Skip to main content

Advertisement

Log in

From Science Studies to Scientific Literacy: A View from the Classroom

  • Published:
Science & Education Aims and scope Submit manuscript

Abstract

The prospective virtues of using history and philosophy of science in science teaching have been pronounced for decades. Recently, a role for nature of science in supporting scientific literacy has become widely institutionalized in curriculum standards internationally. This short review addresses these current needs, highlighting the concrete views of teachers in the classroom, eschewing ideological ideals and abstract theory. A practical perspective highlights further the roles of history and philosophy—and of sociology, too—and even broadens their importance. It also indicates the relevance of a wide range of topics and work in Science Studies now generally absent from science educational discourse. An extensive reference list is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Allchin (2013b, pp. 12–26), Kolstø (2001), Ryder (2001), Toumey et al. (2010).

  2. Khishfe (2012); Sadler et al. (2004); Wong et al. (2008); Wong et al. (2011); Zeidler et al. (2011).

  3. Cakmakci and Yalaki (2012); Elliot (2006); Jarman and McClune (2007); Oliveras et al. (2011); Shibley (2003).

  4. Kahneman (2011), Martin (1991), Nielsen (2012), Sadler et al. (2004), Zeidler et al. (2002).

References

  • Abd-el-Khalick, F. (2012). Examining the sources of our understanding about nature of science. International Journal of Science Education, 34, 353–374.

    Google Scholar 

  • Aikenhead, G., & Michell, H. (2011). Bridging cultures: Indigenous and scientific ways of knowing nature. Don Mills, ON: Pearson Canada.

    Google Scholar 

  • Alimenti, V. (2012, 19 Oct.). Italy court ruling links mobile phone use to tumor. Reuters. http://www.reuters.com/article/10/19/us-italy-phones-idUSBRE89I0V320121019.

  • Allchin, D. (2003a). Lawson’s shoehorn, or should the philosophy of science be rated ‘X’? Science & Education, 12, 315–329.

    Google Scholar 

  • Allchin, D. (2003b). Scientific myth-conceptions. Science Education, 87, 329–351.

    Google Scholar 

  • Allchin, D. (2006a). Lawson’s shoehorn, reprise. Science & Education, 15, 113–120.

    Google Scholar 

  • Allchin, D. (2006b). Why respect for history—and historical error—matters. Science & Eduction, 15, 91–111.

    Google Scholar 

  • Allchin, D. (2008). Naturalizing as an error-type in biology. Filosofia e História da Biologia, 3, 95–117.

    Google Scholar 

  • Allchin, D. (2011). Evaluating knowledge of the nature of (Whole) Science. Science Education, 95, 918–942.

    Google Scholar 

  • Allchin, D. (2012a). The Minnesota Case Study Collection: New historical inquiry cases for nature of science education. Science & Education, 21, 1263–1282.

    Google Scholar 

  • Allchin, D. (2012b). Science con-artists. American Biology Teacher, 74, 661–666.

    Google Scholar 

  • Allchin, D. (2012c). Teaching the nature of science through scientific error. Science Education, 96, 904–926.

    Google Scholar 

  • Allchin, D. (2012d). Towards clarity on whole science and knows. Science Education, 96, 693–700.

    Google Scholar 

  • Allchin, D. (2013a). Problem- and case-based learning in science: An introduction to distinctions, values and outcomes. CBE-Life Science Education, 12, 364–372.

    Google Scholar 

  • Allchin, D. (2013b). Teaching the nature of science: Perspectives and resources. St. Paul, MN: SHiPS Education Press.

    Google Scholar 

  • Allchin, D., Andersen, H., & Nielsen, K. (forthcoming). Complementary approaches to teaching nature of science: Integrating inquiry, historical cases and contemporary cases in classroom practice. Science Education.

  • Alleyne, R. (2012, 19 Oct.). Mobile phones can cause brain tumours, court rules. The telegraph. http://www.telegraph.co.uk/health/9619514/Mobile-phones-can-cause-brain-tumours-court-rules.html.

  • Alters, B. (1997). Whose nature of science? Journal of Research in Science Teaching, 34, 39–55.

    Google Scholar 

  • American Association for the Advancement of Science, Project 2061. (2009). Benchmarks for scientific literacy, Chap. 1. Retrieved from http://www.project2061.org/publications/bsl/online/index.php?chapter=1.

  • Ault, C. R., Jr, & Dodick, J. (2010). Tracking the footprints puzzle: The problematic persistence of science-as-process in teaching the nature and culture of science. Science Education, 94, 1092–1122.

    Google Scholar 

  • Baker, J. J. W., & Allen, G. E. (1967). The study of biology. Reading, MA: Addison-Wesley.

    Google Scholar 

  • Baker, J. J. W., & Allen, G. E. (1971). The study of biology (2nd ed.). Reading, MA: Addison-Wesley.

    Google Scholar 

  • Barkan, E. (1992). The retreat from scientific racism. Cambridge: Cambridge University Press.

    Google Scholar 

  • Bass, T. (1990). Camping with the prince and other tales of science in Africa. Boston, MA: HoughtonMifflin.

    Google Scholar 

  • Bechtel, W., & Richardson, R. C. (2010). Discovering complexity: Decomposition and localization as strategies in scientific research (2nd Ed.). Cambridge, MA: MIT Press/Bradford Books.

    Google Scholar 

  • Becker, B. J. (2000). MindWorks: Making scientific concepts come alive. Science & Education, 9, 269–278.

    Google Scholar 

  • Bell, R. (2007). Teaching the nature of science through process skills: Activities for grades 3-8. New York: Allyn & Bacon.

    Google Scholar 

  • Bell, R. L. (2009). Teaching the nature of science: Three critical questions. Best Practices in Science Education Monograph. Carmel, CA: National Geographic School Publishing.

  • Biagioli, M. (1993). Galileo, courtier. Chicago: University of Chicago Press.

    Google Scholar 

  • Board on Science Education, U. S. National Academies of Sciences. (2012). A framework for K-12 science education. Washington, DC: National Academies Press. Retrieved from http://www.nap.edu/catalog.php?record_id=13165.

  • Brush, S. G. (1994). Dynamics of theory change: The role of predictions. PSA: Proceedings of the Biennial meeting of the philosophy of science association (pp. 133–145).

  • Brush, S. G. (2004). Comments on the epistemological shoehorn debate. Science & Education, 13, 197–200.

    Google Scholar 

  • Brush, S. G. (2007a). How ideas became knowledge: The light-quantum hypothesis, 1905–1935. Historical Studies in the Physical and Biological Sciences, 37, 205–246.

    Google Scholar 

  • Brush, S. G. (2007b). Suggestions for the study of science. In K. Gavroglu & J. Renn (Eds.), Positioning the history of science [essays in honor of S. S. Schweber]. Boston Studies in the Philosophy of Science, 248, 13–25.

  • Butterfield, H. H. (1959). The Whig interpretation of history. London: G. Bell and Sons.

    Google Scholar 

  • Cakmakci, G., & Yalaki, Y. (2012). Promoting student teachers’ ideas about nature of science through popular media. Trondheim, Norway: S-TEAM/NTNU. http://s-teamproject.eu/s-team/course/view.php?id=24.

  • Callebaut, W. (1993). Taking the naturalistic turn, or how the real philosophy of science is done. Chicago: University of Chicago Press.

    Google Scholar 

  • Campbell, D. T. (1960). Blind variation and selective retention in creative thought. Psychological Review, 67, 380–400.

    Google Scholar 

  • Campbell, D. T. (1974). Evolutionary epistemology. In P. A. Schilpp (Ed.), The philosophy of Karl Popper (pp. 413–463). La Salle, IL: Open Court.

    Google Scholar 

  • Clough, M. F. (2006). Learners’ responses to the demands of conceptual change: Considerations for effective nature of science instruction. Science & Education, 15(5), 463–494.

    Google Scholar 

  • Clough, M. (2011). The Story Behind the Science: Bringing science and scientists to life in post-secondary science education. Science & Education, 7, 701–717.

    Google Scholar 

  • Clough, M. P., Herman, B. C., & Smith, J. A. R. (2010). Seamlessly teaching science content and the nature of science: Impact of historical short stories on post-secondary biology students. Sacramento, CA: Association of Science Teacher Educators Conference.

    Google Scholar 

  • Conant, J. B., & Nash, L. K. (Eds.). (1957). Harvard case histories in experimental science (Vol. 1 and 2). Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Conner, C. D. (2005). A people’s history of science: Miners, midwives, and “low mechanics”. New York: Nation Books.

    Google Scholar 

  • Crawford, B. (2012). Moving the essence of inquiry into the classroom: Engaging teachers and students in authentic research. In K. C. D. Tan & M. Kim (Eds.), Issues and challenges in science education research: Moving forward (pp. 25–42). Dordrecht: Springer.

    Google Scholar 

  • Creager, A. N. H., Lunbeck, E., & Wise, M. N. (Eds.). (2007). Science without Laws: Model Systems, Cases, Exemplary Narratives. Durham, NC: Duke University Press.

    Google Scholar 

  • Crease, R. (1993). The play of nature: Experimentation as performance. Bloomington, IN: Indiana University Press.

    Google Scholar 

  • Cunningham, C. M., & Helms, J. V. (1998). Sociology of science as a means to a more authentic, inclusive science education. Journal of Research in Science Teaching, 35, 483–499.

    Google Scholar 

  • Darden, L. (1991). Theory change in science: Strategies from Mendelian genetics. Oxford: Oxford University Press.

    Google Scholar 

  • DeKosky, R., & Allchin, D. (Eds.). (2008). An introduction to history of science in non-Western traditions (2nd ed.). Seattle, WA: History of Science Society. Reprinted online at http://www.hssonline.org/publications/NonWesternPub/introchapters.html.

  • Deng, F., Chen, D.-T., Tsai, C.-C., & Tsai, C. S. (2011). Students’ views of the nature of science: A critical review of research. Science Education, 95, 961–999. doi:10.1002/sce.20460.

    Google Scholar 

  • Dimopoulos, K., & Koulaidis, V. (2003). Science and technology education for citizenship: The potential role of the press. Science Education, 87, 241–256.

    Google Scholar 

  • Donovan, A., Laudan, L., & Laudan, R. (1992). Scrutinizing science: Empirical studies of scientific change. Baltimore, MD: Johns Hopkins University Press.

    Google Scholar 

  • Dunbar, K. (2001). What scientific thinking reveals about the nature of cognition. In K. Crowley, C. D. Schunn, & T. Okada (Eds.), Designing for science: Implications from everyday, classroom, and professional settings (pp. 115–140). Mahwah, NJ: Lawrence Erlbaum Associates.

  • Dunbar, K., & Fugelsang, J. (2005a). Causal thinking in science: How scientists and students interpret the unexpected. In M. E. Gorman, R. D. Tweney, D. Gooding, & A. Kincannon (Eds.), Scientific and technical thinking (pp. 57–79). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Dunbar, K., & Fugelsang, J. (2005b). Scientific thinking and reasoning. In K. J. Holyoak & R. Morrison (Eds.), Cambridge Handbook of Thinking and Reasoning (pp. 705–726). New York: Cambridge University Press.

    Google Scholar 

  • Duschl, R. A., & Grandy, R. E. (2008). Teaching scientific inquiry: Recommendations for research and implementation. Rotterdam: Sense.

    Google Scholar 

  • EcoMUVE. (2013). Cambridge, MA: Harvard Graduate School of Education. http://ecomuve.gse.harvard.edu. Accessed 26 June 2013.

  • Eflin, J., Glennan, S., & Reisch, G. (1999). The nature of science: A perspective from the philosophy of science. Journal of Research in Science Teaching, 36(1), 107–116.

    Google Scholar 

  • Elliot, P. (2006). Reviewing newspaper articles as a technique for enhancing the scientific literacy of student-teachers. International Journal of Science Education, 28(11), 1245–1265.

    Google Scholar 

  • Faria, C., Pereira, G., & Chagas, I. (2012). D. Carlos de Bragança, a pioneer of experimental marine oceanography: Filling the gap between formal and informal science education. Science & Education, 21, 813–826.

    Google Scholar 

  • Fee, E. (1979). Nineteenth-century craniology: The study of the female skull. Bulletin of the History of Medicine, 53, 415–433.

    Google Scholar 

  • Finkel, E. (1992). Examining school science: Using sociology of science in the study of science classrooms. In S. Hills (Ed.), The history and philosophy of science in science teaching. Proceedings of the second international congress on the history and philosophy of science and science teaching (Vol. 1, pp. 311–322). Kingston, ON: Queens University.

    Google Scholar 

  • Flower, M. (1995). Conceiving science education as a practice of technoscientific practice. In F. Finley, D. Allchin, D. Rhees & S. Fifield (Eds.), Proceedings of the third international history, philosophy, and science teaching conference (pp. 389–409). Minneapolis, MN: University of Minnesota Office of Continuing Education.

  • Franklin, A. (1986). The neglect of experiment. Cambridge: Cambridge University Press.

    Google Scholar 

  • Freely, J. (2009). Aladdin’s lamp: How Greek science came to Europe through the Islamic world. New York, NY: Vintage.

    Google Scholar 

  • Friedman, A. (2009). But what does it look like? Exploring the use of the history of science in one high school’s biology classroom. In 9th International history, philosophy and science teaching conference. Notre Dame, Indiana.

  • Gaon, S., & Norris, S. P. (2001). The undecidable grounds of scientific expertise: Science education and the limits of intellectual independence. Journal of Philosophy of Education, 35, 187–201.

    Google Scholar 

  • Giere, R. (1988). Explaining science: A cognitive approach. Bloomington, IN: Indiana University Press.

    Google Scholar 

  • Giere, R. (2006). Science perspectivism. Chicago: University of Chicago Press.

    Google Scholar 

  • Goldacre, B. (2010). Bad science: Quacks, hacks and big pharma flacks. New York, NY: Faber and Faber.

    Google Scholar 

  • Goldman, A. I. (1999). Knowledge in a social world. Oxford: Oxford University Press.

    Google Scholar 

  • Goldman, A. I. (2001). Experts: Which ones should you trust? Philosophy and Phenomenological Research, 63, 85–110.

    Google Scholar 

  • Goldman, A. I. (2002). Pathways to knowledge: Private and public. Oxford: Oxford University Press.

    Google Scholar 

  • González, R. J. (2001). Zapotec science: Farming and food in the Northern Sierra of Oaxaca. Austin, TX: University of Texas Press.

    Google Scholar 

  • Gorman, M. E., Tweney, R. D., Gooding, D. C., & Kincannon, A. P. (Eds.). (2005). Scientific and technological thinking. Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Gould, S. J. (1981). The mismeasure of man. New York, NY: W.W. Norton.

    Google Scholar 

  • Grotzer, T. (2012). Learning causality in a complex world understandings of consequence. Lanham, MD: Rowman and Littlefield.

    Google Scholar 

  • Hackett, E. J., Amsterdamska, O., Lynch, M., & Wajcman, J. (2007). Handbook of science and technology studies (3rd Ed.). New Yotk: MIT Press.

    Google Scholar 

  • Hacking, I. (1983). Representing and intervening: Introductory topics in the philosophy of natural science. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hadzigeorgiou, Y., Klassen, S., & Froese Klassen, C. (2012). Encouraging a “romantic understanding” of science: The effect of the Nikola Tesla story. Science & Education, 21, 1111–1138.

    Google Scholar 

  • Hagen, J. B., Allchin, D., & Singer, F. (1996). Doing Biology. Glenview, IL: Harper Collins. http://doingbiology.net. Accessed 14 June 2013.

  • Hall, S. S. (2011). Scientists on trial: At fault? Nature, 477, 264–269.

    Google Scholar 

  • Haraway, D. (1989). Primate visions: Gender, race, and nature in the world of modern science. New York, NY: Routledge.

    Google Scholar 

  • Harding, S. (1991). Whose science? Whose knowledge? Thinking from women’s lives. Ithaca, NY: Cornell University Press.

    Google Scholar 

  • Harding, S. (1998). Is science multicultural? Postcolonialisms, feminisms, and epistemologies. Bloomington: Indiana University Press.

    Google Scholar 

  • Hardwig, J. (1991). The role of trust in knowledge. Journal of Philosophy, 88, 693–708.

    Google Scholar 

  • Hatch, R. A. (Ed.) (1999). History of science classroom lesson plans. Gainesville, FL: University of Florida Department of History. http://web.clas.ufl.edu/users/ufhatch/pages/05-SecondaryTeaching/NSF-PLANS/contents.html.

  • Heering, P. (1992). On J. P. Joule’s determination of the mechanical equivalent of heat. In S. Hills (Ed.), The history and philosophy of science in science education (Vol. 1, pp. 495–505). Kingston, ON: Mathematics, Science, Technology and Teacher Education Group and Faculty of Education, Queen’s University.

    Google Scholar 

  • Heering, P. (2013, forthcoming). Storytelling als Zugang zur Bildung in den Naturwissenschaften [in German]. Physik Didaktik B.

  • Henke, A. & Höttecke, D. (2013). Science teachers’ perceived demands while teaching science with and about history and nature of science. Paper presented at the 12th IHPST Conference, Pittsburgh, PA. http://conference.ihpst.net/Procs-2013/Henke-Hottecke%20symposium.pdf. Accessed 24 June 2013.

  • Hess, D. J. (1997). Science studies. New York: New York University Press.

    Google Scholar 

  • HIPST [History and Philosophy in Science Teaching Consortium]. (2008). Theoretical basis of the HIPST Project. http://hipst.eled.auth.gr/hipst_htm/theory_complete.htm. Accessed 26 June 2013.

  • Holmes, F. L. (2001). Meselson, Stahl and the replication of DNA: A history of the most beautiful experiment in biology. New Haven, CT: Yale University Press.

    Google Scholar 

  • Holton, G., & Brush, S. G. (1952). Introduction to concepts and theories in physical science.

  • Holton, G., & Brush, S. G. (1972). Introduction to concepts and theories in physical science (2nd Ed.).

  • Holton, G., & Brush, S. G. (2001). Physics, the human adventure. New Brunswick, NJ: Rutgers University Press.

    Google Scholar 

  • Höttecke, D., Henke, A., & Rieß, F. (2012). Implementing history and philosophy in science teaching: Strategies, methods, results and experiences from the European project HIPST. Science & Education, 21, 1233–1261.

    Google Scholar 

  • Höttecke, D., & Silva, C. C. (2011). Why implementing history and philosophy in school science education is a challenge: An analysis of obstacles. Science & Education, 20, 293–316.

    Google Scholar 

  • Howe, E. M. & Rudge, D. W. (2005). Recapitulating the history of sickle-cell anemia research: Improving students’ NOS views explicitly and reflectively. Science & Education, 14, 423–441.

    Google Scholar 

  • Hoyningen-Huene, P. (1993). Restructuring scientific revolutions: The philosophy of science of Thomas S. Kuhn: University of Chicago Press.

    Google Scholar 

  • Hull, D. (1988). Science as a process. Chicago: University of Chicago Press.

    Google Scholar 

  • Irwin, A. R. (2000). Historical case studies: Teaching the nature of science in context. Science Education, 84(1), 5–26.

    Google Scholar 

  • Jarman, R., & McClune, B. (2007). Developing scientific literacy: Using news media in the classroom. Maidenhead, UK: Open University Press.

    Google Scholar 

  • Johnson, S. (2008). The invention of air. New York, NY: Riverhead Books.

    Google Scholar 

  • Johnson, S., & Stewart, J. (1990). Using philosophy of science in curriculum development: An example from high school genetics. International Journal of Science Education, 12, 297–307.

    Google Scholar 

  • Jones, J. H. (1981). Bad blood: The Tuskegeee syphillis experiments. New York: Macmillan (Free Press).

    Google Scholar 

  • Judson, H. F. (1980). The search for solutions. New York, NY: Holt, Rinehart, and Winston.

  • Kahneman, D. (2011). Thinking, fast and slow. New York, NY: Farrar, Straus and Giroux.

    Google Scholar 

  • Kamin, L. J. (1974). The science and politics of IQ. Potomac, MD: L. Erlbaum Associates.

    Google Scholar 

  • Kass-Simon, G., & Farnes, P. (Eds.). (1993). Women of science: Righting the record. Bloomington, IN: Indiana University Press.

    Google Scholar 

  • Keiny, S., & Gorodetsky, M. (1995). Beyond collaboration: Creating a community of learners. In F. Finley, D. Allchin, D. Rhees, & S. Fifield (Eds.), Proceedings, third international history, philosophy and science teaching conference (pp. 589–600). Minneapolis: University of Minnesota Office of Continuing Education.

    Google Scholar 

  • Kelly, G. J., Carlsen, W. S., & Cunningham, C. M. (1993). Science education in sociocultural context. Science Education, 77, 207–220.

    Google Scholar 

  • Khishfe, R. (2012). Nature of science and decision-making. International Journal of Science Education, 34(1), 67–100.

    Google Scholar 

  • Klopfer, L. E. (1964–1966). History of science cases. Chicago, IL: Science Research Associates.

  • Kohler, R. E. (1994). Lords of the fly: Drosophila genetics and the experimental life. Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Kohn, A. (1989). Fortune or failure: Missed opportunities and chance discoveries. Oxford: Basil Blackwell.

    Google Scholar 

  • Kolstø, S. D. (2001). Scientific literacy for citizenship: Tools for dealing with the science dimension of controversial socioscientific issues. Science Education, 85, 291–300.

    Google Scholar 

  • Kruse, J. W., & Wilcox, J. (2011). Using historical science stories to illuminate nature of science ideas and reduce stereotypical views in a sixth grade classroom. Paper presented at the Association for Science Teacher Educators International Conference, Minneapolis, MN.

  • Kuhn, T. S. (1970). The structure of scientific revolutions (2nd Ed.). Chicago: University of Chicago Press.

    Google Scholar 

  • Latour, B. (1987). Science in action: How to follow scientists and engineers through society. Cambridge, MA: Harvard University Press.

  • Lederman, N. G., Wade, P., & Bell, R. L. (1998). Assessing the nature of science: What is the nature of our assessments? Science & Education, 7, 595–615.

    Google Scholar 

  • Lehrer, R., Schauble, L., & Lucas, D. (2008). Supporting development of the epistemology of inquiry. Cognitive Development, 23, 512–529.

    Google Scholar 

  • Lewontin, R. C. (1996). DNA as Idology.

  • Lewontin, R. C., Rose, S., & Kamin, L. J. (1984). Not in our genes: Biology, ideology, and human nature. New York, NY: Pantheon.

    Google Scholar 

  • Lin, H., & Chen, C. (2002). Promoting preservice chemistry teachers’ understanding about the nature of science through history. Journal of Research in Science Teaching, 39(9), 773–792.

    Google Scholar 

  • Longino, H. E. (1990). Science as social knowledge. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Longino, H. E. (2001). The fate of knowledge. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Losee, J. (1987). Philosophy of science and historical enquiry. Oxford: Oxford University Press.

    Google Scholar 

  • Losee, J. (2001). Theories on the scrap heap: Scientists and philosophers on the falsification, rejection, and replacement of theories. Pittsburgh: University of Pittburgh Press.

    Google Scholar 

  • Lundberg, M. A., Levin, B. B., & Harrington, H. L. (1999). Who learns what from cases and how?. Mahwah, NJ: Lawrence Ehrlaum Associates.

    Google Scholar 

  • Major, C. H., & Palmer, B. (2001). Assessing the effectiveness of problem-based learning in higher education: Lessons from the literature. Academic Exchange Quarterly, 5(1). http://www.rapidintellect.com/AEQweb/mop4spr01.htm. Accessed 25 June 2013.

  • Martin, B. (1991). Scientific knowledge in controversy: The social dynamics of the fluoridation debate. Albany: State University of New York Press.

    Google Scholar 

  • Matthews, M. R. (2009). Science and worldviews in the classroom: Joseph Priestley and photosynthesis. Science & Education, 18, 929–960.

    Google Scholar 

  • McClellan, J. E., I. I. I., & Dorn, H. (1999). Science and technology in world history: An introduction. Baltimore, MD: Johns Hopkins University Press.

    Google Scholar 

  • McClune, B., & Jarman, R. (2010). Critical reading of science-based news reports: Establishing a knowledge, skills and attitudes framework. International Journal of Science Education, 32(6), 727–752.

    Google Scholar 

  • McComas, W. F., & Olson, J. K. (1998). The nature of science in international science education standards documents. In W. F. McComas (Ed.), The nature of science in science education: Rationales and strategies (pp. 41–52). Dordrecht, The Netherlands: Kluwer.

  • McGarity, T. O., & Wagner, W. E. (2008). Bending science: How special interests corrupt public health research. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Michaels, D. (2008). Doubt is their product: How indsutry’s assault on science threatens your health. Oxford: Oxford University Press.

    Google Scholar 

  • Mix, M., Farber, P., & King, K. (1992). Biology: The network of life. Glenview, IL: Harper Collins.

    Google Scholar 

  • Mix, M., Farber, P., & King, K. (1996). Biology: The network of life (2nd ed.). Glenview, IL: Harper Collins.

    Google Scholar 

  • Mooney, C. (2005). The Republican war on science. New York: MJF Books.

    Google Scholar 

  • National Research Council. (2013). Next generation science standards. Washington, DC: National Academies Press.

    Google Scholar 

  • Nersessian, N. J. (1984). Faraday to Einstein: Constructing meaning in scientific theories. Dordrecht: Martinus Nijhoff.

    Google Scholar 

  • Nersessian, N. J. (2008). Creating scientific concepts Cambridge. MA: MIT Press.

    Google Scholar 

  • Nickles, T. (1995). Philosophy of science and history of science. Osiris, 10, 139–163.

    Google Scholar 

  • Nielsen, J. A. (2013). Delusions about evidence: On why scientific evidence should not be the main concern in socioscientific decision-making. Canadian Journal of Science, Mathematics and Technology Education, 13, 373–385.

    Google Scholar 

  • Norris, S. P. (1995). Learning to live with scientific expertise: Toward a theory of intellectual communalism for guiding science teaching. Science Education, 79, 201–217.

    Google Scholar 

  • Norris, S. P. (1997). Intellectual independence for nonscientists and other content-transcendent goals of science education. Science Education, 81, 239–258.

    Google Scholar 

  • OECD. (2009). PISA 2009 assessment framework. Paris: Author. Retrieved December 24, 2013, from http://www.oecd.org/pisa/pisaproducts/44455820.pdf.

  • Ogilvie, M. B. (1993). Women in science: Antiquity through the nineteenth century. Cambridge, MA: MIT Press.

    Google Scholar 

  • Oliveras, B., Márquez, C., & Sanmarti, N. (2011). The use of newspaper articles as a tool to develop critical thinking in science classes. International Journal of Science Education, 35, 885–905.

    Google Scholar 

  • Oreskes, N., & Conway, E. M. (2010). Merchants of doubt: How a handful of scientists obscured the truth on issues from tobacco smoke to global warming. New York, NY: Bloomsbury.

    Google Scholar 

  • Osborne, J., Collins, S., Ratcliffe, M., Millar, R., & Duschl, R. (2003). What “ideas-about-science” should be taught in school science? A Delphi study of the expert community. Journal of Research in Science Teaching, 40, 692–720.

    Google Scholar 

  • Owens, B. (2012, 19 Oct.). Italian court says mobile phones cause cancer. Nature. http://blogs.nature.com/news/2012/10/italian-court-says-mobile-phones-cause-cancer.html.

  • Park, R. (2000). Voodoo science: The road from foolishness to fraud. Oxford: Oxford University Press.

    Google Scholar 

  • Pickering, A. (1995). The mangle of practice: Time, agency, and science. Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Rampton, S., & Stauber, J. (2002). Trust us, we’re experts: How industry manipulates science and gambles with your future. New York, NY: Tarcher/Penquin.

    Google Scholar 

  • Reiß, F. (1995). Teaching science and the history of science by redoing historical experiments. In F. Finley, D. Allchin, D. Rhees, & S. Fifield (Eds.), Proceedings, third international history, philosophy and science teaching conference (pp. 958–966). Minneapolis: University of Minnesota Office of Continuing Education.

    Google Scholar 

  • Rheinberger, H.-J. (1997). Toward a history of epistemic things. Stanford, CA: Stanford University Press.

    Google Scholar 

  • Rheinberger, H.-J. (2010). An epistemology of the concrete: Twentieth-century histories of life. Durham, NC: Duke University Press.

    Google Scholar 

  • Roberts, R. (1989). Serendipity: Accidental discoveries in science. New York: Wiley.

    Google Scholar 

  • Ronan, C. A. (1982). Science: Its history and development among the world’s cultures. New York, NY: Facts-on-File.

    Google Scholar 

  • Ronan, C. A., & Needham, J. (1978–1995). The shorter science and civilisation in China (Vol. 1–6). Cambridge, UK: Cambridge University Press.

  • Rossiter, M. (1982). Women scientists in America: Struggles and strategies to 1940. Baltimore, MD: Johns Hopkins University Press.

    Google Scholar 

  • Rossiter, M. (1995). Women scientists in America: Before affirmative action, 1940-1972. Baltimore, MD: Johns Hopkins University Press.

    Google Scholar 

  • Rossiter, M. (2012). Women scientists in America: Forging a new world since 1972. Baltimore, MD: Johns Hopkins University Press.

    Google Scholar 

  • Rudge, D. W., Cassidy, D. P., Fulford, J. M., & Howe, E. M. (2013). Changes observed in views of the nature of science during a historically based unit. Science & Education. doi:10.1007/s11191-012-9572-3.

    Google Scholar 

  • Rutherford, F. J., Holton, G., & Brush, S. (1970). The Project Physics Course. New York: Holt, Rinehart and Winston.

    Google Scholar 

  • Ryder, J. (2001). Identifying science understanding for functional scientific literacy. Studies in Science Education, 36, 1–44.

    Google Scholar 

  • Sadler, T. D., Chambers, F. W., & Zeidler, D. L. (2004). Student conceptualizations of the nature of science in response to a socioscientific issue. International Journal of Science Education, 26(4), 387–409.

    Google Scholar 

  • Sandoval, W. A., & Morrison, K. (2003). High school students’ ideas about theories and theory change after a biological inquiry unit. Journal of the Research in Science Teaching, 40(4), 369–392.

    Google Scholar 

  • Schiebinger, L. (1989). The mind has no sex? Women in the origins of modern science. Harvard: Harvard University Press.

    Google Scholar 

  • Schiebinger, L. (1993). Nature’s body: Gender in the making of modern science. Boston, MA: Beacon Press.

    Google Scholar 

  • Scull, A. (2009). The disturbing history of hysteria. Oxford: Oxford University Press.

    Google Scholar 

  • Selin, H. (Ed.). (1997). Encyclopaedia of the history of science, technology, and medicine in non-Western cultures. Dordrecht: Kluwer.

    Google Scholar 

  • Selinger, E., & Crease, R. P. (Eds.). (2006). The philosophy of expertise. New York: Columbia University Press.

    Google Scholar 

  • Shapin, S. (1989). The invisible technician. American Scientist, 77, 554–563.

    Google Scholar 

  • Shapin, S. (1994). A social history of truth: Civility and science in seventeenth-century England. Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Shapin, S., & Schaffer, S. (1985). Leviathan and the air-pump: Hobbes, Boyle, and the experimental life. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Shibley, I. A., Jr. (2003). Using newspapers to examine the nature of science. Science & Education, 12(7), 691–702.

    Google Scholar 

  • Smith, C., Maclin, D., Houghton, C., & Hennessey, M. G. (2000). Sixth-grade students’ epistemologies of science: The impact of school science experience on epistemological development. Cognition and Instruction, 18, 285–316.

    Google Scholar 

  • Sobel, D. (2000). Galileo’s daughter: A historical memoir of science, faith and love. New York: Penquin.

    Google Scholar 

  • Solomon, M. (2001). Social empiricism. Cambridge, MA: MIT Press.

    Google Scholar 

  • Solomon, J., Duveen, J., Scot, L., & McCarthy, S. (1992). Teaching about the nature of science through history: Action research in the classroom. Journal of Research in Science Teaching, 29, 409–421.

    Google Scholar 

  • Spence, W., Herrmann, R. B., Johnston, A. C. & Reagor, G. (1993). Responses to Iben Browning’s prediction of a 1990 New Madrid, Missouri, earthquake. U.S. Geological Survey Circular 1083. Washington, D.C.: U.S. Government Printing Office. http://pubs.usgs.gov/circ/1993/1083/report.pdf.

  • Taylor, P. J. (2005). Unruly complexity: Ecology, intepretation, engagement. Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Temple, R. (2007). The genius of China: 3,000 years of science, discovery, and invention (3rd Ed.). Rochester, VT: Inner Traditions.

    Google Scholar 

  • Teresi, D. (2002). Lost discoveries: The ancient roots of modern science—From the Babylonians to the Maya. New York, NY: Simon & Schuster.

    Google Scholar 

  • Thagard, P. (1995). Mental leaps: Analogy in creative thought. Cambridge, MA: MIT Press.

    Google Scholar 

  • Thagard, P. (1999). How scientists explain disease. New York: Princeton University Press.

    Google Scholar 

  • Thomas, J. (2000). Using current controversies in the classroom: Opportunities and concerns. Melbourne Studies in Education, 41, 133–144.

    Google Scholar 

  • Toumey, C. P. (1996). Conjuring science: Scientific symbols and cultural meanings in American life. New Brunswick, NJ: Rutgers University Press.

    Google Scholar 

  • Toumey, C., Besley, J., Blanchard, M., Brown, M., Cobb, M., Ecklund, E. H., et al. (2010). Science in the service of citizens and consumers: The NSF workshop on public knowledge of science, October 2010. Columbia, SC: University of South Carolina Nanocenter.

    Google Scholar 

  • Tweney, R. D. (1991). Faraday’s notebooks: The active organization of creative science. Physics Education, 26, 301–306.

    Google Scholar 

  • Tweney, R. D. (1992). Serial and parallel processing in scientific discovery. In R. Giere (Ed.), Cognitive models of science (Minnesota studies in the philosophy of science XV) (pp. 77–88). Minneapolis: University of Minnesota Press.

    Google Scholar 

  • Tweney, R. D. (2001). Toward a general theory of scientific thinking. In K. Crowley, C. D. Schunn, & T. Okada (Eds.), Designing for science: Implications from professional, instructional, and everyday science. Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Understanding Science. (2013). Berkeley, CA: University of California Museum of Paleontology. http://www.understandingscience.org.

  • Union of Concerned Scientists. (2007). Smoke, mirrors and hot air: How ExxonMobil uses big tobacco’s tactics to manufacture uncertainty on climate science. Cambridge, MA: Union of Concerned Scientists. http://www.ucsusa.org/assets/documents/global_warming/exxon_report.pdf.

  • van der Wijngaard, M. (1997). Reinventing the sexes: The biomedical construction of feminity and masculinity. Bloomington, IN: Indiana University Press.

    Google Scholar 

  • White, H. (1987). The content of the form: Narrative discourse and historical representation. Baltimore, MD: Johns Hopkins University Press.

    Google Scholar 

  • Wimsatt, W. C. (2007). Re-engineering philosophy for limited beings: Piecewise approximations to reality. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Wong, S. L., Hodson, D., Kwan, J., & Yung, B. H. W. (2008). Turning crisis into opportunity: Enhancing student-teachers’ understanding of nature of science and scientific inquiry through a case study of the scientific research in severe acute respiratory syndrome. International Journal of Science Education, 30, 1417–1439.

    Google Scholar 

  • Wong, S. L., Wan, Z., & Cheng, M. W. (2011). Learning nature of science through socioscientific issues. In T. D. Sadler (Ed.), Socio-scientific issues in the classroom. Dordrecht: Springer.

    Google Scholar 

  • Zeidler, D. L., Applebaum, S. M., & Sadler, T. D. (2011). Enacting a socioscientific issues classroom: Transformative transformation. In T. D. Sadler (Ed.), Socio-scientific issues in the classroom. Dordrecht: Springer.

    Google Scholar 

  • Zeidler, D. L., Walker, K. A., Ackett, W. A., & Simmons, M. L. (2002). Tangled up in views: Beliefs in the nature of science and responses to socioscientific dilemmas. Science Education, 86(3), 343–367.

    Google Scholar 

  • Zemplén, G. Á. (2009). Putting sociology first—Reconsidering the role of the social in ‘nature of science’ education. Science & Education, 18(5), 525–559.

    Google Scholar 

  • Zemplén, G. Á. (2010). A 6-week nature of science module incorporating social and epistemic elements. http://attachments.wetpaintserv.us/f4hSVtv48TmT3oRIxSdjnA%3D%3D122368.

Download references

Acknowledgments

I am indebted to Keld Nielsen and Hanne Møller Andersen for fruitful discussions and references on the complementary approaches to teaching NOS, and to Peter Garik for the invitation that led to this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Allchin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allchin, D. From Science Studies to Scientific Literacy: A View from the Classroom. Sci & Educ 23, 1911–1932 (2014). https://doi.org/10.1007/s11191-013-9672-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11191-013-9672-8

Keywords

Navigation