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This paper demonstrates dynamics, chaos control, and synchronization in Samardzija-Greller population model with fractional
order between zero and two. The fractional-order case is shown to exhibit rich variety of nonlinear dynamics. Lyapunov
exponents are calculated to confirm the existence of wide range of chaotic dynamics in this system. Chaos control in this model
is achieved via a novel linear control technique with the fractional order lying in (1, 2). Moreover, a linear feedback control
method is used to control the fractional-order model to its steady states when 0 < α < 2. In addition, the obtained results
illustrate the role of fractional parameter on controlling chaos in this model. Furthermore, nonlinear feedback synchronization
scheme is also employed to illustrate that the fractional parameter has a stabilizing role on the synchronization process in this
system. The analytical results are confirmed by numerical simulations.

1. Introduction

Dynamic analysis of engineering and biological models has
become an important issue for research [1–10]. One of the
most fascinating dynamical phenomena is the existence of
chaotic attractors. Due to the importance of chaos, it has been
investigated in various academic disciplines [11–15]. The
sensitivity to initial conditions which characterizes the exis-
tence of chaotic attractors was first noticed by Poincaré [16].

According to their potential applications in a wide variety
of settings, fractional-order differential equations (FODEs)
have received increasing attention in engineering [17–23],
physics [24], mathematical biology [25-26], and encryption
algorithms [27]. Moreover, FODEs play an important role
in the description of memory which is essential in most
biological models.

Chaos synchronization and control in dynamical systems
are essential applications of chaos theory. They have become
focal topics for research since the elegant work of Ott et al. in
chaos control [28] and the pioneering work of Pecora and
Carroll in chaos synchronization [29]. Chaos control is
sometimes needed to refine the behavior of a chaotic model
and to remove unexpected performance of power electronics.
Synchronization of chaos has also useful applications to
biological, chemical, physical systems and secure communi-
cations. Furthermore, synchronization and control in chaotic
fractional-order dynamical systems have been investigated
by authors [30–32].

The integer-order Samardzija-Greller population model
is a system of ODEs that generalizes the Lotka-Volterra equa-
tions and expresses the behaviors of two species predator-
prey population dynamical system. This model was proposed
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by Samardzija and Greller in 1988 [33]. They had proved the
existence of complex oscillatory behavior in this model. In
1999, chaos synchronization had firstly been investigated in
this model by Costello [34]. Oancea et al. utilized this system
to achieve the pest control in agricultural systems [35]. In
2018, Elsadany et al. proved the existence of generalized
Hopf (Bautin) bifurcation in this model [36]. Recently,
some works investigating synchronization in the fractional-
order Samardzija-Greller model with order less than one
have appeared [37-38]. Up to the present day, dynamics,
chaos control, and synchronization have not been investi-
gated in the fractional-order Samardzija-Greller system with
order lying in (0, 2).

So, our objective in this paper is to investigate the rich
dynamics and achieve chaos synchronization and control in
the fractional-order Samardzija-Greller model with order
lying in (0, 2). Moreover, applying the fractional Routh-
Hurwitz criteria [23, 39] enables us to illustrate the role of
the fractional parameter on synchronizing and controlling
chaos in this model. Motivated by the previous discussion,
numerical verifications are performed to show the existence
of wide range of chaotic dynamics in this model using the
aids of phase portraits and Lyapunov exponents.

2. Mathematical Preliminaries

Here, Caputo definition [17] is adopted as

Dα f t = Jl−α f l t , 1

where α ∈ℜ+, f l denotes the ordinary lth derivative of f t ,
l is an integer that satisfies l − 1 < α ≤ l, and the operator Jβ is
defined by

Jβg t = 1
Γ β

t

0
t − τ β−1g τ dτ, β > 0, 2

where Γ is defined as

Γ ς =
∞

0
tς−1e−tdt 3

Therefore, fractional modeling provides more accuracy
in both theoretical and experimental results of the ecological
model which are naturally related with long range memory
behavior which is very important in modeling ecological
systems. Thus, increasing the range of the fractional parame-
ter α from the interval (0, 1) that is commonly used in most
literatures to the interval (0, 2) provides greater degrees of
freedom in modeling the population system. In addition,
increasing the interval of fractional parameter increases the
complexity in the system since the fractional parameter α is
in a close relationship with fractals which are abundant in
ecosystems. Furthermore, as α is increased, more adequate
description of the whole time domain of the process is
achieved and the system may show rich variety of complex
behaviors such as sensitive dependence on initial conditions.

Consider the following fractional-order system:

DαX = JX, 4

which represents a linearized form of the nonlinear system:

DαX =G X , 5

where 0 < α < 2, X ∈ℜn, G ∈ C Ψ,ℜn . Moreover, the follow-
ing inequalities [40]

arg λi > απ

2 , i = 1,… , n, 6

determine the local stability of a steady state X ∈ℜn of the
fractional-order system (4), where λi is any eigenvalue of
the matrix J. The stability region for α ∈ 0, 1 and α ∈ 1, 2
is shown in Figures 1(a) and 1(b), respectively. Moreover,
stability conditions and their applications to nonlinear sys-
tems of FODEs were investigated in [23, 41].

3. A Three-Dimensional Samardzija-
Greller Model

A three-dimensional Samardzija-Greller model [33] is
described as

dx
dt

= 1 − y x + c − az x2,

dy
dt

= −1 + x y,

dz
dt

= −b + ax2 z,

7

where the prey of the population is denoted by x and the
predators of the population are denoted by y and z. The
predators y, z do not interact directly with one another
but compete for prey x, and a, b, c are nonnegative param-
eters used to discuss the bifurcation phenomena in the
model as stated by Samardzija and Greller in 1988 [33].
Furthermore, the positive value of the parameter a indi-
cates that two different predators y and z consume the
prey x. However, if parameter a is vanished, a classical
version of Lotka-Volterra model is obtained. By replacing
first-order derivatives in system (7) with fractional deriva-
tives of order 0 < α < 2, we obtain

Dαx = 1 − y x + c − az x2,
Dαy = −1 + x y,
Dαz = −b + ax2 z

8

So, a greater degree of accuracy can be obtained in our
population model by using the property of evolution (8)
due to the existence of fractional derivatives which is
essential to the proposed Samardzija-Greller model
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because of its ability to provide a realistic description of
the population model which involves processes with mem-
ory and hereditary properties. Furthermore, fractional
derivatives provide greater degrees of freedom in modeling
predator-prey ecosystems and closely related to fractals
which are abundant in population models as well as its
ability to describe the whole time domain for the process.

To obtain the steady states of system (8), we set Dαx = 0
,Dαy = 0,Dαz = 0, then the system has three nonnegative
equilibria given as E0 = 0,0,0 , E1 = 1, 1 + c, 0 , and E2 =
m, 0, 1 +mc /ma , where m = b/a.

4. Stability of System (8) with α Lying in (0, 2)

Assume that system (8) is written in the following form:

Dαx1 t = f1 x1, x2, x3 ,
Dαx2 t = f2 x1, x2, x3 ,
Dαx3 t = f3 x1, x2, x3 ,

9

α ∈ 0, 2 . The characteristic polynomial of the steady state
X∗ of system (9) is given as

P λ = λ3 + r1λ
2 + r2λ + r3 = 0 10

The discriminant of P λ is given by

D P = 18r1r2r3 + r21r
2
2 − 4r3r31 − 4r32 − 27r23 11

If all roots of (10) satisfy the inequalities (6), then the
steady state of the linearized form of system (9) is locally
asymptotically stable (LAS). To discuss the local stability of
X∗, we prove the following theorem:

Theorem 1. The steady state X∗ of system (9) is LAS if arg
λi J X∗ > απ/2, i = 1,2,3, α ∈ 0, 2 , where J is the Jaco-
bian matrix computed at the steady state X∗.

Proof 1. Let si be a very small perturbation defined as si =
xi − x∗i , where i = 1,2,3. Therefore, (9), with derivatives in
the Caputo sense, can be written as

Dαsi t = f i si + x∗i , 12

with initial values si 0 = xi 0 − x∗i . A linearization of the
above equation, based on the Taylor expansion, can take
the form

Dαs = Js, 13

where α ∈ 0, 2 , J is computed at the steady state X∗ = x∗1 ,
x∗2 , x∗3 , and s = s1 s2 s3

T . Hence,

Dαs = PQP−1 s,

Dα P−1s =Q P−1s ,
14

where Q = diag λ1, λ2, λ3 , λi is an eigenvalue of J, and P is
the corresponding eigenvector. Suppose that γ = P−1s =
γ1 γ2 γ3

T , then it follows that

Dαγ =Qγ,
Dαγi = λiγi

15

The above system can easily be solved by the aid of
Mittag-Leffler functions as follows

γi t = 〠
∞

k=0

tαkλki
Γ 1 + αk

γi 0 , i = 1,2,3 16

If the eigenvalue λi satisfies the condition arg
λi J X∗ > απ/2, then the perturbations si t are decreas-
ing which implies that X∗ is LAS.

Moreover, the fractional Routh-Hurwitz (FRH) stability
criterion is provided by the following lemma:
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Figure 1: Stability and instability regions of system (4): (a) the case 0 < α < 1; (b) the case 1 ≤ α < 2.
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Lemma 1 (see [39]).

(i) The steady state X∗ is LAS iff

r1 > 0,
r3 > 0,

r1r2 > r3,
17

provided that the discriminant of (10) is positive.

(ii) If the discriminant of (10) is negative, and r1 ≥ 0,
r2 ≥ 0, r3 > 0 , then the steady state X∗ is LAS when
the fractional parameter α is less than 2/3, while
if fractional parameter α is greater than 2/3, and
r1 < 0, r2 < 0, then X∗ is not LAS.

(iii) If the discriminant of (10) is negative, and r1 > 0,
r2 > 0, r1r2 = r3, then X∗is LAS when 0 < α < 1.

(iv) Point X∗ is LAS only if r3 > 0.

Hence, the following lemmas are provided.

Lemma 2 (see [23, 39]). If the discriminant of (10) is negative
and r1r2 = r3, r1 > 0, r2 > 0, then the steady state X∗ is LAS
just when 0 < α < 1.

Lemma 3 (see [42]). Assume that system (5) is written in the
form

DαX t =CX t + h X t , 18

where α ∈ 0, 2 , C ∈ℜn×n is a constant matrix, and h X t is
a nonlinear vector function such that

lim
X t →0

h X t
X t

= 0, 19

where represents the l2-norm, then the zero steady state
of system (5) is LAS provided that arg λi C > απ/2,
i = 1,… , n.

4.1. Stability Conditions for the Steady State E0. The charac-
teristic equation of the steady state E0 is described as

P λ = λ3 + bλ2 − λ − b = 0 20

It is easy to check that r3 = −b < 0, so by applying the
stability condition (iv), we conclude that the steady state E0
of system (8) is unstable.

4.2. Stability Conditions for the Steady State E1. The charac-
teristic equation of the steady state E1 is described as

P λ = λ3 + b − a − c λ2 + 1 + ac − bc + c λ

+ c + 1 b − a = 0
21

So by utilizing the FRH conditions (i)–(iv), we obtain the
following results:

(1) If the discriminant of (21) is negative; the steady
state E1 is LAS provided that a + c < b, b ≤ a + 1 +
1/c, α < 2/3.

However, if a + c > b, b > a + 1 + 1/c, α > 2/3, the steady state
E1 is unstable.

(2) The steady state E1 of system (8) is LAS only if b > a.

Remark 1. The stability conditions (i) and (iii) are not satis-
fied for the steady state E1.

4.3. Stability Conditions for the Steady State E2. The charac-
teristic equation of the steady state E2 is described as

P λ = λ3 + 2 −m λ2 + 2b + 1 + 2mbc −m λ

+ 2b mc + 1 1 −m = 0,
22

where m = b/a. So by utilizing the FRH conditions (i)–(iv),
we obtain the following results:

(1) When the discriminant of (22) is positive, the steady
state E2 of system (8) is LAS iff

b < a,

c > 3ma − 2a − b − 2ab
2mab

23

(2) When the discriminant of (22) is negative, the steady
state E2 is LAS provided that b < a, c ≥m − 2b − 1/2
mb, α < 2/3. However, the steady state E2 is unstable
if b > 4a, c < m − 2b − 1 /2mb, α > 2/3. Moreover, if
the discriminant of (22) is negative, b < 3a, then E2
is LAS for all 0 < α < 1.

(3) The steady state E2 of system (8) is LAS only if b < a.

5. Hopf Bifurcation in Samardzija-Greller
Model (8)

Although exact periodic solutions do not exist in auton-
omous fractional systems [43], some asymptotically peri-
odic signals converge to limit cycles have been observed by
numerical simulations in many fractional systems. These
limit cycles attract the nearby solutions of such systems.
Therefore, Hopf bifurcation (HB) in autonomous fractional
systems is expected to occur around an equilibrium point
of such systems if it has a pair of complex conjugate eigen-
values and at least one negative eigenvalue. However, deter-
mining the precise bifurcation type is difficult.

In Samardzija-Greller system (8), the occurrence of HB is
expected around E1 = 1, 1 + c, 0 at the critical parameter

c∗ = 2 + 2 2 + tan2 απ/2
1 + tan2 απ/2 , 24
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at which the transversality condition holds and 2 1 − 2
< c < 2 1 + 2 , a < b. For α = 0 98, a = 0 8, b = 3, and c =
0 07, system (8) converges to a limit cycle as shown in
Figure 2.

6. Chaos in Samardzija-Greller Model (8)

Based on the algorithm given in [44] and using the parameter
set a, b, c = 8/10, 3, 3 , the maximum values of Lyapunov
exponents (MLEs) of system (8) are computed. The calcula-
tions of the MLEs give the values 0.21315, 0.038468, 0.0089,
and 0.1562 when α = 1 1, α = 1 05, α = 1 00, and α = 0 99,
respectively. In Figure 3, it is shown that the chaotic
attractor of system (8) related to the fractional-order case
is more complicated than the attractor related to the
integer-order case.

Another parameter set a, b, c = 3, 4, 10 is used to
explore a variety of complex dynamics and new chaotic
regions in the Samardzija-Greller model (7) and its corre-
sponding fractional-order form. The results are depicted in
Figure 4 which shows that the complex dynamics of the
system exist in a wide range of the fractional parameter α.
These foundations are confirmed by the calculation of maxi-
mal Lyapunov exponents which are depicted in Figure 5.

7. Chaos Control in System (8)

In the following, we will control chaos in system (8) when
1 < α < 2 using linear control technique and also we will
discuss the role of fractional parameter α on controlling
chaos in Samardzija-Greller model using a linear feedback
control technique.

7.1. Chaos Control of Samardzija-Greller System (8) with α
Lying in (1, 2) via Linear Control. Assume that the controlled
Samardzija-Greller system is described by

Dαx = 1 − y x + c − az x2 − u1,
Dαy = y x − 1 − u2,
Dαz = −b + ax2 z − u3

25

Thus, system (25) is rewritten as

DαX t =CX t + h X t −U , 26

where X t = x y z T ,

C =
1 0 0
0 −1 0
0 0 −b

27

is a constant parameter matrix, and the linear controller U is
written as

U =
u1

u2

u3

=MKX, 28
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Figure 2: The trajectory of system (8) with the parameter set a, b, c = 0 8,3,0 07 and fractional parameter α = 0 98 is attracted by a limit
cycle: (a) view in xyz-space; (b) the solution versus time.
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where U is to be designed later, and h X t is also defined as

h X t =
−xy + cx2 − ax2z

xy

ax2z

29

Obviously,

lim
X t →0

h X t
X t

= lim
X t →0

−xy + cx2 − ax2z 2 + x2y2 + a2x4z2

x2 + y2 + z2

≤ lim
X t →0

x2 −y + cx − axz 2 + y2 + a2x2z2

x2

= lim
X t →0

−y + cx − axz 2 + y2 + a2x2z2 = 0

30

So, according to Lemma 3, the zero steady state x − x∗,
y − y∗, z − z∗ of the controlled system (26) is LAS if the

linear control matrix is chosen such that arg λi C −U
> απ/2, i = 1,2,3.

The controlled Samardzija-Greller model (25) is numer-
ically integrated as a = 3, b = 4,c = 10, and α = 1 1 and linear
control functions

u1 = k1 x − x∗ ,
u2 = k2 y − y∗ ,
u3 = k3 z − z∗ + ε x − x∗ ,

31

where k1, k2, k3 ≥ 0 and ε is a real constant. Thus, the
selection k1 > 1, k2 > 0, k3 > 0 ensures that the conditions
arg λi C −U > απ/2, i = 1,2,3, hold. Figures 6(a)–6(c)
show that system (26) is controlled to the steady states E0,
E1, E2 as using (k1 = 100, k2 = 150, k3 = 100, and ε = 100),
(k1 = 100, k2 = 150, k3 = 150, and ε = 0 3), (k1 = 100, k2 =
100, k3 = 150, and ε = 0 3), respectively.

7.2. Chaos Control of Samardzija-Greller System (8) via the
FRH Criterion. The FRH criterion is employed to control
chaos in system (8) using linear feedback control technique
which is more easy of implementation, cheap in cost, and

25

20

15

10

5

0
1.5

1

0.5
0 −2 0 2

4
x

6 8 10 12

y

z

(a)

6

4
5

2
1

3

0
y

z

x
0

2
4

6
8

0
2
4
6
8
10
12
14

(b)

0
5

4
3

2
1y

z

x0 0 5 10
15 20 25

30

5
10
15
20
25
30
35
40

(c)

Figure 3: Phase diagrams of Samardzija-Greller model (8) with a = 8/10, b = c = 3, and α equals: (a) 1.1, (b) 1.00, and (c) 0.99.
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more appropriate of being designed in real-world applica-
tions.Moreover, wewill illustrate the role of fractional param-
eter α on controlling chaos in system (8). Consider the
following system:

DαX = G X , 32

where α ∈ 0, 2 and X = x, y, z . System (32) has the con-
trolled form

DαX = G X − K X − X∗ , 33

where X∗ = x∗, y∗, z∗ is a steady state of (32) and K = diag
k1, k2, k3 , k1, k2, k3 ≥ 0 are the feedback control gains

10

8

6

4

y

0 0.5 1
x

1.5 2.52 3 3.5 4.54

0

2

4

6

8

10

z

(a)

0.3

0.25

0.2

0.15

0.1

y

−1 0 1 2 3 4 5 6 7 8 9

x

0

2

4

6

8

10

12

14

16

z

(b)

0
2

5

10

15

20

z

1.5

1

0.5

y

0
0 2 4

x

6 8 10 12 14

(c)

25

20

15

z

10

5

0
6

4

2

0

y

0 2 4 6
x

8 10 12 14 16 18

(d)

15

10

5

z

0
6

5

4

3

2

1

y

0 1 2 3
x

4 5 6 7 8 9 10

(e)

8

7

6

5

4

3

2

1

0

z

5

4.5

4

3.5

3

y

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x

(f)

4.5

4

3.5

3

2.5

z

2

1.5

1

0.5
7

6

5

4

y

0.5 1 1.5
x

2 2.5 3 3.5

(g)

z

6

5

4

3

2

1

0
10

8

6

4

y

0 1 2
x

3 4 5 6

(h)

6

5

4

3

2

1

0

z

10

8

6

4

y

0 1 2
x

3 4 5 6

(i)

3

2.5

2

1.5z

1

0.5
10

8

6y

4
0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

x

(j)
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(FCGs) that are selected according to the FRH criterion in
such a way that

lim
t→∞

X − X∗ = 0 34

So, controlled Samardzija-Greller system (8) is given as

Dαx = 1 − y x + c − az x2 − k1 x − x∗ ,
Dαy = −1 + x y − k2 y − y∗ ,
Dαz = −b + ax2 − k3 z + k3z

∗,
35

where 0 < α < 2 and X∗ = x∗, y∗, z∗ is a steady state of sys-
tem (8). Now, we are going to control chaotic system (8) to
the steady state E1. Hence, system (35) becomes

Dαx = 1 − y x + c − az x2 − k1 x − 1 ,
Dαy = −1 + x y − k2 y − 1 − c ,
Dαz = −b + ax2 − k3 z

36

Then, system (36) has the following characteristic equa-
tion that is evaluated at the steady state E1:

P λ = λ3 + r1λ
2 + r2λ + r3 = 0, 37

where

r1 = k1 + b − a + c ,
r2 = 1 + c + ac − ak1 + bk1 − bc,
r3 = 1 + c b − a

38

System (36) is numerically integrated with a = 3, b = 4,
c = 10, α = 0 95, and k1 = 8 5, k2 = 1 5, k3 = 50. Consequently,
the fractional Routh-Hurwitz condition (iii) holds, that is, the
discriminant of (37) is negative, r1, r2 are positive and r3 =
r1r2. So according to Lemma 2, system (36) is stabilized to

the steady state E1 = 1,11,0 with the fractional parameter
α only in the interval 0, 1 . Figure 7(a) shows that the states
of Samardzija-Greller model (36) approach the steady state
E1 = 1,11,0 . However, Figures 7(b) and 7(c) show that the
states of system (36) are not stabilized to the steady state
E1 = 1,11,0 when α = 1 and α = 1 1, respectively. These
results illustrate the role of the parameter α on suppressing
chaos in Samardzija-Greller model (8).

Obviously, E0 satisfies the fractional Routh-Hurwitz con-
dition (i) as using the above selection of parameters and
FCGs k1 > 1, k2 = 1 5, k3 = 50 and k1 = 8 5, k2 > 0, k3 = 50.
So, system (35) is controlled to E0 for α = 0 95, k1 = 8 5,
k2 = 1 5, k3 = 50 and for α = 1 1, k1 = 8 5, k2 = 250, k3 = 50.
The results are depicted in Figure 8.

Also, E2 = 1 154700539,0,3 622008471 satisfies the
fractional Routh-Hurwitz condition (i) as using the above
selection of parameters and FCGs k1 > 0, k2 = 1 5, k3 = 50
and k1 = 8 5, k2 > 0 1547005382, k3 = 50. Hence, system (35)
is controlled to E2 = 1 154700539,0,3 622008471 for α =
0 95, k1 = 8 5, k2 = 1 5, k3 = 50 and for α = 1 1, k1 = 8 5, k2 =
250, k3 = 50. The results are illustrated in Figure 9.

8. Chaos Synchronization of Samardzija-Greller
System (8) via Nonlinear Feedback Control

The drive system is introduced as

Dαx1 = 1 − y1 x1 + c − az1 x21,
Dαy1 = −1 + x1 y1,
Dαz1 = −b + ax21 z1,

39

and the response system is presented as

Dαx2 = 1 − y2 x2 + c − az2 x22 + v1,
Dαy2 = −1 + x2 y2 + v2,
Dαz2 = −b + ax22 z2 + v3,

40

where α ∈ 0, 2 and v1, v2, v3 are the nonlinear feedback con-
trollers. Then, we suppose that

e1 = x2 − x1,
e2 = y2 − y1,
e3 = z2 − z1

41

By subtracting (39) from (40) and using (41), we get

Dαe1 = e1 − x2e2 + y1e1 + c x2 + x1 e1
− a x22e3 + z1 x2 + x1 e1 + v1 e1, e2, e3 ,

Dαe2 = −e2 + x2e2 + y1e1 + v2 e1, e2, e3 ,

Dαe3 = −be3 + a x22e3 + z1 x2 + x1 e1 + v3 e1, e2, e3
42

Theorem 2. The drive chaotic system (39) and the response
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Figure 5: The MLEs of system (8) for different values of the
parameter α and a, b, c = 3, 4, 10 .
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chaotic system (40) are synchronized for 0 < α < 2, if the con-
trol functions are chosen as

v1 e1, e2, e3 = u − cv + aw − k1e1,
v2 e1, e2, e3 = −u − k2e2,
v3 e1, e2, e3 = −aw − k3e3,

43

where

u = x2e2 + y1e1,
v = x2e1 + x1e1,
w = x22e3 + x2z1e1 + x1z1e1,

44

and the FCGs must satisfy

k1 > 1,
k2 > 0,
k3 > 0

45

Proof 2. The Jacobian matrix of system (42) with the control-
lers (43) evaluated at the origin steady state is described by

A 0,0,0 =
1 − k1 0 0
0 −1 − k2 0
0 0 −b − k3

46

So, if we select k1 > 1, k2 > 0, k3 > 0, then all the eigenvalues
of the Jacobian matrix (46) have negative signs. Thus, accord-
ing to condition (6), the origin steady state of system (42) is
LAS for 0 < α < 2. Consequently, the proof is completed.

The fractional-order systems (39) and (40) are numer-
ically integrated using the system’s parameters a = 8/10,
b = 3, and c = 3, the controllers (43) with k1 = 20, k2 = 20,
k3 = 20, and the fractional parameters α = 0 99 and α = 1 1,
respectively. The results are depicted in Figure 10.

8.1. The Role of Fractional Parameter on Synchronizing Chaos
in System (8) via Nonlinear Feedback Control Method. To
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Figure 6: The states of the controlled Samardzija-Greller model (25) converge to the steady state: (a) E0 = 0, 0, 0 , (b) E1 = 1, 11, 0 , and (c)
E2 = 1 154700539, 0, 3 622008471 , when a = 3, b = 4, c = 10, and α = 1 1 and using the linear controllers (31).
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explain the role of fractional parameter α on the synchroniza-
tion process of this model, we present the following theorem:

Theorem 3. The trajectories of the drive chaotic Samardzija-
Greller model (39) asymptotically approach the trajectories
of the response chaotic Samardzija-Greller model (40) just
when the fractional parameter α is less than one, if the control
functions are chosen as

v1 e1, e2, e3 = b − 1 − k1 e1 − e2 − ae3 + u − cv + aw,
v2 e1, e2, e3 = 1 + c e1 + 1 − k2 e2 − u,
v3 e1, e2, e3 = −aw − k3e3,

47
where a = 3, b = 4, c = 10, k1 = 3 9, k2 = 0 1, and k3 = 10.

Proof 3. The Jacobian matrix of system (42) with the control-
lers (47) evaluated at the origin steady state is described by

A 0,0,0 =
b − k1 −1 −a

1 + c −k2 0
0 0 −b − k3

48

and has the following characteristic equation:

P λ = λ3 + a1λ
2 + a2λ + a3 = 0,

 a1 = k1 + k2 + k3,
a2 = −b2 + b k1 − k3 + c + 1 + k1k2 + k2k3 + k1k3,
a3 = b + k3 c + 1 − b2k2 + bk2 k1 − k3 + k1k2k3

49

0

5

10

15

20

25

30

35
x
, y
, z

5 10 15 20 25 30 35 400
t

x
y
z

(a)

−5

0

5

10

15

20

x
, y
, z

10 20 30 40 50 60 800 70
t

x
y
z

(b)

−5

0

5

10

15

20

x
, y
, z

80100 20 30 60 705040
t

x
y
z

(c)

Figure 7: The states of the controlled Samardzija-Greller model (36) (a) converge to the steady state E1 = 1, 11, 0 when α = 0 95, (b) are not
stabilized to the steady state E1 = 1, 11, 0 when α = 1, (c) are not stabilized to the steady state E1 = 1, 11, 0 when α = 1 1, using the
parameter values a = 3, b = 4, and c = 10 and FCGs k1 = 8 5, k2 = 1 5, and k3 = 50.
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Using the parameters a = 3, b = 4, and c = 10 and the con-
trollers (47) along with the selection k1 = 3 9, k2 = 0 1, k3 = 10
, the characteristic equation (49) satisfies the fractional
Routh-Hurwitz condition (iii), since its discriminant is nega-
tive, a1 ∈ℜ+, a2 ∈ℜ+, and a3 = a1a2. So according to Lemma
2, the origin steady state of system (42) is LAS only for
all α ∈ 0, 1 . Consequently, the states of Samardzija-
Greller model (39) asymptotically approach the states of
Samardzija-Greller model (40) as the controllers (47) are
employed. Since the characteristic equation (49) has a pair

of purely imaginary eigenvalues, the condition of asymptotic
stability of the origin steady state 0,0,0 of (42) is not satis-
fied as 1 ≤ α < 2. Thus, the theorem is now proved.

Therefore, as the parameter α is decreased, the nonlinear
feedback control technique has a stabilizing effect on the
synchronization process in the chaotic Samardzija-Greller
systems. These results are illustrated in Figure 11.

On the other hand, the origin steady state 0,0,0 of (42)
satisfies the fractional Routh-Hurwitz condition (i) as using
a = 3, b = 4, and c = 10 and FCGs k1 > 3 9, k2 = 0 1, k3 = 10.
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Figure 8: The trajectories of Samardzija-Greller model (35) with a = 3, b = 4, and c = 10 are controlled to E0 = 0, 0, 0 as (a) α = 0 95, k1 = 8 5,
k2 = 1 5, and k3 = 50; (b) α = 1 1, k1 = 8 5, k2 = 250, and k3 = 50.
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Figure 9: The trajectories of Samardzija-Greller model (35) with a = 3, b = 4, and c = 10 are controlled to E2 = 1 154700539, 0, 3 622008471
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So, systems (39) and (40) are synchronized for α = 1 1, k1 =
15, k2 = 0 1, k3 = 10 as shown in Figure 12.

9. Concluding Remarks

In this paper, nonlinear dynamics, conditions of chaos con-
trol, and synchronization are studied in the fractional
Samardzija-Greller population model with fractional order
between zero and two. To the best of the authors’ knowl-
edge, dynamical behaviors and chaos applications in this
model have not been investigated elsewhere when the

fractional order lies between zero and two. This kind of
study has great importance to predator-prey ecosystems
since it provides greater degrees of freedom in modeling
such systems. In addition, increasing the interval of frac-
tional parameter helps to raise the complexity in the system
since the fractional parameter is in a close relationship with
fractals which are abundant in ecosystems. Furthermore, as
the fractional parameter α is increased, more accurate
description of the whole time domain of the process is
achieved and the system will show rich dynamics such as
the existence of chaos.
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Figure 10: The synchronization errors (41) converge to zero as using the parameter values a = 0 8 and b = c = 3, the controllers (43), the FCGs
k1 = k2 = k3 = 20, and fractional order (a) α = 0 99 and (b) α = 1 1.
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By using the fractional Routh-Hurwitz criterion, local
stability in this model has been demonstrated as α ∈ 0, 2 .
Moreover, the chaoticity of this model has been numerically
examined by calculating the maximal Lyapunov exponents
using the Wolf’s algorithm. The calculations show that chaos
exists in this system when the fractional parameter lies in the
intervals (0, 1) and (1, 2).

Chaos control in this system has been achieved via a
novel linear control technique as α ∈ 1, 2 . Furthermore,
the role of fractional parameter α on controlling chaos in this
model has also been illustrated using a linear feedback con-
trol technique. It has been proved that using the appropriate
FCGs, the trajectory of Samardzija-Greller population model
is stabilized to the steady state E1 = 1, 1 + c, 0 as the frac-
tional parameter α lies between zero and one.

Chaos synchronization has been achieved in this system
via nonlinear feedback control method. It has also been
shown that, under certain choice of nonlinear controllers,
the fractional-order Samardzija-Greller model is synchro-
nized only when the fractional parameter α is less than one.
Thus, the obtained results illustrate that the parameter α
has also a stabilizing role on the synchronization process in
this system.

All the analytical results have been verified using numer-
ical simulations.
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