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Hofstadter Q-recurrence is defined by the nested recurrence Q n =Q n −Q n − 1 +Q n −Q n − 2 , and there are still many
unanswered questions about certain solutions of it. In this paper, a generalization of Hofstadter’s Q-sequence is proposed and
selected members of this generalization are investigated based on their chaotic generational structures and Pinn’s statistical
technique. Solutions studied have also curious approximate patterns and considerably similar statistical properties with
Hofstadter’s famous Q-sequence in terms of growth characteristics of their successive generations. In fact, the family of
sequences that this paper introduces suggests the existence of conjectural global properties in order to classify unpredictable
solutions to Q-recurrence and a generalization of it.

1. Introduction

Since the enigmatic concept of meta-Fibonacci has been
introduced by Douglas Hofstadter with the invention of the
original Q-sequence (A005185 in OEIS), in the literature,
there are many studies which focus on nested recurrence
relations whose behaviors can alternate dramatically [1–5].
There are many examples of meta-Fibonacci sequences like
Hofstadter-Conway $10000 sequence (A004001), Conolly
sequence (A046699), Tanny sequence (A006949), Golomb’s
sequence (A001462), Mallows’ sequence (A005229), etc.
[6–10]. Some of meta-Fibonacci sequences are highly chaotic
and unpredictable while some of them have completely
predictable fashion such as quasipolynomial solutions to
the Hofstadter Q-recurrence [11–13] and slow V-sequence
(A063882) that is also 2-automatic [14]. Among the solutions
which have an erratic nature, certain variants have underly-
ing structures that contain conjecturally interesting approxi-
mate properties such as scaling, self-similarity, and period
doubling [15, 16]. For these kinds of solutions of nested recur-
rences, known mathematical techniques for solving difference
equations do not work because of the nature of nesting
although there are alternative definitions for the generational

structure of a chaotic meta-Fibonacci sequence [15–19]. The
existence of universality classes for chaotic meta-Fibonacci
sequences determined by common characteristics of their
respective generational structures is a mysterious open ques-
tion although there are a variety of attempts in order to search
an affirmative answer for this question, partially [15–17].
Since the certain solutions to the Hofstadter Q-recurrence
are investigated in this study, it would be nice to remember
the scatterplots of Hofstadter’s original Q-sequence and the
“Brother” sequence (A284644) that is defined by Qb n =
Qb n −Qb n − 1 +Qb n −Qb n − 2 and initial values Qb
1 =Qb 2 = 2 and Qb 3 = 1 (see Figure 1). Although there
are many solutions to the Hofstadter Q-recurrence with dif-
ferent initial conditions [9, 11–13, 17, 20], these two solutions
and their connection based on their generational structures
provide a variety of interesting experimental results [17].

This paper is structured as follows. InSection2,Hofstadter’s
Q-sequence is generalized according to the initial condition
formulation and an intriguing sequence family is introduced.
Then, in Section 3.1 and Section 3.2, selected members of this
curious sequence family are studied based on their genera-
tional structures with the statistical perspective. Finally, some
concluding remarks are offered in Section 4.
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2. A Generalization of Hofstadter’s Q-Sequence
according to Initial Conditions

Hofstadter’sQ-sequence is a very intriguing solution to theQ

-recurrence, and it is believed that the most notable meta-

Fibonacci sequence is Hofstadter’s Q-sequence [11]. Indeed,
many famous mathematicians such as Erdős, Guy, and
Sloane found it really very interesting [21, 22]. At this point,
it is natural to ask, “Can a generalization of solutions to
the Q-recurrence be based on the initial conditions for vari-
ants that behave in a similar fashion with a Q-sequence?” If
the answer is yes, there can be a collection of curious chaotic
patterns and generational structures hidden in genes of
the Q-recurrence. Solutions with three initial conditions
are studied before [17]. In order to go further, computer
experiments can be made with four and five initial conditions
but empirical results suggest that there is no sign of any
sequence family with generational common characteristics
except Q-sequence and “Brother” sequence (A284644)
although there are some more chaotic solutions such as
A278056 [9, 11]. So experiments suggest that computation
of all living permutations of initial conditions is not very
fruitful in order to discover a solution family that hasmembers
which behave very similar with the original Q-sequence. Also,
recently, the Hofstadter Q-recurrence and a generalization of
it are studied with initial conditions 1 through N and detailed
analysis showed that living solutions have notably different
properties from the Q-sequence with the increasing values of
N [11]. At this point, it would be nice to remember if
limn→∞Q n /n exists, it must be equal to 1/2 [13]. From this
fact, initial conditions which are n/2 may be meaningful
for the Hofstadter Q-recurrence. Additionally, this approach
inspired by reasonable heuristic can be generalized with the
initial condition formulation as below.

Definition 1. Let Qd,l n be defined by the recurrence Qd,l
n =∑l

i=1Qd,l n −Qd,l n − i for n > d ∗ l, l ≥ 2, and d ≥ 1,
with the initial conditionsQd,l n = n∗ l − 1 /l for n ≤ d ∗ l.

By definition, Q1,2 is the original Q-sequence and Q3,2 is
essentially the same with Q1,2. Q2,2 is extremely wild
sequence that there are no signs of any underlying structure
(see Figure 2).

However, for d ≥ 4, many curious chaotic patterns
fascinatingly start to appear for Sd,2 n =Qd,2 n − n/2
(see Figure 3). In the next section, certain members of this
family are investigated in order to search the signs of a simi-
lar inheritance with the original Q-sequence although Q2,2
exhibits quite different experimental characteristics, at least
in the range of this study.

In this study, solutions to Qd,2 n and Qd,3 n recur-
rences will be studied with certain examples while Qd,l n
continues to provide intriguing generational structures with
an increasing level of complexity for l ≥ 4.

3. Analysis of CertainMembers ofQd,l n Family

3.1. Selected Solutions to Qd,2 n . Approximate self-similar
block structures of certain members of theQd,2 n family
can be studied thanks to auxiliary sequences similar with dif-
ferent works which give definitions of generations [15–18].
In here, the main purpose is to model and compute the
rescaling of amplitudes for self-similar successive block
structures of Sd,2 n for the selected values of d which are
in the range of this study, since this computation will give a
chance to search a conjectural global property for certain
solutions to the Hofstadter Q-recurrence. Certain auxiliary
sequences can be used in order to compute statistical quanti-
ties which this paper focuses on. Experiments that use alter-
native definitions for the determination of generational
boundaries are also carried out precisely. Since the results
are mainly similar in terms of the values of Table 1, only
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Figure 1: Scatterplots of Hofstadter’s Q-sequence and Qb n .
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Figure 2: Scatterplot of Q2,2 n .
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one method’s table is reported in here. Corresponding
method’s definitions follow as below. See Figure 4 for some
examples of partitions.

Definition 2. LetWd,2 n be the leastm such that theminimum
of father m −Qd,2 m − 2 and mother m −Qd,2 m − 1
spots is equal or greater than n.

Definition 3. Let Pd,2 n =Wd,2 Pd,2 n − 1 where d ∈ 4, 7,
10 for n > 1, with Pd,2 1 = 1.

See Tables 2–4 for the corresponding values of Pd,2 n .
The given sequence Sd,2 n =Qd,2 n − n/2, Sd,2 n k

denotes the average value of Sd,2 n over the kth generation
boundaries that are determined by Pd,2 n for corresponding
Qd,2 n and define α k, Sd,2 n as below. See Table 1 and
Figure 5 in order to observe the considerable similarities
between α values with the increasing number of generations.
These results are very close to the values that are reported
before [15–17]. In other words, the initial condition
pattern that this study focuses on provides significant
behavioral similarities with the original Q-sequence in
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Figure 3: Scatterplots of Sd,2 n for 4 ≤ d ≤ 12, respectively.

Table 1: Values of α k, S4,2 n , α k, S7,2 n , and α k, S10,2 n for
10 ≤ k ≤ 25.

k α k, S4,2 n α k, S7,2 n α k, S10,2 n

10 0.847 0.798 0.837

11 0.828 0.895 0.776

12 0.853 0.886 0.803

13 0.764 0.824 0.883

14 0.869 0.861 0.877

15 0.858 0.875 0.880

16 0.862 0.870 0.863

17 0.875 0.890 0.877

18 0.869 0.880 0.886

19 0.878 0.884 0.882

20 0.884 0.883 0.882

21 0.882 0.886 0.884

22 0.883 0.885 0.885

23 0.885 0.884 0.886

24 0.887 0.886 0.886

25 0.888 0.886 0.886
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Figure 4: Illustrations of Pd,2 17 and Pd,2 18 on scatterplots of Sd,2 n where d ∈ 4, 7, 10 , respectively.

Table 2: The values of P4,2 n sequence for n ≤ 25.

m
1 2 3 4 5

P4,2 m + 0 1 3 5 9 17

P4,2 m + 5 33 65 129 257 513

P4,2 m + 10 1025 2049 4088 8163 16227

P4,2 m + 15 32206 63943 127182 253527 504715

P4,2 m + 20 1001529 1990206 3956008 7852309 15566939

Table 3: The values of P7,2 n sequence for n ≤ 25.

m
1 2 3 4 5

P7,2 m + 0 1 3 5 9 18

P7,2 m + 5 37 76 155 314 630

P7,2 m + 10 1264 2538 5076 10155 20269

P7,2 m + 15 40309 80178 158920 315670 626261

P7,2 m + 20 1242680 2461343 4881527 9689364 19208568

Table 4: The values of P10,2 n sequence for n ≤ 25.

m
1 2 3 4 5

P10,2 m + 0 1 3 5 9 17

P10,2 m + 5 34 69 140 283 569

P10,2 m + 10 1141 2285 4573 9147 18292

P10,2 m + 15 36542 72974 145867 291183 581442

P10,2 m + 20 1160383 2313867 4614469 9202451 18337568
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Figure 5: Blue: α k, S4,2 n . Red: α k, S7,2 n . Green: α k, S10,2 n .
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Figure 6: Scatterplot of Q3,3 n .
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Figure 7: Scatterplots of Sd,3 n where d ∈ 4, 7, 10 , respectively.
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terms of growth characteristics of successive generations.
Additionally, other solutions for 4 ≤ d ≤ 12 are checked
thanks to certain auxiliary sequences and careful examina-
tion of their data. Results observed are mainly similar to
the values of Table 1.

Mk Sd,2 n 2 = Sd,2 n 2
k
− Sd,2 n 2

k
,

α k, Sd,2 n = log2
Mk Sd,2 n
Mk−1 Sd,2 n

1

3.2. Selected Solutions to Qd,3 n . In this section, certain
members of Qd,3 n are analysed thanks to properties
of their generational structures. It is easy to show that
Q1,3 n and Q2,3 n die immediately since Q1,3 4 = 6
and Q2,3 66 = 73. See Figure 6 for Q3,3 n that is highly
chaotic sequence although there appear to be some weak
signs of order in it. Then, more orderly generational
structures evolve in terms of the determination of main
blocks (see Figure 7 for curious examples where Sd,3 n =
Qd,3 n − 2 ∗ n/3). In that case, in order to detect the limits

Table 6: The values of g7,3 n sequence for n ≤ 15.

m
1 2 3 4 5

g7,3 m + 0 1 22 66 195 570

g7,3 m + 5 1699 5102 15224 45510 136182

g7,3 m + 10 406324 1209535 3611564 10797842 32259345

Table 5: The values of g4,3 n sequence for n ≤ 15.

m
1 2 3 4 5

g4,3 m + 0 1 13 39 114 327

g4,3 m + 5 970 2911 8650 25875 77058

g4,3 m + 10 228424 678683 2020707 6016683 17966896

Table 7: The values of g10,3 n sequence for n ≤ 15.

m
1 2 3 4 5

g10,3 m + 0 1 31 93 276 813

g10,3 m + 5 2428 7289 21802 65263 195493

g10,3 m + 10 584332 1743893 5216310 15587996 46668176
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Figure 8: Illustrations of gd,3 9 and gd,3 10 on scatterplots of Sd,3 n where d ∈ 4, 7, 10 , respectively.
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of approximate self-similar block structures, spot-based
generation concept can be used for d ∈ 4, 7, 10 based
on spot n −Qd,3 n − 1 [18].

Definition 4. Let gd,3 n be the least value of t such that
Mp,d,3 t is equal to n where d ∈ 4, 7, 10 and Mp,d,3 n =
Mp,d,3 n −Qd,3 n − 1 + 1 with initial conditions Mp,d,3 n =
1 for n ≤ 3 ∗ d.

See Tables 5–7 for the corresponding values of gd,3 n
and Figure 8 for some illustrations of generational boundaries.

Similar with the previous section, for a given sequence
Sd,3 n =Qd,3 n − 2 ∗ n/3, Sd,3 n k denotes the average
value of Sd,3 n over the kth generation boundaries that are
determined by gd,3 n for corresponding Qd,3 n and define
α k, Sd,3 n as below. Also, similarly, see Table 8 and
Figure 9 in order to observe the considerable similarities
between α values that are different from the values which
are reported in the previous section since the recurrence is
Q n =Q n −Q n − 1 +Q n −Q n − 2 +Q n −Q n − 3
in that case.

Mk Sd,3 n 2 = Sd,3 n 2
k
− Sd,3 n 2

k
,

α k, Sd,3 n = log3
Mk Sd,3 n
Mk−1 Sd,3 n

2

4. Conclusion

In the literature, there are many studies that are primarily
concerned with finding initial conditions to corresponding
meta-Fibonacci recurrences where the solutions have a prov-
able universal property such as having an ordinary gener-
ating function and being slow [11, 12, 20]. On the other
hand, properties of Hofstadter’s Q-sequence depend on
experimental studies because of its complicated nature that
is extremely resistant to known mathematical proof tech-
niques [15–17, 19]. In this study, a variety of evidences
are provided in order to claim the existence of a family
that certain members have considerably similar conjectural
properties with famous Q-sequence. A generalization of
Q-sequence according to the initial condition patterns which
are determined by asymptotic properties of recurrences is
introduced, and meaningful statistical results are provided
in terms of the classification of chaotic solutions to recur-
rences that this study focuses on.
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