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The Hofstadter 𝑄-sequence and the Hofstadter-Conway $10000 sequence are perhaps the two best known examples of meta-
Fibonacci sequences. In this paper, we explore an unexpected connection between them.When the𝑄-sequence is subtracted from
the Conway sequence, a chaotic pattern of heart-shaped figures emerges. We use techniques of Pinn and Tanny et al. to explore this
sequence.Then, we introduce and analyze an apparent relative of the𝑄-sequence and illustrate how it also generates heart patterns
when subtracted from the Conway sequence.

1. Introduction

The Hofstadter 𝑄-sequence is recursively defined by the
nested recurrence relation 𝑄(𝑛) = 𝑄(𝑛 − 𝑄(𝑛 − 1)) +
𝑄(𝑛 − 𝑄(𝑛 − 2)) and initial values 𝑄(1) = 𝑄(2) = 1. This
is sequence A005185 in Sloane’s On-Line Encyclopedia of
Integer Sequences (OEIS) [1], and its first few terms are

1, 1, 2, 3, 3, 4, 5, 5, 6, 6, 6, 8, 8, 8, 10, 9, 10, 11, 11, 12, . . .

In his book Gödel, Escher, Bach: An Eternal Golden Braid
[2], Hofstadter introduced this sequence as a small mystery.
He noted that, despite the simplicity of the sequence’s defini-
tion, the sequence values appear to be largely unpredictable.
But there appears to be some sort of overarching structure
(see Figure 1), a proof of which has thus far evaded mathe-
maticians [3]. Evenmore frustratingly, it is unknownwhether
𝑄(𝑛) even exists for all 𝑛. If it happens that𝑄(𝑛− 1) ≥ 𝑛, then
𝑄(𝑛)would refer to a nonpositive index and fail to exist. In the
event of such happenstance, we say that the 𝑄-sequence dies.
Based on the pattern in Figure 1 (which continues beyond
the depicted terms), it is widely believed that the𝑄-sequence
does not die. We know that it exists for at least 12∗ 109 terms
[4].

Golomb describes the interestingly erratic behavior of
𝑄-sequence as “wildly chaotic,” though he proved that if
lim𝑛→∞(𝑄(𝑛)/𝑛) exists, then it must be one half [5]. But,
a priori, there is no reason this limit should exist; Golomb

himself describes another sequence satisfying the 𝑄-recur-
rence (A244477) for which the limit does not exist. This
conditional limit value is essentially the only rigorous result
proved about the 𝑄-sequence [6]. For this reason, studies on
the 𝑄-sequence have primarily been experimental.

Observations on 𝑄-sequence clearly suggest that the
beginning points of the apparent block structures are close
to 3 times consecutive powers of 2. In order to explain the
fractal-like behavior of 𝑄-sequence, the first extensive study
was carried out by Pinn [7]. In his work, 𝑄(𝑛) is described
as a child of its “mother” 𝑄(𝑛 − 𝑄(𝑛 − 1)) and “father”
𝑄(𝑛 − 𝑄(𝑛 − 2)). With this methodology, Pinn partitions
the values of 𝑛 into interval “generations” that correspond to
the “sausages” in Figure 1 and he noted that the first eleven
generations have well-defined starting points, where the
difference between𝑄(𝑛) and 𝑛/2 suddenly jumps.Thereafter,
a detailed statistical analysis indicates that the subsequent
generations begin around odd powers of √2. More recently,
Dalton et al. instead used a recursive method to detect
generations [8]. They defined a function 𝑀𝑝(𝑛), called the
generation sequence for 𝑄(𝑛) based on spot 𝑝, by the
recurrence𝑀𝑝(𝑛) = 𝑀𝑝(𝑛−𝑄(𝑛−1))+1 and initial conditions
𝑀𝑝(1) = 𝑀𝑝(2) = 1. This function is used to determine the
beginning points of the generations of 𝑄-sequence. More
precisely, the least value of 𝑡 such that𝑀𝑝(𝑡) is equal to 𝑘 gives
𝑔(𝑘) that is defined as the start point of the 𝑘th generation
of 𝑄-sequence. Table 1 shows the values of 𝑔(𝑘) (the starting
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Table 1: The values of 𝑔(𝑘) that refer to the start points of maternal
generations of the 𝑄-sequence.

𝑚

1 2 3 4 5
𝑔(𝑚 + 11) 3031 6043 12056 24086 48043
𝑔(𝑚 + 16) 95286 189268 376996 750285 1497135
𝑔(𝑚 + 21) 2977109 5942404 11823550 23585708 47059762
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Figure 1: Hofstadter 𝑄-sequence.

points of the first eleven generations agree, regardless of
which method is used; for generation numbers 𝑘 > 11, the
two approaches give different points for starts of generations
[8]) in the range we will consider for our sequences in this
paper.

We have noted that the 𝑄-sequence appears to have ele-
ments of chaos and structure. There are also many sequences
that have similar definitions to the 𝑄-sequences that are not
chaotic [4–6, 9–12]. Some of these sequences have combi-
natorial interpretations involving counting leaves in infinite
trees [10]. But, for us, the most important well-behaved
meta-Fibonacci sequence is the Hofstadter-Conway $10000
sequence (A004001, shortened to theConway sequence), given
by recurrence 𝐶(𝑛) = 𝐶(𝐶(𝑛 − 1)) + 𝐶(𝑛 − 𝐶(𝑛 − 1)) and
initial conditions𝐶(1) = 𝐶(2) = 1.The name of this sequence
comes from a prize of $10000 that John H. Conway offered
for the discovery of a value of 𝑛 such that |𝐶(𝑘)/𝑘 − 1/2| <
1/20 for all 𝑘 > 𝑛. Mallows provided such an analysis just
a few weeks after and he showed that corresponding 𝑛 =
1489 [13]. The sequence 𝐶(𝑛) is monotone increasing with
successive differences either 0 or 1, and lim𝑛→∞(𝐶(𝑛)/𝑛) =
1/2. Furthermore, 𝐶(𝑛) ≥ 𝑛/2 for all 𝑛, with equality if and
only if 𝑛 is a power of 2. Figure 2 is a plot of 𝐶(𝑛) − 𝑛/2 that is
symmetric in its zeros [11], which illustrates this sequence’s
fractal-like structure. Mallows conjectured that graphs of
these structures converge to a special curve form that can be
parametrized in terms of theGaussian distribution, and this is
proved byKubo andVakil [11].TheConway sequence, like the
𝑄-sequence, can be partitioned into generations. In this case,
the generation boundaries are the powers of 2.More precisely,
the beginning point of the 𝑘th maternal generation is 2𝑘−1 +1
for 𝑘 > 1 [8].

This paper is structured as follows. In Section 2, we intro-
duce and analyze the Hofstadter Chaotic Heart sequence,
which is constructed as a difference of the𝑄-sequence and the
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Figure 2: Hofstadter-Conway $10000 sequence, minus 𝑛/2.
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Figure 3: Hofstadter Chaotic Heart sequence.

Conway sequence. Then, in Section 3, we carry out a similar
construction with a new sequence in place of the𝑄-sequence
andwe report a variety of interesting observations. Finally, we
offer some concluding remarks in Section 4.

2. The Hofstadter Chaotic Heart Sequence

We wish to consider a difference of the 𝑄-sequence and the
Conway sequence. The 𝑄-sequence seems to hover around
𝑛/2, whereas the Conway sequence never dips below 𝑛/2.
For this reason, it is more natural to consider the Conway
sequence minus the 𝑄-sequence.

Definition 1. Let𝐻(𝑛) = 𝐶(𝑛)−𝑄(𝑛), where𝑄(𝑛) denotes the
𝑛th term in the𝑄-sequence and 𝐶(𝑛) denotes the 𝑛th term in
the Conway sequence.

We call the sequence (𝐻(𝑛))𝑛≥1 the Hofstadter Chaotic
Heart sequence (A284019). The reason for this name should
be clear from a glance at its plot in Figure 3. At this point,
it would be nice to observe appearance process of erratic
heart shapes with increasing numbers of generations. For a
plot of successive generations of theHofstadter ChaoticHeart
sequence, see Figure 4.

The sequence has a fractal-like structure of ever-growing
hearts. The heart shapes can be described by considering the
following ingredients:
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Figure 4: Hofstadter Chaotic Heart sequence for increasing values of 𝑘 (generation number).

(i) The 𝑄-sequence is built out of apparently self-similar
“sausages.”

(ii) The 𝑄(𝑛) − 𝑛/2 is approximately symmetric within
each generation.

(iii) The 𝑄-sequence appears to grow approximately like
𝑛/2.

(iv) The 𝑄-sequence has generational divides around 3
times powers of 2, which sit halfway between consec-
utive powers of 2.

(v) The Conway sequence grows like 𝑛/2.
(vi) The Conway sequence has self-similar generations

divided at powers of 2.
(vii) 𝐶(𝑛) − 𝑛/2 is symmetric about 3 times the power of 2

that started the preceding generation.
(viii) 𝐶(𝑛) − 𝑛/2 ≥ 0.

All of these points together imply that the bottom of each
heart should be near a power of 2, and this is precisely what is
observed.This is all summarized in Figure 5.We also marked
the initial values of 𝑔(𝑘) in order to show the determinative
role of generational structure of 𝑄-sequence.

We shall now analyze the Hofstadter Chaotic Heart
sequence using Pinn’s statistical technique and the Maternal
Spot Generation method (we also study the same analysis
with Pinn’s generational method that estimates whether the
integer part of 2𝑘−1/2 is the beginning point of the 𝑘th
generation of 𝑄-sequence for 𝑘 ≥ 12; results observed are
mainly similar to the values of Table 2). As in Pinn’s work, let
𝐵(𝑛) = 𝐶(𝑛) − 𝑛/2, and let 𝑆(𝑛) = 𝑄(𝑛) − 𝑛/2. In our anal-
ysis, we will not use the integral part of 𝑛/2 unlike Pinn’s
work [7], in order to prevent information loss in statistical
analysis. In other words, 𝐵(𝑛) and 𝑆(𝑛) give noninteger terms
for odd values of 𝑛. For a given sequence𝐹(𝑛), let us define, as
Pinn does,𝑀𝑘(𝐹(𝑛))

2 (see below), a variance of sorts for𝐹(𝑛),
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Figure 5: Hofstadter Chaotic Heart sequence with 𝐶(𝑛) − 𝑛/2 over-
laid.

Table 2: The values of 𝛼(𝑘, 𝑆(𝑛)), 𝛼(𝑘, 𝐵(𝑛)), 𝛼(𝑘,𝐻(𝑛)), and
𝛽(𝑘, 𝐵(𝑛), 𝑆(𝑛)) for Maternal Spot Generation intervals on the 𝑄-
sequence.

𝑘 𝛼(𝑘, 𝑆(𝑛)) 𝛼(𝑘, 𝐵(𝑛)) 𝛼(𝑘,𝐻(𝑛)) 𝛽(𝑘, 𝐵(𝑛), 𝑆(𝑛))

10 0.848 0.889 0.871 0.965
11 0.762 0.908 0.822 0.994
12 0.875 0.907 0.886 0.993
13 0.878 0.933 0.904 0.994
14 0.879 0.925 0.900 0.996
15 0.882 0.944 0.917 0.991
16 0.887 0.919 0.903 0.976
17 0.885 0.939 0.914 0.988
18 0.880 0.932 0.909 0.994
19 0.887 0.948 0.922 0.989
20 0.884 0.945 0.921 0.998
21 0.889 0.949 0.927 0.984
22 0.881 0.954 0.928 1.000
23 0.888 0.951 0.930 0.986
24 0.884 0.959 0.935 0.998
25 0.885 0.956 0.936 0.995

where the indices 𝑛 considered are in the 𝑘th generation. Also
borrowing notation fromPinn, let ⟨𝐹(𝑛)⟩𝑘 denote the average
value of 𝐹(𝑛) over the 𝑘th generation, and define 𝛼(𝑘, 𝐹(𝑛)),
𝑁𝑘(𝐵(𝑛), 𝑆(𝑛)), and 𝛽(𝑘, 𝐵(𝑛), 𝑆(𝑛)) as below. In our analysis,
𝑘th generation boundaries are taken from Table 1 because
of the observation in Figure 5 that clearly suggests that
generational boundaries of 𝑄-sequence are also boundaries
of the heart patterns. For example, if 𝑘 = 13, then 𝑔(13) =
6043 is the first index and 𝑔(14) − 1 = 12055 is the last index
for the computation of the following quantities:

(i) 𝑀𝑘(𝐹(𝑛))
2 = ⟨𝐹(𝑛)2⟩𝑘 − ⟨𝐹(𝑛)⟩

2
𝑘

(ii) 𝛼(𝑘, 𝐹(𝑛)) = log2(𝑀𝑘(𝐹(𝑛))/𝑀𝑘−1(𝐹(𝑛)))

(iii) 𝑁𝑘(𝐵(𝑛), 𝑆(𝑛))
2 = ⟨𝐵(𝑛) ∗ 𝑆(𝑛)⟩𝑘 − ⟨𝐵(𝑛)⟩𝑘 ∗ ⟨𝑆(𝑛)⟩𝑘

(iv) 𝛽(𝑘,𝐵(𝑛), 𝑆(𝑛)) = log2(𝑁𝑘(𝐵(𝑛), 𝑆(𝑛))/𝑁𝑘−1(𝐵(𝑛), 𝑆(𝑛)))
Since 𝐻(𝑛) = 𝐵(𝑛) − 𝑆(𝑛), for the same 𝑘th

generation boundaries, it is clear that 𝑀𝑘(𝐻(𝑛))
2 =

𝑀𝑘(𝐵(𝑛))
2 + 𝑀𝑘(𝑆(𝑛))

2 − 2 ∗ 𝑁𝑘(𝐵(𝑛), 𝑆(𝑛))
2, 𝛼(𝑘,𝐻(𝑛)) =

𝛼(𝑘, 𝑆(𝑛)) + 1/2 ∗ log2(𝛾𝑘(𝐵(𝑛), 𝑆(𝑛))/𝛾𝑘−1(𝐵(𝑛), 𝑆(𝑛))),
where 𝛾𝑘(𝐵(𝑛), 𝑆(𝑛)) = 1 + (𝑀𝑘(𝐵(𝑛))/𝑀𝑘(𝑆(𝑛)))

2 − 2 ∗

(𝑁𝑘(𝐵(𝑛), 𝑆(𝑛))/𝑀𝑘(𝑆(𝑛)))
2. See Table 2 for the values of 𝛼

for 𝑆(𝑛), 𝐵(𝑛), and 𝐻(𝑛) and the values of 𝛽(𝐵(𝑛), 𝑆(𝑛)) in
our experimental range.

3. The (Brother) Sequence

Aside from the 𝑄-sequence, there are many other solutions
to Hofstadter’s 𝑄-recurrence with different initial conditions
[6]. Are there any other initial conditions for Hofstadter’s 𝑄-
recurrence such that 𝐶(𝑛) − 𝑄(𝑛) has a fractal-like structure
of ever-growing hearts where 𝐶(𝑛) is the Conway sequence?
We aimed to find a simple answer for this question.Therefore,
firstly, we have done experiments on𝑄-recurrence with three
initial conditions. Let us denote the initial conditions 𝑄(1) =
𝑞1,𝑄(2) = 𝑞2, and𝑄(3) = 𝑞3 by (𝑞1, 𝑞2, 𝑞3), where 𝑞1, 𝑞2, 𝑞3 ≥
1. In this case, the sequencewith the initial conditions (1, 1, 2)
is Hofstadter’s𝑄-sequence. Sequences with initial conditions
(1, 2, 3), (1, 3, 1), (2, 3, 3), (𝑎, 1, 1), and (𝑏, 1, 2) are essentially
the same as Hofstadter’s 𝑄-sequence for all 𝑎 ≥ 1 and
𝑏 > 1. Sequences with initial conditions (3, 2, 1) (A244477)
and (1, 3, 2) are quasi-periodic [5]. Initial conditions (1, 2, 2),
(2, 2, 2), (2, 2, 3), (3, 2, 2), and (5, 2, 1) give sequences which
are much more chaotic compared to the 𝑄-sequence. All
other combinations of (𝑞1, 𝑞2, 𝑞3) immediately die except
(2, 2, 1). The only remaining sequence is the one with initial
conditions (2, 2, 1) that has a behavior so closely related to the
𝑄-sequence itself and thus we call it the Brother sequence.

Definition 2. Let 𝑄𝑏(𝑛) be defined by the recurrence 𝑄𝑏(𝑛) =
𝑄𝑏(𝑛−𝑄𝑏(𝑛−1))+𝑄𝑏(𝑛−𝑄𝑏(𝑛−2)) for 𝑛 > 3, with the initial
conditions 𝑄𝑏(1) = 𝑄𝑏(2) = 2, 𝑄𝑏(3) = 1.

The first few terms of the Brother sequence (A284644) are
2, 2, 1, 3, 5, 3, 5, 6, 4, 6, 10, 5, 7, 9, 9, 10, 11, 11, 12, . . ..

Definition 3. Let𝐻𝑏(𝑛) = 𝐶(𝑛) −𝑄𝑏(𝑛), where𝑄𝑏(𝑛) denotes
the 𝑛th term in the 𝑄𝑏-sequence and 𝐶(𝑛) denotes the 𝑛th
term in the Conway sequence.

Figure 7 shows the plot of the sequence 𝐻𝑏(𝑛). See also
Figure 8 for the appearance process of heart patterns with
increasing numbers of generations. In fact, the hearts here
are more clearly defined, as a result of the more gradual
beginnings of the sausage structures in the Brother sequence.

Figure 9 depicts the Brother sequence. Like the 𝑄-
sequence, it appears to be composed of self-similar chaotic
sausages staying near 𝑛/2. Also, like the𝑄-sequence, it is easy
to show that if lim𝑛→∞(𝑄𝑏(𝑛)/𝑛) exists, it must be equal to
1/2. Interestingly, the junctions between the sausages of the
Brother sequences themselves appear to consist of smaller
sausages (see Figure 11).
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Table 3: The values of 𝑃(𝑛) sequence: these points will be used as
start points of generations in order to compute statistical quantities
of 𝑄𝑏(𝑛).

𝑚

1 2 3 4 5

𝑃(𝑚 + 0) 1 3 8 19 41
𝑃(𝑚 + 5) 85 173 349 701 1405
𝑃(𝑚 + 10) 2800 5576 11128 22221 44342
𝑃(𝑚 + 15) 88422 176507 352062 702831 1403235
𝑃(𝑚 + 20) 2802382 5598862 11185734 22353592 44674558

We now study the generational structure of 𝑄𝑏(𝑛). Our
purpose is to compute 𝛼(𝑘, 𝑆𝑏(𝑛)), where 𝑆𝑏(𝑛) = 𝑄𝑏(𝑛) −
𝑛/2. Note that we defined 𝛼(𝑘, 𝐹(𝑛)) and ⟨𝐹(𝑛)⟩𝑘 for a
corresponding 𝐹(𝑛) in the previous section. Keeping those
definitions in mind, we need to determine intervals that
contain each main block of the Brother sequence in our
measurement range. We will call these main blocks because
of the observation, shown in Figure 11, that there are also
smaller block structures. To determine the starting points of
main blocks, we employ the following method. When the
minimum of the father (𝑛 − 𝑄𝑏(𝑛 − 2)) and mother (𝑛 −
𝑄𝑏(𝑛 − 1)) spots is greater than or equal to the first member
of the 𝑘th generation, we define 𝑛 as the first member of the
(𝑘 + 1)st generation. In the range of our experiments, this
methodology partitions the data cleanly into generations. To
quantify the purity of our generations, we define 𝜖(𝑘, 𝑆𝑏(𝑛)) to
be the proportion of terms in the 𝑘th generation whose father
or mother spot is located in the (𝑘 − 2)nd generation. If 𝜖 is
close to 0, then the generations are close to pure.

In our case, 𝑄𝑏(1) will be the beginning of the first
generation, and 𝑄𝑏(3) will be the beginning of the second
generation.We now define some auxiliary sequences (similar
auxiliary sequences can also be defined for the Conway
sequence; let 𝑐1(𝑛) be the least𝑚 such that mother (𝑚−𝐶(𝑚−
1)) spot is equal to 𝑛 and 𝑐2(𝑛) = 𝑐1(𝑐2(𝑛 − 1)) for 𝑛 > 2 with
𝑐2(1) = 1 and 𝑐2(2) = 3; in this case, 𝑐2(𝑘) is the start point
of the 𝑘th maternal generation which is given in [8]) for the
approximation that is mentioned above.

Definition 4. Let𝑊(𝑛) be the least𝑚 such that the minimum
of father (𝑚 − 𝑄𝑏(𝑚 − 2)) and mother (𝑚 − 𝑄𝑏(𝑚 − 1)) spots
is greater than or equal to 𝑛.

Definition 5. Let𝑃(𝑛) = 𝑊(𝑃(𝑛−1)) for 𝑛 > 1, with𝑃(1) = 1.

See Table 3 for the first 25 values of 𝑃(𝑛). We can confirm
that the terms of 𝑃(𝑛) can be limits of intervals that contain
each main block in our experimental range. See Figure 10 for
an example, that is, 𝑃(17).

So, we will use them as the beginning of our generations
in order to compute statistical quantities that we mentioned
above and in the previous section. Table 4 shows the main
statistical quantities with this partition.

Let us now elucidate Figure 11 in more depth. To this end,
we need the following definition.

Table 4: log2(𝑀𝑘(𝑆𝑏(𝑛))), 𝛼(𝑘, 𝑆𝑏(𝑛)), 𝛽(𝑘, 𝑆𝑏(𝑛), 𝑆(𝑛)), and
𝜖(𝑘, 𝑆𝑏(𝑛)) values for generations that 𝑃(𝑛) sequence determines.

𝑘 log2(𝑀𝑘(𝑆𝑏(𝑛))) 𝛼(𝑘, 𝑆𝑏(𝑛)) 𝛽(𝑘, 𝑆𝑏(𝑛), 𝑆(𝑛)) 𝜖(𝑘, 𝑆𝑏(𝑛))

10 6.129 0.764 0.985 0.049
11 6.960 0.831 0.994 0.050
12 7.774 0.815 1.000 0.042
13 8.637 0.863 0.999 0.033
14 9.506 0.869 0.996 0.029
15 10.384 0.877 0.995 0.026
16 11.250 0.866 0.999 0.023
17 12.128 0.878 0.995 0.019
18 13.004 0.877 0.999 0.017
19 13.885 0.881 0.998 0.014
20 14.766 0.881 0.998 0.012
21 15.647 0.881 0.999 0.009
22 16.528 0.881 0.998 0.007
23 17.409 0.881 0.999 0.006
24 18.292 0.883 0.999 0.005

Definition 6. Let𝐺(𝑛) be the sequence of numbers 𝑡 such that
𝑄𝑏(𝑡) = 𝑄𝑏(𝑡 − 1) = 𝑄𝑏(𝑡 − 2) = 𝑄𝑏(𝑡 − 3).

We have computed the first few terms of 𝐺(A287118): 84,
172, 348, 700, 1404, 2720, 2754, 5448, 10904, 21816, 43640, and
87288.

The 𝐺 numbers are significative for the Brother sequence
in order to detect the junctions of small elliptic-like sausages
up to 105. For example, 87288 is the index of the juncture of
small sausages in Figure 11. Detailed analysis of generational
characteristics of smaller block structures in the connection
of main blocks can be a future work. However, we will
mention some properties of the 𝐺 sequence that exhibits
some curious patterns. For example,𝐺(𝑛) = 𝑃(𝑛+5)−1 for 0 <
𝑛 < 6. Additionally, there is an interesting order that 𝑄𝑏(𝑛)
sequence has for 𝑛 < 105. Table 5 simply summarizes this.
Results show that 2754 is an exception in terms of quantity
of (𝑄𝑏(𝐺(𝑛) + 1) − 𝑄𝑏(𝐺(𝑛)))/𝑄𝑏(𝐺(𝑛)). This observation
has significance since different studies have searched order
signs in highly chaotic nature of 𝑄-sequence [7, 8]. In here,
𝑄𝑏(𝑛) that is an apparent relative of 𝑄-sequence exhibits
an unexpected pattern on the juncture of small elliptic-like
sausages in short scale.

We want to confirm the validity of numerical results
in Table 4. To this aim, we can choose two different con-
stants and do a careful examination. Between 210 and 224,
experimental observations indicate that [2√2−1+𝑘, 2√2+𝑘] and
[2sin 𝑒+𝑘, 2sin 𝑒+𝑘+1] can be limits of intervals that contain each
main block. With both limits for successive main blocks,
computations show that the value 0.88 appears. Note that
both constants are determined by observation on a limited
range, so both constants that are 2√2−1 and 2sin 𝑒 should be
seen as a tool for partitioning the sequence into similar main
blocks in order to compute and confirm 𝛼(𝑘, 𝑆𝑏(𝑛)).
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Figure 6: Graph of Table 2 (blue: 𝛼(𝑘, 𝑆(𝑛)), red: 𝛼(𝑘, 𝐵(𝑛)), green: 𝛼(𝑘,𝐻(𝑛)), black: 𝛽(𝑘, 𝐵(𝑛), 𝑆(𝑛))). In our experimental range,
𝛽(𝑘, 𝐵(𝑛), 𝑆(𝑛)) is oscillating as an upper bound and 𝛼(𝑘,𝐻(𝑛)) is increasing with decreasing fluctuations thanks to domination of 𝛼(𝑘, 𝐵(𝑛)),
while 𝛼(𝑘, 𝑆(𝑛)) confirms Pinn’s conjecture.
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Figure 7: Heart sequence𝐻𝑏(𝑛) = 𝐶(𝑛) − 𝑄𝑏(𝑛).

The results of computation of𝛼(𝑘, 𝑆𝑏(𝑛))have significance
because 0.88 is the constant that Pinn conjectures in his anal-
ysis of the 𝑄-sequence (we also confirmed that 𝛼(𝑘, 𝑆𝑏(𝑛) −
𝑆(𝑛)) oscillates around 0.88 for the generational boundaries
that are determined by Table 3 in our experimental range)
[7], and he obtains the same constant for a similar analysis
of a different sequence [14]. It seems that 𝛼(𝑘, 𝑆𝑏(𝑛)) fluctu-
ates around 0.88 with more orderly behavior. Additionally,
𝛽(𝑘, 𝑆𝑏(𝑛), 𝑆(𝑛)) seems fascinatingly stable around 1.

Since we know the certain generational properties of the
Brother sequence now, we are ready to analyze the sequence
𝐻𝑏(𝑛) in our experimental range. Our previous analysis
suggests 𝐵(𝑛) − 𝐻𝑏(𝑛) ≃ 𝑛𝛼(𝑘,𝑆𝑏(𝑛)) for sufficiently large 𝑘. We
carry out analysis similar to the previous section. We use the
generational boundaries of the Brother sequence that Table 3
represents. See Table 6 for the results that we obtained. Com-
parison between Figures 6 and 12 suggests that the signs of
order are more evident in here. In this case, 𝛽(𝑘, 𝐵(𝑛), 𝑆𝑏(𝑛))
seems reallymore stable than 𝛽(𝑘, 𝐵(𝑛), 𝑆(𝑛)) and 𝛼(𝑘,𝐻𝑏(𝑛))
is smaller than 𝛼(𝑘,𝐻(𝑛)) for all 10 ≤ 𝑘 ≤ 24 except 𝑘 = 11.

Table 5:Hidden order that𝐺(𝑛) sequence shows on𝑄𝑏(𝑛) sequence.

𝑛 𝑄𝑏(𝐺(𝑛)) 𝑄𝑏(𝐺(𝑛) + 1)
(𝑄𝑏(𝐺(𝑛) + 1) −

𝑄𝑏(𝐺(𝑛)))/𝑄𝑏(𝐺(𝑛))

1 11 ∗ 22 3 ∗ 24
1

11

2 11 ∗ 23 3 ∗ 25
1

11

3 11 ∗ 24 3 ∗ 26
1

11

4 11 ∗ 25 3 ∗ 27
1

11

5 11 ∗ 26 3 ∗ 28
1

11

6 11 ∗ 31 ∗ 22 19 ∗ 32 ∗ 23
1

(11 ∗ 31)

7 3∗5∗23∗22 347 ∗ 22
2

(3 ∗ 5 ∗ 23)

8 11 ∗ 31 ∗ 23 19 ∗ 32 ∗ 24
1

(11 ∗ 31)

9 11 ∗ 31 ∗ 24 19 ∗ 32 ∗ 25
1

(11 ∗ 31)

10 11 ∗ 31 ∗ 25 19 ∗ 32 ∗ 26
1

(11 ∗ 31)

11 11 ∗ 31 ∗ 26 19 ∗ 32 ∗ 27
1

(11 ∗ 31)

12 11 ∗ 31 ∗ 27 19 ∗ 32 ∗ 28
1

(11 ∗ 31)

4. Conclusion

This study aims to offer a different perspective on meta-
Fibonacci sequence. We aim to suggest that there are undis-
covered and interesting facts behind two famous meta-
Fibonacci sequences and the relations between them. We
have carried out a variety of experiments in order to under-
stand the nature of the Hofstadter heart sequences that we
introduce. While we explore the Hofstadter Chaotic Heart
sequence, we also introduce and study the Brother sequence,
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Figure 8: Heart sequence 𝐶(𝑛) − 𝑄𝑏(𝑛), successive generations.

140000

120000

100000

80000

60000

40000

50000 100000 150000 200000 250000

20000

0
0

Figure 9: Graph of 𝑄𝑏(𝑛) for 1 ≤ 𝑛 ≤ 250000.

which offers meaningful experimental results and intriguing
observations in terms of new inferences for Hofstadter’s 𝑄-
recurrence. Future work could potentially undertake a more
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Figure 10: Illustration of𝑃(17) = 176507 on the scatterplot of𝑄𝑏(𝑛).
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Figure 11: Graph of 𝑆𝑏(𝑛) for 80000 ≤ 𝑛 ≤ 95000: small elliptic-like
sausages appear in the connection of big sausages; more precisely,
𝐺(12) = 87288 exactly gives the position of juncture of evident small
elliptic-like sausages.
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Figure 12: Graph of Table 6 (blue: 𝛼(𝑘, 𝑆𝑏(𝑛)), red: 𝛼(𝑘, 𝐵(𝑛)), green:
𝛼(𝑘,𝐻𝑏(𝑛)), black: 𝛽(𝑘, 𝐵(𝑛), 𝑆𝑏(𝑛))).

detailed analysis of its generational structure than we have
done here. This study also suggests that there is a mys-
terious classification of chaotic meta-Fibonacci sequences
determined by common characteristics of their respective
generational structures.
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[2] D. Hofstadter, Gödel, Escher, Bach: an Eternal Golden Braid,
Basic Books, New York, NY, USA, 1979.

[3] R. K. Guy, Unsolved problems in number theory, Problem E31,
1994.

[4] A. Isgur, R. Lech, S. Moore, S. Tanny, Y. Verberne, and Y.
Zhang, “Constructing new families of nested recursions with
slow solutions,” SIAM Journal on Discrete Mathematics, vol. 30,
no. 2, pp. 1128–1147, 2016.

[5] S. W. Golomb, Discrete chaos: Sequences satisfying “Strange”
recursions, 1991.

[6] N. Fox, An exploration of nested recurrences using experimental
mathematics [Ph.D. thesis], 2017.

[7] K. Pinn, “Order and chaos inHofstadter’s Q(n) sequence,”Com-
plexity, vol. 4, no. 3, pp. 41–46, 1999.

[8] B. Dalton, M. Rahman, and S. Tanny, “Spot-based generations
for meta-Fibonacci sequences,” Experimental Mathematics, vol.
20, no. 2, pp. 129–137, 2011.

[9] B. W. Conolly, “Meta-Fibonacci sequences,” in Fibonacci and
Lucas Numbers, and the Golden Section, pp. 127–138, 1989.

[10] A. Isgur, D. Reiss, and S. Tanny, “Trees and meta-Fibonacci
sequences,” Electronic Journal of Combinatorics, vol. 16, no. 1,
article R129, 2009.

[11] T. Kubo and R. Vakil, “On Conway’s recursive sequence,”
Discrete Mathematics, vol. 152, no. 1–3, pp. 225–252, 1996.

[12] S. M. Tanny, “A well-behaved cousin of the Hofstadter
sequence,” Discrete Mathematics, vol. 105, no. 1–3, pp. 227–239,
1992.

[13] C. L. Mallows, “Conway’s challenge sequence,” The American
Mathematical Monthly, vol. 98, no. 1, pp. 5–20, 1991.

[14] K. Pinn, “A chaotic cousin of Conway’s recursive sequence,”
Experimental Mathematics, vol. 9, no. 1, pp. 55–66, 2000.



Submit your manuscripts at
https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


