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Abstract 

Many agree that the pilot-wave theory is to be understood as a first-order theory, in which the law 

constrains the velocity of the particles. However, while Dürr, Goldstein and Zanghì maintain that the pilot-

wave theory is Galilei invariant, Valentini argues that such a symmetry is mathematical but it has no 

physical significance. Moreover, some wavefunction realists insist that the pilot-wave theory is not Galilei 

invariant in any sense. It has been maintained by some that this disagreement originates in the 

disagreement about ontology, as Valentini, contrary to Dürr, Goldstein and Zanghì, has been taken to 

endorse wavefunction realism. In this paper I argue that Valentini’s argument is independent of the choice 

of the ontology of matter: it is based on the notion of natural kinematics for a theory, and the idea that the 

kinematics should match the dynamics. If so, I also argue that there are several reasons to dispute 

Valentini’s claim that the kinematical symmetries should constrain dynamical ones. 

Keywords: Galilei invariance; the pilot-wave theory; wave function realism; kinematics; dynamics; 

symmetries 

 

1. Introduction 

There are several controversies surrounding the pilot-wave theory. First, there is 

discussion about its dynamical law: is it fundamentally a first order theory, or a second 

order theory? Then, there is disagreement about the ontology of matter according to the 

theory: is the theory about particles, or about particles and waves? If both, then how are 

we to understand a wave in configuration space? I do not focus on these debates in this 

paper. Rather, I wish to discuss an issue which has been barely addressed in the 

literature, namely whether the theory is Galilei invariant. One may be surprised that 

there is such a disagreement, as one may reasonably think that specifying a theory, in 

particular its material ontology and its laws, would also fix its symmetry properties: 

isn’t the fact that, e.g., classical mechanics is Galilei invariant part of the definition of the 

theory? Nonetheless, putatively all possible positions about the matter have been 
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advocated for: some, most notably Albert (1996), have maintained that the theory is not 

Galilei invariant;1 Dürr, Goldstein and Zanghì (1992) have argued that it is; while 

Valentini (1997) has insisted that the theory is mathematically Galilean invariant, but 

this symmetry is not physical. One may think that those who take the pilot-wave theory 

as Galilei invariant have in mind that it has to be fundamentally understood as a second 

order theory, as it would be more similar to classical mechanics. Instead, this is not the 

case: all those who disagree about the Galilei invariance of the pilot-wave theory believe 

that the theory is fundamentally of the first order.  

Some2 then have argued that the heart of the matter is the ontology of matter according 

to the theory: wavefunction realists think of the wavefunction as a physical, material, 

field, while others have a different view of the wavefunction. I have similarly argued in 

another context that material ontology is important to determine the symmetry 

property of a theory: if the wavefunction is a material field in configuration space then 

it would not transform as needed to preserve invariance, while a nomological view of 

the wavefunction can account for the transformation required to allow invariance.3 

However, I do not think this is at the heart of the disagreement in this case. In fact, this 

would correctly account for Dürr, Goldstein and Zanghì’s claim that the theory Galilei 

invariant, and that in general for the wavefunction realist’s case against Galilei 

invariance. Nonetheless, it seems unable to make sense of Valentini’s position: contra 

wavefunction realists, he accepts that the theory is mathematically invariant while 

contra Dürr, Goldstein and Zanghì he denies that this transformation has any physical 

significance. Indeed, his reasoning is independent on the choice of the ontology of 

matter. In fact, it is based on the idea that one can identify two sources for the motion of 

a body: one coming from spacetime, which identifies the natural kinematics of the 

theory and thus its natural motion, and one coming for the influence of other objects, 

which determines the body’s dynamics. Valentini first argues that the natural motion 

for the pilot-wave theory is rest, thereby making the theory not Galilei invariant. Then 

he argues that the kinematical symmetries should constrain the dynamical symmetry, 

which is why Galilei invariance has no physical significance.   

After reconstructing Valentini’s position, I discuss an argument that Valentini’s 

conclusion relies on an unreasonable assumption about the nature of the natural free 

motion in the pilot-wave theory. Moreover, I show how there are additional good 

reasons not to prioritize the kinematics, as Valentini wishes to do.  In addition, I discuss 

 
1 See also Skow (2010). 
2 Belousek (2003), Solè (2013). 
3  Allori (2015, 2019). 
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how Valentini’s argument is heavily influenced by general relativity but the analogy 

with that theory soon breaks down: while in general relativity the kinematics is relevant 

for the dynamics, this is not the case for the pilot-wave theory. Also, I present reasons 

that the relation between kinematics and dynamics is not necessarily what Valentini 

suggests. 

Before continuing, let me add a remark on the relevance of this debate. One may ask 

why it is of any relevance to inquire whether some theory is Galilei invariant or not, 

when we know that Galilei invariance is false already, given relativity theory. I think it 

is important to understand where the disagreement about this symmetry lies because it 

may shed some light on what determines the symmetry properties of a theory: the 

ontology of matter, the laws, or something else? Determining this is important to better 

understand what it means to require for a theory to be Lorentz invariant. Indeed, 

Valentini wishes to claim that the theory being non-Galilei invariant shows that 

imposing Lorentz invariance is misguided. Instead, I am going to argue that the very 

opposite is true: if the pilot-wave theory were not Galilei invariant it would be further 

away, rather than close by, an important aspect of relativity, albeit not Lorentz 

invariance.  

Here is the roadmap of the paper. I start with section 2, in which I discuss the 

controversies over the material ontology and the type of dynamics of the pilot-wave 

theory. In section 3, I consider symmetries in general and Galilei invariance, in 

particular within the pilot-wave theory. In section 4, I present Albert’s argument that 

the pilot-wave theory is not Galilei invariant, and in section 5 the argument by Dürr, 

Goldstein and Zanghì that it is. Then, in section 6 I continue discussing Valentini’s 

kinematical approach. I make the point of the situation in section 7, where I further 

elaborate Valentini’s argument, focusing on his motivations.  I provide several 

objections to Valentini’s approach in section 8, and I argue that he is ultimately 

mistaken. I end with the summary of what has been done in the paper and with some 

concluding remarks.   

2. On the Different Ways of Being a Pilot-Wave Theory 

The pilot-wave theory has a long story of controversies. Two prominent ones have to do 

with which formalism should be considered fundamental, and with which is the 

ontology of the theory. In this section I briefly review some positions which are relevant 

for the discussion in this paper. 
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2.1 The Wavefunction as Material or as Nomological  

While almost everyone considers the theory as describing the behavior of particles in 

three-dimensional space, it is controversial how to interpret the wavefunction. Leaving 

aside those who think of the wavefunction as epistemic, even among those who 

considers it to be ontic one can distinguish a variety of distinct positions.4 As a first 

approximation, among ontic approaches one can distinguish between those who think 

that the wavefunction is a material physical field (let’s dub them, simplistically, the 

‘materialists’), and those who think it is not (the ‘non-materialists’).5 According to the 

materialists, in the pilot-wave theory the wavefunction is part of the ontology of matter, 

together with the particles. There are several ways of being a materialist within the 

pilot-wave theory; for instance, one can think of the wavefunction as a multi-valued 

field in three-dimensional space.6 A particularly radical view among materialists has 

been proposed by Albert (1996) who argues that the fundamental ontology of matter 

according to the theory is given by a single particle and a single wave in configuration 

space, so that the objects and the there-dimensionality of our experience are derivative 

(sometimes this view is called the ‘marvelous point’). We will come back to this theory 

in section 4. 

Otherwise, there are several ways of being non-materialists with respect to the wave 

function. They would all agree that the wavefunction does not represent material 

objects but nonetheless it would still be part of the (more general) ontology of the 

theory, namely it exists objectively, one way or another: one can think that the 

wavefunction is in its own category,7 or broadly think that the wavefunction is 

 
4 A common distinction is between epistemic and ontic views of the wavefunction. According to the 

former, the wavefunction is not objective, it is not part of the ontology of the theory but rather it 

represents the observer’s state of knowledge of a physical system. Instead, ontic approaches have in 

common the idea that the wavefunction represents some objective feature of reality, even if they disagree 

about what this feature is. 
5 Notice that these distinctions are closely connected with the debates concerning the notion of primitive 

ontology (see Allori 2013). The idea is that a theory is more explanatory if matter in it is represented by 

some low-dimensional (most likely three-dimensional) mathematical object. So, for what is relevant for 

this paper, the wavefunction, understood as a field in a high dimensional or abstract space (configuration 

space or the like), is not a suitable material ontology. This is the case even if it is, broadly speaking, part of 

the ontology of the theory in the sense that it represents an objective feature of reality.  I do not think that 

introducing the notion of primitive ontology is necessary here, and I am afraid it will only generate more 

confusion. Thus, I will write about ontology of matter (instead of primitive ontology) to refer to the 

variables in the theory which represent material objects, and ontology in general to include also the 

variables representing other objective feature, such as the forces, the potentials, the Hamiltonians, the 

velocities, and so on. In any case, materialists with respect to the wavefunction, as defined above, are 

those who go against the primitive ontology approach, while non-materialists are more likely to be 

sympathetic to it. 
6 Forrest (1988), Belot (2012), Hubert and Romano (2018). 
7 Maudlin (2019). 
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nomological. That is, one can maintain that the wavefunction should be understood as 

influencing the motion of the particle in terms of laws,8 properties,9 forces,10 or more 

generally having suitable functions in the theory,11 among others.12  

 

2.2 The Guidance View or The Causal Formulation 

There are two ways of presenting the theory: the guidance view, and the causal 

formulation. The former was first introduced by de Broglie (1924) and it is explicitly 

endorsed by two main groups of supporters of the pilot-wave theory, namely Dürr, 

Goldstein and Zanghì (1992) and Valentini (1997). In this approach, the pilot-wave 

theory is a theory of (three-dimensional) particles, like classical mechanics, but moving 

according to a new, non-classical dynamical law, proportional to the velocity rather 

than the acceleration. The wave 𝜓 evolves according to the Schrödinger equation and 

one can write it in polar form as 𝜓(𝑟1, . . , 𝑟𝑁, 𝑡) = 𝑅(𝑟1, . . , 𝑟𝑁 , 𝑡)𝑒
𝑖

ℏ
𝑆((𝑟1,..,𝑟𝑁),𝑡). The first-order  

guidance equation then looks as follows: 𝑚𝑖
𝑑𝑟𝑖

𝑑𝑡
= ∇𝑖𝑆(𝑟1, . . , 𝑟𝑁) (the index 𝑖 runs from 1 

to 𝑁, the number of particles). It can also be written as 
𝑑𝑟𝑖

𝑑𝑡
=

ℏ

𝑚𝑖
𝐼𝑚 

∇𝑖𝜓

𝜓
 (where ′𝐼𝑚’ is an 

operator telling us to take the imaginary part of what follows).   

The causal formulation, first advocated by Bohm (1952), and then endorsed also by 

Hiley (Bohm and Hiley 1993) and Holland (1993), in contrast proposes that the theory is 

to be understood as fundamentally about particles evolving according to a second order 

equation involving the particles’ acceleration. The (three-dimensional) particles are 

thought as moving under the influence of forces, among which there is a new one, 

derived by the so-called quantum potential 𝑄 = ∑
ℏ2

2𝑚𝑖

∇𝑖𝑅

𝑅

𝑁
𝑖=1 . Therefore, the dynamics of 

the causal formulation is given by: 𝑚𝑖
𝑑2𝑟𝑖

𝑑𝑡2 = −∇𝑖(𝑉 + 𝑄). In this formulation 𝑚𝑖
𝑑𝑟𝑖

𝑑𝑡
=

∇𝑖𝑆(𝑟1, . . , 𝑟𝑁) is not regarded as an equation of motion (as in the guidance approach), but 

as a restriction imposed on the initial momenta.  

There has been some discussion on which formulation should be taken to be 

fundamental,13 and much more about the status of the wavefunction.14 I will not focus of 

 
8 Dürr, Goldstein and Zanghì (1997), Goldstein and Zanghì (2013). 
9 Monton (2006), Suàrez (2007), Deckert and Esfeld (2018). 
10 Valentini (1992, 1997), Belousek (2003). 
11 Allori (2021). 
12 See Chen (2019) for more ways of understanding the wavefunction in quantum theory, including the 

pilot-wave theory. 
13 See Goldstein (2021), Valentini (1992, 1997), Belousek (2003), Solé (2013). 
14 See, for starters, the contributions in Albert and Ney (2013).  



6 
 

these issues here: I will merely take on what is needed to examine the question at hand, 

namely the Galilean invariance of the theory. In any case, the driving motivation for the 

causal view seems to be its alleged superior explanatory power: Belousek (2003) has 

argued that the nomological view, which he takes to be wedded to the guidance 

formulation, does not truly explain the phenomena. Thus, he argues, one needs to 

reformulate the theory in terms of particles being subject to forces. However, even 

granting Belousek that forces are needed for proper explanation, one does not have to 

choose the causal view. In fact, Valentini (1992) has maintained that the pilot-wave 

theory is fundamentally a first order theory, in which the particles should be seen as 

moving under the influence of ‘Aristotelian’ forces, namely forces generating velocities 

rather than acceleration. That is, Valentini both endorses the guidance view and 

explains the particles’ motions in terms of these forces, thereby satisfying Belousek’s 

criterion for satisfactory explanation.  

For what is worth, I agree with those who claim that the causal view is misleading 

when taken as the fundamental formulation of the pilot-wave theory: mathematically 

the particle velocity, rather than its acceleration, is affected by the wavefunction, and 

this means, by definition, that the theory is of the first order. The causal formulation, by 

deriving again the velocity field, seems to make the same sense as deriving again the 

Newtonian equation in classical mechanics: one can certainly do that, but it is unclear 

what one could gain by doing it, as in classical mechanics forces affect acceleration, 

rather than the rate of change of acceleration.  One could protest that writing down the 

theory as a second order dynamics may be useful for a variety of reasons, for instance to 

better understand its classical limit. In fact, one can show that this happens under 

conditions in which the quantum potential goes to zero.15 Given that, one can easily see 

how velocities become independent of the wavefunction, recovering the Newtonian 

schema. Nonetheless, that does not mean that the second order formulation is to be 

preferred as the fundamental formulation of the theory. This seems like saying that the 

Lagrangian formulation, say, of classical mechanics is to be preferred to the Newtonian 

one because it makes it easier to do calculations.  

Be that as it may, one does not need to show that one formulation is better than the 

other in order to discuss the Galilei invariance of the theory. In fact, the pilot-wave 

theory understood as a second order theory looks very similar to classical mechanics, 

and so it seems reasonable to assume that it preserves its symmetries, including Galilei 

 
15 See Allori & Zanghi (2009). 
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invariance. In addition, all those who disagree about Galilei invariance endorse the first 

order approach, and this is what I will take for granted. 

3. Galilei Invariance in the Pilot-Wave Theory 

Before presenting the various positions, let me briefly discuss symmetries in general. A 

theory is said to have a dynamical symmetry under a given transformation 𝑆, or 

invariant under 𝑆, when 𝑆 ‘transforms solutions into solutions.’ To clarify, let’s start 

from the fact that the dynamics of a theory is the dynamics of something in the theory. 

That is, the theory has a dynamical equation which describes the temporal evolution, 

namely the dynamics, of something, namely the material ontology as specified by the 

theiry. In other words, in addition to the specification of the dynamics, one needs to be 

clear about what matter is represented by in the theory in order to talk about what the 

dynamics is a dynamics of. Then the solutions of the dynamical equation describe 

possible ways the world can be according to the theory. To say that a theory is invariant 

under a given transformation 𝑆 then means that the dynamical equation of motion is 

transformed under 𝑆 as to have the same solutions of the original, untransformed, 

equation. One often says in this case that that the law is unchanged in form by 𝑆. 

To be more explicit, consider for instance classical mechanics, and ask about its time 

reversal invariance. Time reversal is the transformation 𝑇 which inverts the direction of 

time:  𝑡′ = −𝑡. According to classical mechanics, matter is made of particles, which are 

therefore the material ontology of the theory, evolving according to Newton’s second 

law, which therefore specifies the dynamics of the particles. Newton’s second law 

remains the same in form under 𝑇: the velocity, because of its definition as rate of 

change of position, flips sign, while the acceleration changes sign again, being the rate 

of change of velocity, thereby cancelling out the first change. That means that classical 

mechanics is time reversal invariant:  the solutions of the ‘forward’ equation are also 

solutions of the ‘backward’ equation.  

The case of Galilean invariance in classical mechanics is similar: Newton’s theory is 

Galilei invariant, that is, Newton’s law holds in all inertial (i.e. non-accelerated) frames. 

A pure Galilean transformation, or Galilean boost, 𝐺 is a transformation which 

translates a system into one moving at uniform velocity (uniform translations, so to 

speak):  𝑟′(𝑡) = 𝑟(𝑡) − 𝑣𝑡, where 𝑣 is the constant velocity. Since the velocity is constant, 

the acceleration (its derivative with respect to time) is zero, so that Newton’s equation 

remains the same in form after the transformation 𝐺.  That means, again, that 

Newtonian mechanics is Galilean invariant.   
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Summarizing, the basic algorithm to figure out whether a theory is invariant under a 

symmetry 𝑆 is therefore the following:  

1- Identify the material ontology 𝑂 of the theory and its dynamical law 𝐿.  

Example: classical mechanics has a particle ontology and 𝐿 is 𝐹 = 𝑚𝑎.   

2- Apply 𝑆 to the material ontology to obtain the transformed ontology of matter 

𝑆(𝑂).  

Example: in classical mechanics, the particle position does not change under 𝑇 

and under 𝐺; 

3- Apply 𝑆 to all the other variables in the dynamical law 𝐿.  

Example: in classical mechanics, under both 𝑇 and 𝐺  the mass, the force and the 

acceleration (being the second derivative of position) are unchanged;  

4- If the dynamical law 𝐿 is unchanged in form, then the transformed material 

ontology 𝑆(𝑂) is still a possible way the world can be according to the theory, 

and the theory is invariant under 𝑆.  

Example: given what we just established (all ingredients of 𝐿 are unchanged by 

both transformations), classical mechanics is invariant under 𝑇 and 𝐺.  

5- If instead 𝐿 changes, then the theory is not invariant.   

4. Albert’s Wavefunction Realist, non-Galilean Invariant Theory 

Moving to the pilot-wave theory, we need to be clear about what the ontology of matter 

is. First consider Albert’s marvelous point approach to the pilot-wave theory, with one 

3𝑁-dimensional particle, represented by its configuration 𝑋, and one 3𝑁-dimensional 

field, 𝜓, are both representing the material constitution of the pilot-wave world. The 

material ontology of this theory is thus given by 𝑂 = (𝑋, 𝜓), and the laws are given, 

respectively, by the guidance equation and the Schrödinger equation. It has been 

argued that in virtue of such a material ontology, quantum theory, and in particular the 

pilot-wave theory, is not invariant under 𝑇 and 𝐺.16 Here is the argument. Suppose we 

apply 𝑇 to the ontology of matter of the theory in this view, namely 𝑂 = (𝑋, 𝜓): the 

position remains the same, but also the wavefunction. In fact, the transformation should 

act on an object accordingly with the object’s nature. As anticipated, and so the 

argument goes, in classical mechanics velocities, being defined as rate of change of 

position, flip direction under 𝑇. Instead, there is no reason why the wavefunction, 

which in this view is part of the ontology and it is seen as field in a high dimensional 

space, would change in any way: assuming that a history of the world can be imagined 

as a sequence of snapshots depicting the ontology of the world at various times, and 

assuming also that applying 𝑇 means to reverse the order of these snapshots, then the 

 
16 Albert (2000). For time reversal invariance, see also Callender (2000). 
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content of the picture should stay the same.17 That is, not only 𝑋’ = 𝑇(𝑋) = 𝑋,  but also 

𝜓′ = 𝑇(𝜓) = 𝜓, so that 𝑇(𝑂) = (𝑋, 𝜓) = 𝑂. However, if we now plug in this transformed 

material ontology in the Schrödinger equation, a minus sign comes up. In order to 

restore time reversal invariance, the wavefunction would have to transform into its 

complex conjugate. But there is no reason why it would do that, so it won’t do that. 

Because of this, it is concluded then that the theory is not time reversal invariant.18 

The same reasoning can be done for 𝐺: a Galilean boost transforms a given system into a 

system in uniform motion, and the ontology (𝑋, 𝜓) should stay the same, as there is no 

reason why it should change in any way. If that is the case, the theory is not Galilean 

invariant: to be invariant the wavefunction would have to change in this inexplicable 

way:  𝜓′ = 𝑒
𝑖

ℏ
∑ 𝑚𝑗𝑣∙𝑥𝑗𝑗 𝜓. Thus, to come back to our question regarding the Galilean 

invariance of the pilot-wave theory: if it is interpreted along the lines of wavefunction 

realism, then it follows that the theory is not Galilean invariant, as solutions are not 

transformed into solutions by the transformation 𝐺. 

5. DGZ Particle Only, Galilean Invariant Theory 

A different conclusion is reached by Dürr, Goldstein and Zanghì (1992) and by 

Valentini (1997). Let’s discuss Dürr, Goldstein and Zanghì’s view in this section, and 

Valentini’s position in the next.  In their first paper on the theory, Dürr, Goldstein and 

Zanghì (DGZ) start assuming that matter is made of particles only, so that 𝑂 = 𝑋, and 

that the particles motion is governed by some equation. To determine which evolution 

equation the particles follow they use two principles: simplicity and symmetries. The 

simplest equation for the motion of the particles is a first order differential equation in 

terms of the velocities: 
𝑑𝑥𝑖

𝑑𝑡
= 𝑓𝑖(𝑥1, … , 𝑥𝑁), for some unknown function 𝑓𝑖. By imposing 

rotation invariance, time reversal symmetry, and Galilean invariance, they obtain the 

guiding equation for the particles as 
𝑑𝑥𝑖

𝑑𝑡
=

ℏ

𝑚𝑖
𝐼𝑚 

∇𝑖𝜓

𝜓
, assuming that there is a function 𝜓 

which transforms under time reversal into its complex conjugate, under a Galilean 

transformation as  𝜓′ = 𝑒
𝑖

ℏ
∑ 𝑚𝑗𝑣∙𝑥𝑗𝑗 𝜓, and it is such that  𝜓 = 𝑧𝜓, for some complex 

number 𝑧. The simplest evolution equation for such a function, compatible with the 

 
17 Allori (2019). 
18 For a proposal on how to make the theory time reversal invariant even in this context, see Struyve 

(2021). The proposal, however, requires a different understanding of the field the wavefunction is 

supposed to be represent. For the way in which the nomological approach deals with this, see Allori 

(2019). 
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above-mentioned symmetries, is the Schrödinger equation.19 Thus, in the formulation of 

DGZ, the pilot-wave theory is Galilean invariant by construction.  

Skow (2010) has criticized this proposal as question begging. Following Albert, he 

argued that a symmetry transforms an object as the nature of the object prescribes, as 

we saw above.20 Thus, the Galilean invariance of the theory can be assessed only 

discussing first what the wavefunction is: only in this way one can establish its natural 

ways of transforming under the various symmetries. This is a ‘(material) ontology first’ 

approach, where first one specifies the ontology of matter according to the theory, and 

then one sees whether the theory is invariant under a certain symmetry, given that 

material ontology. As we have seen in the previous section, if the wavefunction is a 

material field understood as Albert does, then the theory is not time reversal and 

Galilean invariant. In the account of DGZ, the wavefunction has to transform as needed 

to get the invariances, so for Skow the question becomes: what kind of object is a 

wavefunction which transforms naturally under these transformations as to maintain 

the corresponding invariances?  

As anticipated, DGZ have argued that the wavefunction does not represent material 

objects but rather it is a nomological entity. Symmetries instead seems to leave only the 

ontology of matter ‘alone’: a theory is invariant under a given transformation 𝑆 if a 

possible physical evolution of matter is transformed by 𝑆 into another possible physical 

evolution in the sense previously specified. This allows for the wavefunction to 

transform as needed for invariance: the wavefunction is flexible in this respect.21  

Regardless of the possible criticisms to the nomological approach, it does seem to be the 

case that the material ontology of the theory determines its symmetries.22 Nonetheless, 

the situation has to be more subtle than that, as Valentini’s position will show.  

6. Valentini’s Aristotelian, Unphysically Galilean Invariant Theory   

A completely different approach is the one put forward by Valentini (1992, 1997). He 

argues that the pilot-wave theory is not Galilei invariant in virtue of being 

 
19 As discussed in other papers, DGZ show that one can obtain the guidance law also through other 

considerations. Nonetheless, it is always clear that DGZ regard the theory as Galilei invariant, regardless 

of how the guidance equation is obtained (see also Dürr and Teufel 2009). 
20 This type of argument has been put forward in the case of time reversal by other authors as well: 

Earman (2002), Malament (2004), Arntzenius (2004), Arntzenius and Greaves (2009), Roberts (2017, 2021). 
21 See also Allori (2018, 2019, 2021). 
22 See also Solè (2013). 
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fundamentally a first order theory. More precisely, he thinks that the theory is 

mathematically Galilean invariant, but this symmetry has no physical significance.23  

Here is my reconstruction of Valentini’s argument.  

 

6.1 A Newtonian Analogy to Determine the Natural Motion 

Valentini distinguishes between kinematics and dynamics, the former describing the 

structure of spacetime, and the latter describing the motion of matter in such 

background. The natural kinematic of a theory arises from the definition of free system, 

namely a system subject to no influence from other bodies.  According to Valentini, any 

effect on the motion of a body which is independent of the particular properties and the 

composition of the bodies involved should be regarded as originating from spacetime. 

This in turns defines the natural kinematics and the natural geometry of the spacetime 

in which the motion happens. 

In classical mechanics the natural, or free, motion is one in which there are no forces. 

This is the uniform motion because the dynamical law involves the acceleration: since 

𝐹 = 𝑚𝑎, when there are no forces, we also has to be no acceleration, meaning a constant 

velocity. The theory is then Galilean invariant as it does not distinguish uniform motion 

from rest. The natural motion for a given particle 𝑖 is then 𝑟𝑖(𝑡) = 𝑣𝑡 + 𝑟0,𝑖, where 𝑣 and 

𝑟0,𝑖 are constants. These free particle trajectories are independent of the particle masses, 

so they can be considered as properties of spacetime itself:  “that is, as geodesics 

associated with an appropriate affine structure” (Valentini 1997). Similarly, in general 

relativity, a body subject only to gravitational forces is free, and since the trajectories are 

independent of the mass and the composition of the body, they are regarded as 

geodesic in curved spacetime.  

Valentini then argues that the first order character of the pilot-wave theory selects a 

kinematic which one could label Aristotelian, as it generates velocities, and which is 

incompatible with physical Galilean invariance. He claims that in the pilot-wave theory 

a body is free if the guidance law 𝑚𝑖
𝑑𝑟𝑖

𝑑𝑡
= ∇𝑖𝑆, which now constrains velocities, becomes 

𝑚𝑖
𝑑𝑟𝑖

𝑑𝑡
= 0. That is, when there are no ‘Aristotelian forces’  𝑓𝑖 = ∇𝑖𝑆. This means that the 

natural motion is 𝑟𝑖(𝑡) = 𝑟0,𝑖. Since this motion does not depend on any feature of the 

body involved, Valentini thinks it should be attributed to spacetime itself. Thus, the 

natural spacetime for the pilot-wave theory is Aristotelian, in which there is a standard 

of absolute rest, and Galilean symmetry does not hold.  

 

 
23 See also Brown et al. (1996). 
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6.2 The Wavefunction Transforms Exponentially so the Theory is Mathematically 

Galilean Invariant  

Valentini also notices that even if the equations of motion are Galilean invariant (in the 

dynamical sense noted above: they ‘transform solutions into solutions’), this 

mathematical symmetry has no physical significance. Mathematically, under 𝐺, a 

Galilean boost, we have 𝑥′
𝑖 = 𝑥𝑖 − 𝑣𝑡, and  𝜓′ = 𝑒

𝑖

ℏ
∑ 𝑚𝑗𝑣∙𝑥𝑗𝑗 𝜓. This leads to Galilei 

invariant laws where 𝑆′ = 𝑆 − ∑ 𝑚𝑖𝑣 ∙ 𝑥𝑖𝑖 , so that ∇′𝑖𝑆
′ = ∇𝑖𝑆 − 𝑚𝑖𝑣. However, Valentini 

notices, the term 𝑚𝑖𝑣 does not represent a physical, ‘Aristotelian’, force, or casual agent, 

responsible for the particles motion. Rather, it is a fictitious ‘force’ which is introduced 

in the boosted (i.e. non-inertial, according to the pilot-wave dynamics) frame only to be 

able to use the guidance equation in the same form as in the rest frame. Valentini 

maintains that this is analogous for apparent forces in classical mechanics. A non-

inertial frame (in the classical case, an accelerated frame) will not obey the second law 

unless one adds some fictitious forces, such as for instance the Coriolis force and the 

centrifugal force in the case of a rotating frame. These forces do not originate in any 

physical body, and thus, are to be taken to be part of the geometry of spacetime. 

Similarly in the pilot-wave theory, the ‘forces’ appearing in a non-inertial (in this case, a 

boosted) frame are to be attributed to the spacetime geometry. Thus, the supposed 

Galilean invariance of the pilot-wave theory is, in Valentini’s view, a first-order 

analogue of the above fictitious invariance of second-order classical mechanics. Just as 

the true, physical invariance group of classical mechanics leaves acceleration and 

(Newtonian) force invariant, so the true, physical invariance group of pilot-wave 

dynamics leaves velocity and (Aristotelian) ‘force’ invariant. In the pilot-wave theory, a 

Galilean transformation does not respect the true geometry of spacetime even if leaves 

the dynamics invariant. This is what Valentini means, I take it, when he says that 

Galilean symmetry is unphysical.  

7. The Puzzle 

As anticipated in the introduction, Valentini’s result that the pilot-wave is Aristotelian 

has been attributed to him endorsing wavefunction realism.24 Indeed, his conclusion 

seems the same as Albert’s: the theory is not (physically) Galilei invariant. However, I 

think that the similarity is only superficial. In fact, wavefunction realists such as Albert 

will not concede that the wavefunction transforms as to be multiplied by a suitable 

exponential factor. Rather, they flat out deny that Galilei invariance is even a 

mathematical symmetry. Instead, that is exactly what Valentini grants, even if he denies 

its physical significance. 

 
24 Belousek (2003), Solè (2013). 
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Moreover, by ‘mathematical symmetry’ Valentini means that one could artificially 

impose it to the theory, out of convenience, even if physically it means nothing. In 

doing that one introduces fictitious forces like in classical mechanics, to make it work 

even in non-inertial frames. If so, one may think of the wavefunction as transforming in 

strange ways, but also acknowledging that this is so because of convenience. However, 

this is not the standard brand of wavefunction realism, according to which the 

wavefunction is what it is, and transforms as its nature dictates, regardless of our 

convenience of description. Rather, this approach seems more compatible with a weak 

nomological approach: the wavefunction is to be understood not as a physical field, but 

as some sort of force, something that makes stuff move. This is, in my opinion, a better 

interpretation of Valentini’s position, also because he explicitly writes things like the 

following: “the pilot wave 𝜓 should be interpreted as a new causal agent, more abstract 

than forces or ordinary fields“ (Valentini 1997).  

In any case, even understanding Valentini in this weak nomological sense, it remains 

unclear, from considerations of ontology alone, why Valentini thinks Galilei invariance 

is only a mathematical, fictitious symmetry. Indeed, understanding Valentini this way 

exacerbates the problem of figuring out why he disagrees with DGZ. In fact, they do not 

disagree about the dynamical law, as they both think the pilot-wave theory is 

fundamentally of the first order, and they both agree that the material ontology is the 

one of particles. Still, they disagree about the Galilei invariance of the theory.  

How can they possibly disagree if symmetries are determined by the material ontology 

and its laws? Either it is not true that symmetries are determined by the ontology of 

matter and its dynamics alone, or there is a mistake somewhere. If there is something 

more to determine symmetries, what is it? If there is a mistake, what is it?  

I am going to argue in the next section, that the disagreement lies in the role and the 

importance of kinematics: contrary to DGZ, Valentini gives more importance to the 

kinematics than to the dynamics, and believes that the symmetries of the former should 

constrain the latter.    

8. Valentini’s ‘Kinematics First’ Approach 

Let me discuss Valentini’s argument in more detail. I think that the crux of the 

disagreement is what makes a symmetry having physical significance: for DGZ 

dynamical symmetries are all physical, while for Valentini a dynamical symmetry is 

physical only if it ‘respects’ the geometry of spacetime. For Valentini, ultimately, a 

dynamical symmetry which does not respect the spacetime geometry is unphysical. In 

other words, there is a sense in which, roughly put, for Valentini kinematics comes first, 

as it constrains the symmetries of the dynamics: given that in the pilot-wave theory the 
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particles have a natural kinematics in terms of Aristotelian forces, rather than 

Newtonian forces, then Galilean invariance is not a physical symmetry, he concludes. 

The algorithm discussed above to identify the symmetries of a theory, according to 

Valentini, determines the dynamical symmetries, but among them only the symmetries 

which are compatible with the theory’s kinematics are physical. This is what he means 

that kinematical and dynamical symmetries need to match.  

But why does he think that? I believe that this boils down to the idea that there are two 

ways the motion of a material body can be affected: it can be affected by the geometry 

of spacetime, and by the presence of other bodies. Imagine there is only one body in the 

universe: the way in which it moves solely depends on the features of spacetime: if it is 

flat, the body goes straight; if it is curved, it moves along the geodesics, the shortest 

lines between two points. This motion is what we refer to as free motion, or natural 

motion, because it is not due to the interaction with other material bodies, but it 

depends only on the features of spacetime itself. According to Valentini, the natural 

motion is captured by the kinematics: we recognize effects to be kinematical if they are 

the same for all bodies, namely they are independent of the features of a given body. If 

something affects all bodies equally, he wants to say that it is due to the geometry, 

rather than to the interaction with other bodies. Once we have determined the true 

kinematics of a theory, namely the geometry of spacetime suggested by the theory’s 

kinematics, then we have our symmetries. If the dynamics has additional symmetries, 

for Valentini they are merely mathematical: they are convenient to postulate to make 

the theory applicable to all frames, like classical mechanics in accelerated frames.  

Even if Valentini does not stress this, I think that this view is heavily influenced by 

Einstein’s equivalence principle between the gravitational mass and the inertial mass. 

From the fact that these two masses were the experimentally the same, Einstein inferred 

that they were actually the same, and since this implies that all bodies are affected by 

gravity in the same way, he came to believe that gravity was a feature of spacetime 

rather than an effect of the interaction between bodies. Valentini is going along these 

lines in the sense of considering everything affecting all bodies the same way as 

originating in spacetime. 

The bottom line is therefore that we need to first identify the kinematics, and then have 

the dynamics match whatever symmetries the kinematics suggests. This can be done as 

follows:   

1- From the dynamics to the natural motion. Extract the natural motion for the theory 

defined as the motion a body would have without any external influence. This is 

obtained by switching off all external influences on a body in the theory’s 

dynamics. An influence is called external if it is independent of the features of 

the body itself. In classical mechanics it means switching off all forces, so that the 
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natural motion is uniform motion. In the pilot-wave theory, for Valentini it 

means switching off the Aristotelian forces, so the natural motion is rest.  

2- From the natural motion to the natural kinematics. The natural kinematics is the one 

which puts constraints on the natural motion. For classical mechanics the 

kinematics is Galilean, as the law for the natural motion constrains the 

acceleration, so that there is no distinction between uniform motion and rest. In 

the case of the pilot-wave theory, it is Aristotelian, as the natural motion 

constraints the velocity. 

3- From the natural kinematics to the natural geometry. The natural kinematics 

determines the natural geometry of spacetime: if an influence is external to the 

body, it needs to be attributed to spacetime. In classical mechanics the spacetime 

is Galilean because Newton’s law does not require absolute velocity, given that it 

constrains the acceleration. In the pilot-wave theory the guidance equation 

constrains the velocity, so it does need absolute velocity.     

4- From the natural geometry to kinematical symmetries. This determines the 

kinematical symmetry properties of a theory: if the theory does not distinguish 

between two possible ways the world can be, then there is a symmetry associated 

with it. Classical mechanics does not distinguish between uniform motion and 

rest so there is a symmetry transforming them into one another. This symmetry 

corresponds to Galilean boosts. In the pilot-wave theory there is no such 

symmetry because the theory does distinguish between these two possible 

motions.  The natural invariance group is translations and rotations, without 

Galilean boosts, according to Valentini.  

5- From kinematical symmetries back to dynamical symmetries. The dynamical 

symmetries should match the natural kinematics. In the case of classical 

mechanics, kinematics and mechanics do match, and if we want them to match 

also in the pilot-wave theory, we should say that the theory is not dynamically 

Galilean invariant.  

9. Objections to Valentini’s Approach 

Somewhat inexplicably, this argument has not been discussed in the literature at all. 

Nonetheless, some objections were anticipated by Valentini in his paper, while others 

have been informally put forward by various people in discussion with me, as indicated 

in the text. Others instead come from my considerations and reflections. These 

objections range from attributing the lack of Galilei invariance of the pilot-wave theory 

to wavefunction realism, as already discussed, to questioning the validity of the 

Newtonian analogy, to other considerations about the role of kinematics and dynamics. 

I discuss the problems with the Newtonian analogy first, then I move to some other 

considerations concerning the relationship between kinematics and dynamics. In this 

regard, I wish to argue first that while Valentini’s argument that kinematics is 
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important may be persuasive, it still does not imply that the dynamics necessarily needs 

to match its symmetries.   

 

9.1 The Newtonian Analogy Fails 

One set of objections to Valentini’s argument, part of which Valentini already addresses 

in his paper, has to do with the Newtonian analogy. One could insist that the idea of 

natural motion does not make sense even in classical mechanics because we cannot 

actually turn off the forces. Additionally, one could argue that the pilot-wave analogy of 

free motion would not be the gradient of the phase being zero, as Valentini maintains, 

but rather the wavefunction being zero everywhere, and this is impossible (Tumulka, 

Maudlin, p.c.).  

Valentini (1992) replies by saying that even if it may not be possible to actually have 

such a state in practice that does not mean it is not possible to think about it in 

principle, and this is enough to make his point.  

 

Similarly, one may argue that the analogy with Newtonian mechanics does not hold 

because while physical forces always have their origin in bodies and decrease with 

distance, in the pilot-wave theory neither of these is true.  

Valentini (1992) replies that this is of no importance: each theory has its own natural 

kinematics, which can be determined by following the steps above, regardless of how 

appropriate the analogy is between the nature of the forces in the two theories: what is 

important is how we can find the free motion in both. 

 

I think that Valentini is correct in these replies. In my opinion, a little more 

problematical is Bricmont’s remark (p.c.) that the free motion in the pilot-wave theory is 

not what Valentini suggests. That is, the free motion is not obtained putting the 

gradient of the phase of the wavefunction to zero. Since free motion corresponds to no 

interaction between physical bodies, Bricmont says that the potential has to be zero 

instead. Nonetheless, he continues, it does not mean that the wavefunction is zero (or 

constant) as well. Indeed, absence of interaction could also be described by a 

wavefunction which is the product of the wavefunction for each particle. In this way, 

since the potential is zero, the free particle wavefunction is typically a plane wave 

𝜓(𝑥, 𝑡) = 𝐴𝑒𝑖ℏ(𝑘𝑥−𝜔𝑡), so that we have ∇𝑆 = ℏ𝑘, as one finds in physics textbooks. So, the 

free motion equation is 𝑚𝑣 = 𝑝, which is compatible with Galilean invariance, because 

𝑝 = ℏ𝑘 is constant. Also, one can show25 that a free Gaussian wave packet (i.e. a wave 

packet evolving according to an Hamiltonian with no potential) initially 𝜓(𝑥, 0) =

 
25 Holland (1993) chapter 4, Bricmont (2016) chapter 5. 
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, showing that the natural motion is not rest.  

Valentini replies (p.c.) that it is a classical prejudice to think that free motion amounts to 

have no potential: the relevant object one needs to look at when there is no interaction is 

the gradient of the phase, not the potential, as this is what appears in the guidance 

equation for the motion of the particles. It is just a mistake that people consider the 

motions described above as ‘free:’ the above-mentioned Gaussian ‘free’ particles are not 

free at all.   

 

9.2 Fictitious Forces are Not Part of the Geometry of Spacetime  

I believe Valentini’s approach is coherent, thereby successfully defeats the ‘Newtonian’ 

objections above. Regardless, I believe that there are other considerations to be made 

about Valentini’s understanding of the role of kinematics which I think will make his 

account less plausible. Let’s go back to Valentini’s claim that kinematics combines the 

effects of spacetime structure: any effect on a body’s motion that is independent of the 

body itself (namely an effect that affects each body in the same way) is to be thought as 

due to the geometry of spacetime. As anticipated, the motivation for entertaining this 

view presumably comes from general relativity, according to which the effects of the 

gravitational force being independent of the object allows gravity to be geometrized. 

This is the sense in which one can think of gravity as a fictitious force, and this is also 

the sense in which the most fitting comparison with the pilot-wave theory seems to be 

with general relativity rather than with classical mechanics. In fact, Valentini’s 

understanding of kinematics in this way has the counterintuitive consequence that 

fictitious forces in classical physics are part of spacetime structure, while this does not 

seem to be the way they are normally considered, in contrast with what happens in 

general relativity.  

Nonetheless, one may insist that what Valentini means here is simply that these forces 

point at the existence of a preferred frame, and this is similarly the case for the pilot-

wave theory, where the fictitious forces pop up in non-inertial (i.e. boosted) frames. 

Whether that counts as ‘geometrizing’ the forces is unclear, as we will discuss later. 

9.3 We Do Not Feel the Fictitious Forces in the Pilot-Wave Theory 

Let’s assume now that this is the right way to think about fictitious forces. Then one has 

the problem that, while fictitious forces in classical mechanics and general relativity are 
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felt in the appropriate frames (accelerated ones), this is not true for the pilot-wave 

theory (for uniformly moving frames): we do not feel any (Aristotelian) force when 

moving in a uniform motion. Indeed, in classical mechanics we can tell we are in an 

accelerated frame because we experience forces which we identify as fictitious because 

they have no origin in other physical bodies. Also in general relativity, we realize that 

we are in a curved spacetime because we experience gravity, and we categorize it as 

fictitious because it is the same for all bodies. If Valentini were correct, in the pilot-wave 

theory we should experience similar fictitious forces in boosted frames. The problem. I 

think, is that we do not feel anything of the sort.  

Valentini recognizes this, and disputes that in classical mechanics we can reliably 

identify the forces in the accelerated frame as fictitious. He argues that we can identify 

these forces as fictitious only because we assume they are not generated by other 

bodies, while they could well be: “They might be generated, for instance, by 

acceleration with respect to distant matter” (Valentini 1997).  He could say something 

similar for gravity: we cannot prove it is a fictitious force, namely we cannot prove that 

spacetime is curved, as we could be in an accelerated frame.  

Again, I am not sure this is a convincing reply: if Valentini wishes to insist that fictitious 

forces in classical mechanics might not be fictitious after all, then there is no reason to 

conclude that the transformation to accelerate frames in which the fictitious forces come 

out is unphysical, and conversely there is no reason to conclude that Galilean invariance 

in the pilot-wave theory is unphysical as well.   

 

9.4 The Dynamics Does Not Have to Match the Kinematics 

Even granting Valentini that the fact that we do not detect the fictitious forces in the 

uniformly moving frame in the pilot-wave theory is not a problem, I still think that his 

position fails to convince that the kinematics should constrain the dynamics. I think that 

Valentini’s view about the importance of kinematics and its connection with the 

dynamics is very plausible in the sense that the free motion is what reveals to us the 

geometry of spacetime: the body will freely move as it does in virtue of the properties of 

spacetime, as there is nothing else to constrain it. Once we know what the arena of the 

physical phenomena looks like, then we can put physical objects into it, and have them 

interact with one another via the dynamical law.  

However, this at most shows that kinematics is informative, without showing that it 

necessarily has to have the final word about symmetries. In fact, there seems to be at 

least one good reason to think that the dynamics should be prioritized over the 

kinematics, as opposed to the other way around as Valentini proposes: the kinematics of a 

theory is a special case of the dynamics of that theory. The theory’s kinematics, by Valentini’s 
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own admission, is obtained by switching off the forces in the dynamics, so we start off 

with the dynamics in his approach as well. By insisting that the kinematics constrains 

the dynamics, Valentini is looking at the features of a special case to infer the properties 

of a more general case. It seems to me that, in virtues of its generality, whatever the 

dynamics tells you is a physical symmetry, then it should be a symmetry also for the 

kinematics. If instead we insist on the contrary, we end up in a situation in which the 

symmetries of the special case are attributed to the more general case, and this does not 

seem to be sensible. It seems like inferring that the graph of a generic cubic function 

𝑓(𝑥) = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 is symmetric with respect to a line parallel to the 𝑦-axis 

because that is what we find when looking at a parabola, which is the special case in 

which 𝑎 = 0.  Or, more mundanely, like inferring that all American boys wear a blue 

uniform when they go to school by looking solely at the children going at the school 

behind my house. Therefore, since Galilei invariance is a symmetry for the pilot-wave 

dynamics (in the sense that ‘solutions are transformed into solutions’), then it also has 

to be a symmetry for the kinematics, namely for spacetime, even if the kinematics does 

not ‘see’ this symmetry.  

If that is the case, we cannot really know what the true geometry is simply by looking at 

a body’s free motion. While it may be true that switching off the interaction in the 

dynamical law will tell us what the free motion is, it seems to be unreasonable to read 

too much from it about the properties of the ‘true’ geometry of spacetime: the free 

motion might identify some of the effects which are independent of the presence of other 

bodies, and which thus could be attributed to spacetime. However, there is no 

guarantee it will identify all of them, as the presence of other bodies could modify the 

symmetry properties of spacetime itself, or the geometry of spacetime itself, as general 

relativity teaches us. Indeed, in general relativity in absence of any other material object 

a body moves along straight lines. If Valentini’s argument were correct, then it seems 

that we should conclude that the natural geometry of spacetime is flat. However, when 

we put other bodies in the world, so to speak, they change the geometry of spacetime, 

and also its dynamics. So, we cannot gain much information on the geometry of 

spacetime by looking at the free motion alone. 

9.5 The Kinematic Does Not Affect the Dynamics 

Indeed, the disanalogy with general relativity continues in the following sense. In 

general relativity gravity is a fictitious force in the sense that its effect is accounted for 

by the curved spacetime structure. In the pilot-wave theory instead the forces which 

appear according to Valentini in the uniformly moving frames are fictitious in the sense 

that they pick up a preferred frame. One can think of the free trajectories as the 
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equivalent of the geodesics, and they do not change in time. Instead, in general 

relativity the fictitious force (gravity) changes the geodesic by curving spacetime, so the 

kinematics changes in time. In this way the kinematics is relevant for the dynamics: if 

the geometry of spacetime changes, the dynamics changes as well. Instead, this is not 

the case for the pilot-wave theory: having a preferred frame or not does not change the 

body’s motion. In other words, whether the uniformly moving frame is preferred or not 

does not change the dynamics, while in general relativity the motion changes 

depending on whether or not spacetime is curved. That is, while in general relativity 

the natural kinematics, as Valentini would put it, influences the dynamical symmetries, 

this is not the case for the pilot-wave theory, where the kinematical symmetries are 

entirely irrelevant for the dynamics.  

In classical mechanics the situation is similar to the pilot-wave theory: the kinematics 

does not affect the dynamics, because the geometry of spacetime is fixed. However, 

since there is no mismatch between kinematics and dynamics (they are both Galilean 

invariant), we do not have a problem to start with.  

9.6 A Step Further Away from Relativity 

As a final remark, let me notice the following, which is not an argument against 

Valentini’s view, but rather only an unwelcomed consequence, in my opinion. Assume 

that Valentini is correct that the theory is not Galilei invariant. Valentini takes this to be 

an advantage: since the theory is not Galilei invariant, it does not make sense to look for 

Lorentz invariant extensions of the pilot-wave theory, so it is no surprise one cannot 

find any. 

I find this problematical for a variety of reasons. First, it is not true that there are no 

Lorentz invariant extensions of the theory: several such proposals have been put 

forward.26 In addition, it may well be that case that even if a theory is not Galilei 

invariant, it would be Lorentz invariant: after all, Galilean symmetry is false, as we 

know that relativity is true, so it is unclear why we should expect Galilean invariance to 

hold. 

Regardless, it seems to me that going from Galilean spacetime back to Aristotelian 

spacetime, as Valentini is proposing, is exactly the opposite of what Einstein would 

have liked to have obtained with his principle of relativity. In fact, I take it, the principle 

of relativity embodies the belief that the form of the physical laws should be as 

independent as possible form the reference frame in which we describe them, so that 

 
26 Even if it is controversial that they are truly relativistic invariant. In any case, see Dürr et al. (2014) and 

references therein.  
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they are as independent as possible from our description of them. In classical mechanics 

all inertial (non-accelerated) frames are equivalent, as reflected in Galilean relativity, 

while non-inertial frames can be identified by the presence of fictitious forces. As it is 

known, Einstein wanted a theory in which all inertial frames are equivalent (like the 

principle of Galilean relativity) but he also wanted to reconcile this with classical 

electrodynamics, so in special relativity he introduced the Lorentz transformations for 

the velocity, instead of the Galilean ones. General relativity expanded the principle of 

relativity to non-inertial frames by asserting that gravity is embodied in the distortion 

of spacetime.  

Now, with respect of the relativity principle, which amounts of making the description 

of the phenomena as independent from our point of view as possible, general relativity 

was a step closer than classical mechanics toward that goal: in classical mechanics non-

accelerated frames are privileged while in general relativity they are not.  Instead, 

Aristotelian spacetime is a step backwards: it distinguishes between uniform motion 

and rest, while classical mechanics does not. In other words, with general relativity we 

go towards a more frame-independent description than classical mechanics, while if the 

pilot-wave theory is Aristotelian in the sense of Valentini then we go towards a more 

frame-dependent description.  So, if one believes the principle of relativity to be correct 

then this result seems undesirable.  

10. Conclusions 

In this paper I have tried to make sense of the various conflicting positions concerning 

the Galilei invariance of the pilot-wave theory. I have attributed the claims of those who 

think the theory is not Galilei invariant to their commitment to wavefunction realism, as 

opposed to those endorsing the nomological view who take the theory to be invariant. 

Then, I have focused on Valentini’s claim that the theory has an Aristotelian geometry 

which constrains the dynamics of the theory.  

I have argued that this is independent on his view about the status of the wavefunction, 

as I have shown that his argument would go through even for someone endorsing the 

nomological view. I have then discussed how the free motion that Valentini attributes to 

the pilot-wave theory is questionable. Moreover, I argued that kinematics should not 

impose its symmetries on the dynamics because kinematics is a special case of the 

dynamics. Even if Valentini’s proposal is inspired by general relativity, the comparison 

with this theory leads to disanalogies that suggest that at best kinematical symmetries 

might constrain the dynamics when they influence it, and this is not the case for the 

pilot-wave theory. Because of these reasons, while I found Valentini’s argument to be 
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very persuasive in certain respects, I ultimately do not find it convincing that the pilot-

wave theory is not Galilei invariant. 
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