

Fig. 5 illustrates the process of describing the organized
structure of reality. As mentioned in the famous Platonic

metaphor, the world comes to us predivided, and our best

method of identifying distinct kinds of things is to carve

nature at its joints. This stable view of reality needs to be

supplemented with dynamism that “co-exists” with staticity

simultaneously to form event thimacs. The implication is that

reality is the source of staticity and dynamism. Fig. 6 shows

the dynamic model of the car hire system.

In TM modelling, existence (a mode of reality beside

subsistence) is being in time as an event. Consider the region

subdiagram of Fig. 5 that is shown in Fig. 7. When such a

region injected with time, it becomes the event—e.g., the

customer request is sent to the sales desk (in relative time

with respect to other events). For simplification‟s sake, events

are represented by their regions in Fig. 6.

Request to hire

Process
Available?

 else

Database

T
ra

n
sf

er

P
ro

ce
ss

Release

Transfer

Transfer

Receive

C
re

at
e

?

Process

Release

Transfer

Transfer

Receive

Create

Quote

Payment

Release

Transfer

Transfer

Receive

P
ro

ce
ss

C
re

at
e

Process

Release

Transfer

Transfer

Receive

Confirm

Cars

P
ro

ce
ss

 One

car

Transfer

Process

Receive

Receive

Transfer

Transfer

Release
Customer

Sales desk

Accept

Office

Stock

manager

Release

Transfer

Transfer

Receive

Notification

Date of delivering

Create Process: delivery date?

Fig. 6 The dynamic model of the care hire system.

Transfer

Release

R
ec

ei
v

e

Create

Create

E11
E10

E8 E6

E5
E4

E3

E9

E7

E2

E1

E12
E13

E14

E15

E16

 Release

Receive
Sales desk

Region

Customer

Time

Event Create

Request to hire

Process
Available?

Database

Release

Transfer

Transfer

Receive

Customer

Sales

desk

Create

Region
Transfer

Transfer

Fig. 7 Static region becomes an event (the customer request is sent to the

sales desk) when it is injected with time.

Release

Receive

Transfer

Transfer

Process:
takes its

course

This description also brings to mind Plato‟s form that is

generalized in TMs as nets of (static) thimacs, i.e., a

subdiagram of the static model. Fig. 8 shows the chronology

of events in the car hire example.

IV. THEORETICAL ISSUES IN TM ONTOLOGY

The task of pursuing a unified conceptual model requires

involvement in some ontological issues. Ontologies are used

to develop new modeling languages, proposing patterns and

anti-patterns and improving (semantic) interoperability [19].

This necessitates the utilization of ontological issues from

diverse areas (e.g., philosophy and metaphysics, formal

ontology, cognitive science, and logics) to develop

engineering artifacts for the theory and practice of conceptual

modeling [20]. However, in this paper, one may interpret

“classical” as focused on whatever is understood to

accommodate TM modeling, as historians generally find

appropriate.

A. TM Potentiality and Actuality

Ontology is an essential topic in the scope of an

important area of current computer science and Semantic

Web [21]. After the phase of developing a mere modeling

language and notations, there comes the issue of providing a

framework of ontologically sound models and a more refined

depiction of the target systems (what models represent). This

is a natural step in studying conceptual modeling, as can be

seen from the active research to build ontology for UML (e.g.,

OntoUML). After all, it is claimed that, “firmly entrenched in

many information systems circles […] ontology as „the

specification of a conceptualization‟ means „conceptual

model‟” [22].

Exploring ontological matters leads, first, to old Greece.

Aristotle maintains that the world is one of entities and

properties. Substance is a class of beings that are actualized

as self-standing and independent entities [23] in addition to

“accidental” entities such as quality and quantity. Thus, Fido

the dog is a primary substance—an individual—

but dog or doghood is secondary substance [23]. Fido is an

object, and dog can be predicated of Fido. “Substance”

reflects durability or even permanence. Events are never

substantial in this sense, because they are fleeting [23].

Aristotle postulated two types of thing. The first is measured

by time (e.g., movement, processes). The second is material

objects in time [24].

The philosophical issue here involves the nature of so-

called accidents (e.g., motion). The classical view is that an

accident was something in a body, but nothing without a

body, and it cannot subsist of and by itself. The other view

considers accidents to be “between body and no body.”

Accidents are supposed to exist, but to depend upon bodies for

their existence [25]. Classically (e.g., Aristotle,

Aquinas), it is said that every physical object is a compound

of matter and form. On the other hand, other philosophers

claim that form can exist without matter and prime matter

can exist without form [26]. According to several references

(e.g., [27] and [28]), Aristotle considered that potentiality and

actuality are two kinds of reality and that actualities give

origin to potentiality, which gives origin to actualities.

According to [21], Aristotle‟s actualities are the origin of

potentialities, which can generate new actualities.

The purpose of such a discussion is that TMs‘ two-level

model of potentiality and actuality as two aspects of reality is

not a new idea. To emphasize the TM‘s basic ontological

claim of two modes of reality, Fig. 9 exemplifies it in terms of

Dog and Fido as discussed previously.

According to [21], ―The concepts of actuality and

potentiality, and of the movement from the latter to the

former, have been discussed since Aristotle, but now can be

seen as common to both quantum and macroscopic levels of

reality. Reference [27] states that the transition from states of

potentiality to their actualization is the “basic mechanism of

our reality.” “State” here refers to a state of affairs. All

classical notions such as states, states of affairs (situations),

and processes can be represented as TM events.

The nature of potential thimacs and regulating the

transition from potential to actual entities and processes are

issues in quantum theory. According to [27], consider a

particle (e.g., an electron) impinging on a screen. According

to quantum mechanics, we cannot know where it will hit, but

we can always assign probabilities to the electron‟s potential

to hit at various locations. The entity in consideration is a

potential and not an actual entity. It must be considered real

and ontologically significant, but not actual. At some time,

the electron impinges into some point of the screen, and

Fig. 9 Dog (Fido) TM model.

 Dog Create

 Fido Create

Create

Potentiality
Actuality

Event

Reality

E
x

is
te

n
ce

S
u

b
si

st
en

ce

Fig. 8 The behavior model (the ovals indicate parallel processes).

E1 E2 E3

E5

E4

E6

E7
E8

E9

E11

E12

E13

E10

E14 E15 E16

Waiting to date

Delivering the car to customer

?

One car

Confirmation

Process request

Available

Not

available

because it hits the screen, we no longer have a matter of

probability.

B. TM Existence

In TM modelling, Being encompasses all thimacs in the

two-level representation: existing, subsisting, and those

thimacs that cannot materialize in existence (e.g., square

circle). A conceptual framework of kinds of things in reality

is established from regions said to subsist and events said to

exist. Because all subsisting things are in the static world and

all existing things are the regions‘ counterparts on the

dynamic level, regions can exist only in the interior of events.

For example, the traffic static region only exists in cars and

roads, assuming, for simplicity‘s sake, that cars and roads are

the only components of traffic. In another words, the

existence of traffic is dependent on the existence of cars and

roads.

Reference [29] gives the example of a set of soccer

players: “As long as it is just a set of soccer players no

emergence takes place.” This is a static description of

subsisting, as shown in Fig. 10 (a). At some point in history,

the thimac of a soccer team in its current form arose for the

first time in England in the middle of the 19th century. Thus,

this thimac has been added to the universe catalog as a

subsisting thing that may exist anywhere in the world

(potentiality). Subsistence is a kind of registrar of world items

as the universe evolves, giving birth to new things. It emerges

as a potentiality from the addition of new things to actuality.

Reference [29] continues, “Suppose, however, that the set of

players starts to practice with the aim of forming a soccer

team.” In a TM, this is represented by the events shown in

Fig. 10 (b). The co-adaptation that takes place between the

players during their training and matches results in the

emergence of a soccer team, a new structure formed out of the

set of individual soccer players.

C. Origin of Potentiality is Actuality

According to [30], for a thing to become actual, there

must actually exist some endowment of active power or

potency, making this possible thing actual. Reality that is

produced by and subject to change is a mixture of potential

and actual. It is from our experience of actuality and change

that we derive our notion of potential being as distinct from

that of actuality. It is from our experience of what actually

exists that we are able to determine what can, and what

cannot exist. Static subsistence is discovered in actuality [30].

The two alternating positive states of the same being—in the

active existing that produces it and in the pre-existing actual

thing—are real, in distinction from the mere logical or

objective possibility of such a being [30].

This discussion implies that potentiality “emerges” from

actuality when the latter happens the first time. If an event

happens, then its region (structure) becomes part of

potentialities. Suppose that the universe‟s existence started

with an event that contained a single, hot, dense point;

therefore, the static universe was etched as a static, hot, and

dense point as a region of that event. Then, events created

hydrogen, helium, and lithium to form heavier elements for

the first time. Accordingly, the static description is

supplemented with regions of these events. In modern times,

roads, cars, and traffic appeared, and their regions became

part of the static catalogue of the world to exist (based on

their potentialities) time after time.

V. SET THEORY

In continuation of applying TMs to present new views of

basic notions in various types of applications, this section is a

preliminary presentation of TMs in set theory. The goal is not

to propose a new contribution to set theory; rather, the

objective is to explore features of TM modeling. Accordingly,

we avoid difficult issues such as infinity and emptiness. In

this context, we provide an alternative representation of a set

as a thimac with three subthimacs, member, extension and

transformation between them.

The notion of sets can be based on logical propositions

that represent the set of worlds in which propositions function

as the bearers of truth values. A proposition can be associated

with a set of ―entities‖ that satisfy the proposition predicate.

Thus, for a set S and an object s, we say that S contains s if

the following is satisfied: sx ∈ S ←→ p(sx) is true.

Because the topic is extensive, we focus on a few aspects

of sets in computer science. Future research will extend the

treatment to mathematical sets.

A. Set Theory in Computer Science

Set theory has been used to represent things related to

computer sciences, such as algorithms and designing, data

structures and implementations of set operations, database

theory, formal language theory, and programming language

Transfer

Process: practice

Create

A soccer

team

Members

Create

Goal keep Defense 1
… Create

Create

Create

A soccer

team
Members

Create

Goal keep Defense 1
… Create Create

(a) Subsisting soccer team

(b) Existing soccer team

Fig. 10 Creating an existing soccer team.

Receive

E1 E3
E5

E2

E4

semantics. Set theory seems to be one of the foundations of

computer science and software engineering.

Notions in conceptual modeling are closely related to set

theory. For example, a UML class defines a set with members

as objects or instances of that class. Based on set theory,

[31] presented a formal syntax and semantics for OCL

(Object Constraint Language) to allow formally specified

constraints on a UML. Reference [32] introduced the B

development process of the life cycle of software

development. The B development process is utilized to prove

that the final code implements its formal specification. B

notations are based on set theory and generalized

substitutions [32]. Reference [33] introduced an approach for

the specification and matching of structural patterns in

conceptual models. To build sets representing structural

model patterns, [33] defined operations based on set theory,

which can be applied to arbitrary sets of model elements and

relationships. Reference [34] mapped logical concepts of set

theory with UML. Reference [35] formalized ―use case‖

diagrams as ―one of the most used diagrams among UML

practitioners‖ based on set theory by logic and quantification.

Set theory is utilized for composing and decomposing

constructed models (UML, OCL), specifying transformation

operations between diagram types and promoting

understanding of the system under design [36][37]. Reference

[38] applied set operations to merge, slice, and check UML

models. A set operation as binary operations D x D → D

produces one UML diagram out of two input diagrams for

basic set operations: union, intersection, and difference.

B. Set as a Thimac

As shown in Fig. 11, a set can be conceptualized as a

thimac with three subthimacs.

- Member (singularity): one thing

- Extension (multiplicity): a pile of things, disregarding

any order or repetition of the things that may be

contained within it

- A transformation between extension and member

A member can be receive in the set (number 1), processed

(2), and, if qualified, go to transformation (3). Additionally,

the extension (4) is sent to the transformation. There, the

member and extension are processed (5) to produce a new

extension (6).

 Similarly, an extension (7) can be sent to the

transformation to be processed to select a single

member/chalet (8) that is sent to a member (9). The whole

extension can be exported (10).

VI. SAMPLE APPLICATION

In this section, we develop a general system for the chalet

market, with minor modifications to Nasef et al. [39]‘s

problem.

Reference [39] presented an example of application of set

theory in a decision-making problem for real estate

marketing. The example involves a chalet-selling system in

which chalets are described in terms of the following

parameters {expensive; beautiful; wooden; cheap; in green

surroundings; modern; in good repair; in bad repair}. Each

buyer is interested in buying a chalet on the basis of their

choice parameters. Out of available chalets, the customer is to

select one that meets all of their parameters. Reference [39]

used binary tables to develop a method to select a chalet for a

customer and applied the method to customers‘ specific

requests. Clearly, the so-called permanents form seven sets.

The customer requests an intersection set of some of the seven

sets.

A. Static Model

Fig. 12 shows the TM representation of the

corresponding static system. The system involves two main

processes as follows.

Building the seven parameter sets: This includes adding

chalets to various sets according to the seven parameters. For

simplification, in Fig. 12, we will factor out the ‗Member:

Singularity – One‘ for all sets. An input of the chalet with its

description is processed (numbers 1 and 2).

According to the parameters of the chalet, the chalet is

added to the relevant set. For example, if the chalet is

expensive (3), it goes to the expensive chalet set (4). The set

is modeled as a thimac. It involves the extension (ext) (5), a

single item (6), and a process that inserts the given item in

the set (7). For simplicity‟s sake, we do not include the item

or global process in boxes as subthimacs, as we do for the set.

Accordingly, the input expensive chalet and the current

set of expensive chalet are processed (7) to inset the input

chalet description to create a new set (5).

Fig. 11 A set as a machine.

Member: Singularity - One

Transformation:

Singularity/multiplicity

Create

Set Release

Process:

merge

one in

many
Create

Multiplicity - Many

Transfer Release

T
ra

n
sf

er

R
ec

ei
v

e

Transfer Release Transfer Receive

Process:

select one
Create

Transfer Release

T
ra

n
sf

er

R
ec

ei
v

e

Release Transfer

R
ec

ei
v

e

T
ra

n
sf

er

Transfer
1

2 3

Process:

e.g.,

qualify?

4 Extension:

5 6

7 8 9

10

A similar process is applied to the other six sets of thimacs

(8-13): Each input chalet is added to its sets.

When a customer searches for a chalet to buy, they input a

request (14) that is processed (15) and, according to the

specification in the request, the related set is retrieved.

For example, if one of the requirements in the

buyer‟s request is “expensive” (16), then this triggers

the release (17) of the set of expensive chalets in the

database.

Process

Process

Process

Bad repair

Good repair

Buyer

Modern

Green surround

Cheap

Wooden

Process

C
re

at
e

R
el

ea
se

T
ra

n
sf

er

R
el

ea
se

T
ra

n
sf

er

R
ec

ei
v

e

Expensive

Receive

Transfer

Release

Transfer

Create
Request

Transfer

Receive

Transfer

Transfer

Release

Offers

Transfer

Receive

Input chalets for sale

If

wood

If

cheap

If

expns

If

Green

If

modern

If

good

If

bad

C
re

at
e

If

Expns.

If

Wood

Cheap

If

Green

If

Modern

Good

Bad

Receive

T
ra

n
sf

er
 Ext

Process

C
re

at
e

R
el

ea
se

T
ra

n
sf

er

R
ec

ei
v

e

T
ra

n
sf

er
 Ext

Process

C
re

at
e

R
el

ea
se

T
ra

n
sf

er

R
ec

ei
v

e

T
ra

n
sf

er
 Ext

Process

C
re

at
e

R
el

ea
se

T
ra

n
sf

er

R
ec

ei
v

e

T
ra

n
sf

er
 Ext

Process

C
re

at
e

R
el

ea
se

T
ra

n
sf

er

R
ec

ei
v

e

T
ra

n
sf

er
 Ext

Process

C
re

at
e

R
el

ea
se

T
ra

n
sf

er

R
ec

ei
v

e

T
ra

n
sf

er
 Ext

Process

C
re

at
e

R
el

ea
se

T
ra

n
sf

er

R
ec

ei
v

e

T
ra

n
sf

er
 Ext

1

2

3

4

5
6

7

8

9

10

11

13

12

14

15

16 17

21

20

19

18

22

23

1

24

1
25

1

26

1

Fig. 12 The static model of the chalets market system.

M
e
m

b
e
r
:

S
in

g
u

la
r
it

y
 -

 O
n

e

A similar process is applied to the other six sets of thimacs

(18-23): each set that satisfies one of the requirements is

retrieved.

All the retrieved sets are processed (24) to create a set of

chalets that satisfies all the buyer‟s requirements (25), set to

the prospective buyer (26).

B. Dynamic Model

Fig. 13 shows the dynamic model. Fig. 14 shows the

behavior model of the resultant chalet system.

 Process

Release

Transfer

Create

Transfer

Receive

Fig. 13 The dynamic model of the chalet market system.

Process

Process

Bad repair

Good repair

Buyer

Modern

Green surround

Cheap

Wooden

Process

C
re

at
e

R
el

ea
se

T
ra

n
sf

er

R
el

ea
se

T
ra

n
sf

er

R
ec

ei
v

e

Expensive

Receive

Transfer

Request

Transfer

Transfer

Release

Offers

Transfer

Receive

Input chalets for sale

If

wood

If

cheap

If

expns

If

Green

If

modern

If

good

If

bad

C
re

at
e

Expns.

Wood

Cheap

Green

Good

Bad

Receive

T
ra

n
sf

er
 Set

Process

C
re

at
e

R
el

ea
se

T
ra

n
sf

er

R
ec

ei
v

e

T
ra

n
sf

er
 Set

Process

C
re

at
e

R
el

ea
se

T
ra

n
sf

er

R
ec

ei
v

e

T
ra

n
sf

er
 Set

Process

C
re

at
e

R
el

ea
se

T
ra

n
sf

er

R
ec

ei
v

e

T
ra

n
sf

er
 Set

Process

C
re

at
e

R
el

ea
se

T
ra

n
sf

er

R
ec

ei
v

e

T
ra

n
sf

er
 Set

Process

C
re

at
e

R
el

ea
se

T
ra

n
sf

er

R
ec

ei
v

e

T
ra

n
sf

er
 Set

Process

C
re

at
e

R
el

ea
se

T
ra

n
sf

er

R
ec

ei
v

e

T
ra

n
sf

er
 Set

E1

E4

E3

E2

E8

E7

E6

E5

E9

E10

E13

E12

E11

E17

E16

E15

E14

E18

E19

Modern

VII. CONCUSION

This paper is a sequel in a forward-looking roadmap of

pursuing a unified conceptual modeling using TMs founded

on Stoic ontology and Lupascian logic. The underlining

hypothesis is that a single diagrammatic language can be

applied to all types and aspects of modeling for various

applications.

The roadmap consists of

- A single-category ontology called thimac with dual

mode of being: thing and machine.

- Two levels reality of existence of events and

subsistence of regions (static thimacs) (based on

Stoic ontology).

- Machines that comprise generic actions: create,

process, release, transfer and receive.

- Things that flow according to the structure of

machines, with triggers that overrule the order of

actions.

- Negative events handled based on Lupascian logic

(introduced in previous publications).

The indication of this paper points to merits in the pursuit

of this unifying language for the following reasons.

- The achievement of representing additional systems

(e.g., businesses such as car hire systems,

mathematical systems such as sets).

- The apparently successful incorporation of

philosophical notions (e.g., potentiality, actuality) in

TM modeling.

Accordingly, we will continue the refinement of the TM

model in representing business and engineering system and

expanding its philosophical foundation (e.g., ontology).

REFERENCES

[1] O. Dieste, N. Juristo, A. M. Moreno, J. Pazos, and A. Sierra, ―Conceptual

modelling in software engineering and knowledge engineering: Concepts,

techniques and trends,‖ in Handbook of Software Engineering and

Knowledge Engineering, pp. 733–766. World Scientific Publishing,

Hackensack, NJ, 2002.

[2] L. M. Delcambre, S.W. Liddle, O. Pastor, and V. C. Storey, “A reference

framework for conceptual modeling,” in International Conference on

Conceptual Modeling, Lecture Notes in Computer Science, vol. 11157.

Springer, Cham. Springer, 2018.

[3] R. A. Buchmann, A.-M. Ghiran, V. Döller, and D. Karagiannis,

―Conceptual modelling in education: A position paper,‖ CEUR Workshop

Proceedings, Germany: Online, 2019.

[4] J. Gray and B. Rumpe, ―Models as the subject of research,‖ Software and

Systems Modeling, vol. 18, pp. 3189-3191, 2019.

https://doi.org/10.1007/s10270-019-00751-y

[5] J. Recker and P. Green, ―How do individuals interpret multiple conceptual

models? A theory of combined ontological completeness and

overlap,‖ Journal of the Association for Information Systems, vol. 20, no.

8, 2019. DOI: 10.17705/1jais.00 565

[6] M. Petre, ―UML in practice,‖ 35th International Conference on Software

Engineering (ICSE 2013), pp. 722-731, May 2013.

[7] J. Vidalie, M. Batteux, F. Mhenni, J.-Y. Choley, “Category theory

framework for system engineering and safety assessment model

synchronization methodologies,” Appl. Sci., vol. 12, p. 5880, 2022.

https://doi.org/10.3390/ app12125880

[8] B. Thalheim, ―Towards a theory of conceptual modelling,‖ Journal of

Universal Computer Science, vol. 16, no. 20, pp. 3102-3137, 2010.

[9] C. M. Keet, ―The ontology-driven unifying metamodel of UML class

diagrams, ER, EER, ORM, and ORM2,‖ August 20, 2015.

https://keet.wordpress.com/2015/08/20/the-ontology-driven-unifying-

metamodel-of-uml-class-diagrams-er-eer-orm-and-orm2/

[10] C. M. Keet and P. R. Fillottrani, ―An ontology-driven unifying metamodel

of UML Class Diagrams, EER, and ORM2.‖ Data & Knowledge

Engineering, vol. 98, pp. 30-53, July 2015.

[11] P. Koupil and I. Holubová, ―A unified representation and transformation of

multi‑model data using category theory,‖ Journal of Big Data, vol. 9, no.

61, 2022. https://doi.org/10.1186/s40537-022-00613-3

[12] S. Al-Fedaghi, “Modeling system events and negative events using thinging

machines based on Lupascian logic,” arXiv preprint, arXiv:2211.12586,

Nov. 22, 2022. https://arxiv.org/ftp/arxiv/papers/2211/2211.12586.pdf

[13] T. Sider, ―Symposia on writing the book of the world,‖ Analysis 73: 4, pp.

713–715, 751–770, 2013. https://tedsider.org/papers/wbw_symposia.pdf

[14] M. K. Jones, The Gnostic Ogdoad, blog, August 10, 2019.

https://equivalentexchange.blog/2019/08/10/writing-the-book-of-the-

world/

[15] B. Russell, A Critical Exposition of The Philosophy of Leibniz, London

and New York: Routledge, 2005, p. 51.

https://polanco.jesuits-

africa.education/jspui/bitstream/123456789/178/1/A%20Critical%20Exp

osition%20of%20the%20Philosophy%20of%20Leibniz.pdf

[16] G. Guizzardi, ―Representing collectives and their members in UML

conceptual models: An ontological analysis,‖ in Advances in Conceptual

Modeling – Applications and Challenges, ER 2010. Lecture Notes in

Computer Science, vol. 6413, Berlin, Heidelberg: Springer.

[17] A. Gallia, UML Tutorial: How to Model any Process or Structure in

Your Business, October 26, 2018. https://www.process.st/uml-tutorial/

[18] S. Al-Fedaghi, ―Scrutinizing UML activity diagrams,‖ in Information

Systems Development, G. Papadopoulos, W. Wojtkowski, G. Wojtkowski,

S. Wrycza, and J. Zupancic, Eds. Boston, MA: Springer, 2009, pp. 59-67.

https://doi.org/10.1007/b137171_7

[19] M. Verdonck, F. Gailly, S. de Cezare, and G. Poels, ―Ontology-driven

conceptual modeling: A systematic literature mapping and review,‖

Applied Ontology, vol. 10, no. 3-4, pp. 197-227, 2015.

[20] G. Guizzardi, ―Ontological foundations for conceptual modeling with

applications,‖ in Advanced Information Systems Engineering, vol. 7328, J.

Ralyté, X. Franch, S. Brinkkemper, and S. Wrycza, Eds. Berlin,

Heidelberg: Springer, 2012, pp. 69-696. doi:10.1007/978-3-642-31095-

9_45

E19

E1

E2

E3

E4

E5

E6

E7

E8

E9

Subsets

E10

E11

E12

E13

E14

E15

E16

E17

E18

Subsets

Fig. 14 The behavior model of the chalets market system.

[21] R. R. Bishop and J. E. Brenner, ―Potentiality, actuality and non-

separability in quantum and classical physics: Res Potentiae in the

macroscopic world,‖ arXiv:1801.01471, Dec 2017.

[22] B. Smith, ―Ontology,‖ in Blackwell Guide to the Philosophy of Computing

and Information, L. Floridi, Ed. Oxford: Blackwell, 2003, pp. 155-166.

[23] T. Tracy, Ultimate Reality and Meaning in Aristotle: A Classicist’s View,

https://www.utpjournals.press/doi/pdf/10.3138/uram.5.3.210, April 10,

2023.

[24] B. C. van Fraassen, Of Time and Space, originally published by Random

House in 1970. Reprinted by Columbia University Press in 1985.

https://www.princeton.edu/~fraassen/BvF%20-%20IPTS.pdf

[25] D. Robb, ―Margaret Cavendish on matter and metaphysical structure,‖ in

Oxford Studies in Early Modern Philosophy, 2005.

https://www.rochester.edu/college/faculty/alisonpeterman/CavendishMatte

r.pdf

[26] R. Weir, ―Substance,‖ in Internet Encyclopedia of Philosophy, nd.

https://iep.utm.edu/substance/#SH4b

[27] E. Conte, A. Khrennikov, and J. P. Zbilut, ―The transition from ontic

potentiality to actualization of states in a quantum mechanical approach to

reality,‖ arXiv: [quant-ph], 27 July 2006.

[28] E. Conte, G. Pierri, L. Mendolicchio, A. Y. Khrennikov, and J. P. Zbilut,

On Some Detailed Examples of Quantum Like Structures Containing

Quantum Potential States Acting in the Sphere of Biological Dynamics,

2006. On_some_detailed_examples_of_quantum_lik.pdf

[29] D. Aerts and B. D‘Hooghe, ―Potentiality states: Quantum versus classical

emergence,‖ arXiv:1212.0104v1 [quant-ph], Dec 1 2012.

[30] P. Coffey, Ontology or the Theory of Being, Ebook, March 30, 2011.

https://www.gutenberg.org/files/35722/35722-pdf.pdf

[31] M. Richters and M. Gogolla, ―OCL: Syntax, semantics, and tools,‖ in

Object Modeling with the OCL, Lecture Notes in Computer Science, vol.

2263, T. Clark and J. Warmer, Eds. Berlin, Heidelberg: Springer, 2002, pp

42-68.

[32] J.-R. Abrial, The B-Book: Assigning Programs to Meanings, Cambridge

University Press, 1996.

[33] J. Becker, P. Delfmann, S. Herwig, and L. Lis, ―A generic set theory-based

pattern matching approach for the analysis of conceptual models,‖ in

Conceptual Modeling - ER 2009. Lecture Notes in Computer Science, vol.

5829, A. H. F. Laender, S. Castano, U. Dayal, F. Casati, and J. P. M. de

Oliveira, Eds. Berlin, Heidelberg: Springer, 2009, pp. 41-54.

[34] B. Falah, M. Akour, I. Arab, and Y. Mhanna, ―An attempt towards a

formalizing UML class diagram semantics,‖ New Trends in Information

Technology Conference 2017 at the University of Jordan, Amman,

Jordan, April 2018

[35] N. Ibrahim, R. Ibrahim, M. Z. Saringat, D. Mansor, and T. Herawan, ―On

well-formedness rules for UML use case diagram,‖ in Web Information

Systems and Mining. WISM, Lecture Notes in Computer Science, vol.

6318, F. L. Wang, Z. Gong, X. Luo, and J. Lei, Eds. Berlin, Heidelberg:

Springer, 2010, pp. 432-439.

[36] P. Selonen, “Set operations for Unified Modeling Language,” Proceedings

of the Eighth Symposium on Programming Languages and Software

Tools, Huopio, Finland, June 17-18 2003.

[37] M. Siikarla, J. Peltonen, and P. Selonen, ―Combining OCL and

programming languages for UML model processing,‖ Electronic Notes in

Theoretical Computer Science, vol. 102, pp. 175-194, 2004.

[38] J. S. van der Ven, An Implementation of Set Operations on UML

Diagrams, Thesis, RijksuniverSiteit Groningen Bibliotheek Wiskunde &

InformatiCa, National Research Institute for Mathematics and Computer

Science, Amsterdam, Netherlands, n.d.

https://fse.studenttheses.ub.rug.nl/8940/1/Infor_Ma_2004_JSvanderVen.C

V.pdf

[39] A. A. Nasef, A. I. El-Maghrabi, A. M. Elfeky, and S. Jafari, ―Soft set

theory and its applications,‖ International Conference on Topology and

its Application, pp. 211-222, 2018.

