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Abstract 

 
This paper aims to investigate the so-called paradox of deterministic probabilities: in a deterministic 

world, all probabilities should be subjective; however, they also seem to play important explanatory 

and predictive roles which suggest they are objective. The problem is then to understand what these 

deterministic probabilities are. Recent proposed solutions of this paradox are the Mentaculus vision, 

the range account of probability, and a version of frequentism based on typicality. All these 

approaches aim at defining deterministic objective probabilities as to make them compatible with 

determinism. In this paper I argue that one can think of the equivalent of subjective and objective 

deterministic probabilities in terms of typicality. Also, I show that only what I identify with objective 

probabilities play the necessary explanatory and predictive roles, while the subjective components 

essentially guide beliefs. In this way, the paradox is solved. 

 

Keywords: typicality, probability, determinism, Mentaculus vision, range account, 

Statistical Mechanics 

1. Setting up the Paradox: Probability and Determinism 

Assume that classical mechanics is the true theory of the world. It has been argued that 

statistical mechanics, namely classical mechanics applied to certain systems composed 

by a vast number of Newtonian particles, is able to explain macroscopic laws, such as 

the laws of thermodynamics. Since classical mechanics is deterministic, the future 

behavior of any physical system is fixed given the initial conditions and the laws. So, a 

Laplacian demon could exactly calculate everything that happens, at any level of 

description. There is no room for uncertainty of outcomes or probability that a state of 

affairs will realize other than zero and one: either something certainly happens, or it 

never happens. Nonetheless, as I summarize in the next section, in statistical mechanics 

we routinely use probability talk when we describe macroscopic objects: if an ice cube is 

taken out of the refrigerator, we talk about its probability of melting within two 

minutes; if a gas in a container is allowed to expand freely, we talk about the probability 

of the gas spreading in the whole room. These are probabilities arising in a 

deterministic framework, so let’s call them deterministic probabilities. 

But what are these deterministic probabilities? On the one hand, if the world is 

deterministic, the straightforward way of interpreting such probabilities seeems to 
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think of them as subjective rather than objective: they are a measure of our ignorance of 

initial conditions, or of our limited capabilities in solving the necessary equations. We 

are not a Laplacian demon, so we cannot exactly compute what will happen to a 

macroscopic physical system such as an ice cube or a gas: we do not possess all the 

information and, even if we did, we could not exactly compute the particles’ motion. It 

seems that it is because of this ignorance that we use probability talk.1 

Nonetheless, deterministic probabilities seem to have important roles which 

would be inexplicable, if they were subjective. That is, deterministic probabilities need 

to be objective. In fact, probabilities seem explanatory: the fact that the probability that 

an ice cube melting in the next 5 minutes is high explains why the ice cube is gone in an 

hour. Or the fact that the probability that the gas expanding freely is high explains why 

the gas will eventually occupy the whole room. Or the fact that the probability of 

getting a tail tossing a fair coin is ½ explains why if we toss a fair coin one hundred 

times, we roughly get 50 tails and 50 heads.  In addition, probabilities guide belief. For 

example, consider Bayesian inference. As evidence accumulates, the degree of belief in a 

given hypothesis becomes very high or very low. Bayesian inference calculates a 

numerical estimate of the degree of belief in the hypothesis after evidence has been 

observed. So following Bayesian inference yields knowledge of rational belief 

concerning probabilities. 

From these considerations, namely the observations that deterministic 

probabilities seem subjective when looking at the underlying deterministic dynamics, 

but need to be objective when looking at their role in our scientific discourse and 

practice, arises the so-called paradox of deterministic probabilities (Loewer 2001): How can 

we account for the objective roles of deterministic probabilities in laws, explanations and 

predictions, if they are subjective? 

After summarizing in the next section how deterministic probabilities come about 

within a prototypical deterministic theory such as statistical mechanics, in Section 3 I 

discuss how David Albert and Barry Loewer use what their Mentaculus vision, in the 

framework of the Humean account of laws, to solve this paradox. They argue that 

deterministic probabilities are actually objective, even if they seem subjective. Instead in 

this paper I argue for a solution of the paradox in terms of the notion of typicality. In 

Section 4 I discuss the idea of explanation based on typicality, and then I show in 

Section 5 how deterministic probabilities can be understood in this framework. My 

approach is similar to typicality frequentism, according to which deterministic 

probabilities are objective across-world typical frequencies. (Hubert 2021). However, in 

 
1 For instance, Popper (1985) famously rejected the idea that objective probabilities are 

compatible with determinism.  
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contrast with this view, I argue that one could define what we think of as objective 

deterministic probabilities as typical single-world relative frequencies, and I show that 

they can play the relevant explanatory and predictive roles. In addition, one could use 

typicality to make sense of what we think of subjective deterministic probabilities. 

These are ignorance probabilities which guide our credences and define single event 

probabilities. Similarly to the range account of probabilities, according to which 

probabilities are ranges of values in a space of possible states, in my approach what we 

regard as subjective deterministic probabilities describing our ignorance are defined in 

terms of volume in phase space, and therefore are across worlds. They are not objective 

features of the world, and so they are neither explanatory nor predictive of any physical 

fact. I conclude in Section 6 explaining how the paradox is solved. The paradox arises 

from the assumption that there is only one type of probability which plays two 

incompatible roles: it is both subjective (because of determinism) and objective (because 

of its explanatory, predictive and nomological roles). Instead my view can account for 

both of these features: typical single world frequencies play the role of objective 

deterministic probabilities in that they are explanatory and predictive; instead typical 

across-worlds phase space volume ratios capture the essence of subjective deterministic 

probabilities, expressing our ignorance on the details of the situation and guiding our 

beliefs and expectations. 

2. Prototypical Deterministic Probabilities: Statistical Mechanics 

Where does probability talk enter in a deterministic theory such as Newtonian 

mechanics? In most cases, in classical mechanics one explains a phenomenon by solving 

the Newton equation, either exactly or using some suitable approximation. This is 

compatible with Hempel’s deductive-nomological model (1965): a phenomenon is 

explained if it can be deduced from a law of nature. Think for instance of the derivation 

of the acceleration of bodies on the Moon with this simple formula: 𝑎 =
𝐺𝑀

𝑅2 , where 𝐺 is 

the gravitational constant, and 𝑀 and 𝑅 are respectively the mass and the radius of the 

Moon. Think also to rigid body mechanics, where Newton’s law holds for extended 

solid bodies when applied to the center of mass and when substituting, in the case of 

rotations, the moment of inertia instead of the mass. One can also derive from the 

Newtonian dynamics less fundamental laws, like for instance Kepler’s laws of planetary 

motion, using suitable approximations. Things instead get more complicated when one 

deals with non-rigid bodies, such as fluids and gases. In the case of gases, macroscopic 

phenomena are described by the laws of thermodynamics, in particular the second law 

according to which a quantity called entropy never decreases.  Statistical mechanics 

uses statistical methods because of the large number of the objects (the particles in the 

gas) involved in the calculations, and provides a framework to account for the laws of 
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thermodynamics in terms of the microscopic Newtonian dynamics.2  Since the 

instantaneous description of a particle is given by its instantaneous position and 

velocity, the complete dynamical description of a macroscopic body at a fixed time is 

the microstate 𝑋, given by all the instantaneous positions and velocities of the 𝑁 particles 

composing the macroscopic body. The set of all the microstates constitutes phase space, 

𝛺. Any macroscopic description is determined by the microscopic one, but not vice 

versa: there are many microstates corresponding to the same macroscopic description, 

the macrostate . Microstates that belong to the same macrostate are all macroscopically 

similar: any microstate has the same values of the macroscopic (i.e. thermodynamic) 

variables, such as, e.g., pressure or temperature. Macrostates provide a partition of 

phase space into disjoint regions. Among all macrostates, the equilibrium state 𝑒𝑞 is such 

that a system in that state will not change: a gas completely spread out in a room will 

not change temperature, volume or pressure spontaneously. In contrast, a system not in 

equilibrium will tend to reach the equilibrium state: a gas concentrated in a corner of a 

room will tend to spread out.  This is because the equilibrium microstate happens to be 

incredibly larger than any other macrostate,3 so that the vast majority of microstates in a 

given microstate will eventually ‘fall into’ the equilibrium state, and once there it will 

stay there (figure 1).  

Figure 1: The expected behavior: most microstates will fall into the equilibrium microstate. 

 
2 See Albert (2000) for a clear exposition. See also see e.g. Bricmont (1995). Penrose (1999). Goldstein 

(2001) and references therein. 
3 To give an idea of how large the equilibrium state is, consider a gas in a corner of a box divided in two 

regions of volume 𝑉. When the separation wall is removed, the gas expands to reach its new equilibrium 

state where it occupies the whole volume 2𝑉. The phase space volume increases of the same amount for 

any particle of the gas; therefore there is a transition from a region of volume 𝑉𝑁 in phase space to a 

region of volume 2𝑁𝑉𝑁   and 
𝑉𝑒𝑞

𝑉𝑖𝑛𝑖𝑡𝑖𝑎𝑙
⁄ = 2𝑁~21023

~ 101023
. 
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This is the expected behavior of the microstate. Only very few microstates will not enter 

the equilibrium state or will get out of it fairly quickly. They constitute an unexpected 

or exceptional, behavior. The fact that most microstates evolve towards equilibrium 

explains the second law of thermodynamics. In fact, Boltzmann’s entropy is defined as a 

measure of the volume of the phase space occupied by the macrostate to which a given 

microstate belongs to. Therefore, most microstates move from a macrostate of a smaller 

volume to one of a bigger volume, entropy will accordingly increase. 

It sems natural at this point to say that it is likely or probable that entropy will not 

decrease, and this is indeed the way in which probability talk enters the framework of a 

deterministic theory. This is technically done by introducing a probability distribution 

over the initial microstate of the universe, sometimes called the Statistical Postulate. 

However, because of the time reversal symmetry of the Newtonian law, if it’s likely for 

entropy to increase toward the future, it is also likely for it to increase toward the past, 

and the latter is not what happens. A popular way of breaking the symmetry is the so-

called Past Hypothesis, namely the assumption that the universe begun in an microstate 

whose entropy was incredibly small.4 In this way, Albert (2000, 2015) and Loewer (2001, 

2004, 2012, 2020) have proposed the so-called Mentaculus vision, according to which only 

three ingredients are needed to explain the macroscopic phenomena and their laws: 1) 

the Newtonian dynamics; 2) the Past Hypothesis; and 3) the Statistical Postulate. 

3. The Mentaculus Vision: Deterministic Chances 

But what exactly are the statistical mechanical probabilities? This is an instance of the 

paradox of deterministic probabilities presented in Section 1. In a deterministic theory 

there seems to be no room of the objective probability needed to account for their roles 

in in the theory. As Loewer (2001) puts it: 

1. these probabilities are explanatory: “So, for example, that it is a law that the 

half-life of some substance is one second explains why the substance is almost all gone 

by the end of an hour” [ibid.]; 

2. they should satisfy the probability axioms; 

3. they should guide beliefs, and they should apply to both types of events and to 

particular events: “For example, statistical mechanics provides the chance that ice cubes 

(of a certain size and temperature) placed in a bowl of water (of a certain size and 

temperature) melt within 5 minutes and the chance that this ice cube now placed in this 

bowl of water will melt within 5 minutes” [ibid.]; 

4. they may change in time; 

 
4 The names ‘Statistical Postulate’ and ‘Past Hypothesis’ are due to Albert (2000).  
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5. it should make sense to have a probability distribution over the initial 

conditions of the universe; and 

6. it has to be possible for chances different from 0 and 1 to appear in 

deterministic theories. 

 

Loewer argues that epistemic accounts of probability fail capture these features, as well 

as other approaches to objective probabilities such as propensities and frequentist 

interpretation. Instead he proposes that the Mentaculus vision can solve this paradox. 

The idea is that laws are contingent generalizations implied by the theory that best 

combine simplicity and informativeness; and probabilities come into the picture by 

allowing some of the axioms of the system to specify probabilities. That is, the 

contingent generalizations are the laws and the probabilistic statements are the 

probabilities. In the framework of statistical mechanics adding a probability distribution 

to the initial conditions to the laws increases informativeness with little cost in 

simplicity. As such, it earns its status as a law. The probability measure on initial state 

of the whole universe is a probability distribution in that if a proposition with high 

probability matches the actual facts, it has a better fit than a proposition with low 

probability. This distribution assigns probabilities to everything, including single 

events. Moreover, an agent needs to constrain her belief according to these probabilities 

according to another axiom, the Principal Principle, which roughly states that an agent 

ought to adjust her credence according to the probability of the proposition given by the 

best system. This is a way in which one can define objectively deterministic 

probabilities, and therefore solve the paradox.5 

I argue instead for a solution of the paradox which does not reduce all probability 

talk in a deterministic framework to talk about suitable objective probabilities. Rather, I 

argue that the notion of typicality can make sense of both types of deterministic 

probability talk. I explain what typicality is in the next section, and I connect it to 

deterministic probabilities in Section 5. 

4. Explanation based on Typicality: ‘Expect Typical Events’ 

There is another influential reading of the statistical mechanical explanation of the 

macroscopic laws which does not rely on the notion of probability but rather uses the 

weaker notion of typicality.6 According to the proponents of the typicality approach, to 

say that most microstates belonging to the same microstate behave thermodynamically 

(i.e., they are entropy-increasing) is to say that the typical microstate in that microstate 

is entropy-increasing. In turn, that means that the extension of the typical set, namely 

 
5 For a closely related but distinct Humean account, see Hoefer (2007, 2011, 2019).  
6 See, e.g., Lebowitz (1981, 1993a, 1993b, 1999), Goldstein (2001). 
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the set of entropy-increasing microstates, is very big or, alternatively, the set of 

exceptions 𝐸 to the typical behavior is very small. This idea can be mathematically 

implemented introducing a typicality measure μ which allows measuring the size of the 

sets in phase space. The proposed typicality measure is the Lebesgue-Liouville measure, 

the uniform measure, which is the same as the probability measure used in the 

Mentaculus vision. This measure is such that the set of exceptions is really small: 

(putting 𝜇 (𝛺),  the measure of the whole phase space, as equal to 1)  𝜇(𝐸) << 1. More 

precisely, the measure of the set of exceptions (with any tolerance 𝜀)  gets smaller and 

smaller as 𝑁, the number of particles, gets bigger and bigger. Consider for example a 

series of tossing of a fair coin. Write 1 for heads, 0 otherwise. A possible sequence of 

eleven flips is given by 𝑋 = (1,1,1,0,1,0,0,1,0,0,1). The corresponding phase space 𝛺 in 

this context is the space of all possible combinations of 0s and 1s in 𝑁 places, if 𝑁 is the 

number of tosses in a sequence. In this example 𝑁 = 11 and the possible sequences are 

2𝑁 = 1024, i.e. 𝛺 has 1024 elements. The frequency 𝑛(𝑋) of 1s in a sequence 𝑋 is given 

by counting the times 1 comes up in 𝑋: 𝑛(𝑋) =
1

𝑁
∑ 𝑁𝑖

𝑁
𝑖=1  where 𝑁𝑖 is 1 when the i-th 

place of 𝑋 is 1, and 0 otherwise. Here 𝑛(𝑋) = 6/11. The more the number 𝑁 of flips in a 

sequence grows, the more the number of sequences that do not have a frequency of 1s 

that is equal (or very close) to ½  decreases.  

 
Figure 2: As 𝑵 increases, the set of exceptions (atypical sequences) gets smaller and smaller. 

 

Call ‘expected behavior' having a frequency equal (or close) to ½, and call E the set of 

those ‘exceptions’ to it. This example with 𝑁 = 11 is not really good to see this since 𝑁 is 

too small, but it is possible to actually count the expected and exceptional sequences. 

An ‘exceptional’ sequence is for instance 𝑋 = (1,0,0,0,0,0,0,0,0,0,0), while an `expected’ 
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sequence is 𝑋 = (1,1,1,0,1,0,0,1,0,0,1). In detail, in this case,7 defining 𝐸 with a tolerance 

𝜀 = 1/22 such that 𝐸 = {𝑋 ∈ 𝛺: 𝑛(𝑋)  ∈  (5/11, 6/11)}, we have that, while all the 

possible sequences are 1024, those in 𝐸 (the exceptions) are 100. Therefore, 𝜇(𝐸) =

100/1024 = 0.0976 that is sufficiently less than 1 to get the idea. In general, for large 𝑁, 

we have 𝜇(𝐸) << 1. That is, the number of sequences such that 𝑛(𝑋) is not ½  (and not a 

number close to ½) are few (figure 2). 

In the language of thermodynamics, take 𝑋 as the microstate, 𝛺 as the phase space and 

μ as typicality measure. The frequency 𝑛 is analog to the thermodynamic variables and 

defines the macrostate: any microstate with the same amount of 1s, regardless the 

ordering, belongs to the same macrostate. The typical behavior in this case is the 

entropy-increasing behavior. 

As we have seen, thus, in the typicality approach in statistical mechanics the 

typicality measure is used to count the number of states and it is such that the set of 

exceptions to the entropy-increasing, expected, behavior is really small. More precisely, 

if we want to explain why a macroscopic system remains in equilibrium, with 𝜇(𝐸) ≪ 1 

we mean that the measure of the exceptions (namely the extension of the set of 

microstates whose temporal evolution brings the system out of the equilibrium state) is 

very small with respect of the measure of the equilibrium state: 𝜇𝛤𝑒𝑞
(𝐸) =

𝜇(𝐸)

𝜇(𝛤𝑒𝑞)
≪ 1. 

Instead, when the system is not in equilibrium but it belongs to a macrostate , and we 

want to explain why it will eventually reach equilibrium, then with 𝜇(𝐸) ≪ 1 we mean 

that the measure of the exceptions (namely the extension of microstates whose temporal 

evolution brings the system in the equilibrium state) is very small with respect to the 

measure of t : 𝜇𝛤(𝐸) = 𝜇(𝐸)/𝜇(𝛤)<<1. Once we know 𝜇, in order to take into account 

the facts of our world, we build 𝜇Γ, conditionalizing 𝜇 on the realization on events  

that have happened in our world. 

A side note: why the Lebesgue-Liouville measure and not another measure? A 

complete discussion is outside of the scope of this paper, but let me say that some 

proponents of the typicality approach argue that the choice is due to the stationarity of 

the measure, as in this way there is no privileged initial time.8 

A remark on explanation based on typicality. As we have seen earlier, in a 

deterministic framework, one could maintain that, similarly to what advocated by 

Hempel’s deductive-nomological model, a phenomenon is explained if it results as an 

exact or approximate solution of the relevant equation. To extend this idea to statistical 

mechanics, one would have to show that all solutions of the microscopic equations lead 

to an increasing entropy. However, we have seen, this does not happen, as there are 

 
7 Remember in fact that the number of sequences containing 𝑁 elements with 𝑘 times 2 symbols (that is, the 

number of sequences of 𝑁 elements that have frequency of 1s equal to 𝑘/𝑁) is given by 𝑔(𝑘, 𝑁) = 𝑁(𝑁 −

1). . . (𝑁 − 𝑘 + 1)/𝑘!. 
8 See Goldstein (2001). Others instead wish to justify it on Bayesian terms (Bricmont 2001, 2020). 
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always entropy-decreasing microstates. Nonetheless, and this is what typicality does, 

one can show that these microstates are very few, and that most microstates are 

entropy-increasing. In other words, it seems satisfactory to say that we have explained a 

phenomenon if we have shown that it holds for typical initial conditions, since we 

cannot do it for all of them. As Bricmont (2001, 2020) has pointed out, if something is 

typical, no further explanation seems to be required because we can expect this 

phenomenon to happen. For instance, the fact that a gas expands freely is not 

surprising: this is what we expect to happen, given what we have discussed so far. It 

would be surprising if it did not expand.9 A less satisfactory explanation would be, on 

the contrary, one which is true only for very special initial conditions. In fact, one can 

always find an initial condition that will account for a phenomenon (“a gas completely 

distributed in a room which goes back into a corner of the room”), but this is not what 

one would expect.10 

Also notice that in typicality explanations, details do not matter. Having proven 

that gases typically expand is enough: we do not need to show that gases expand with a 

98% probability. To explain the second law of thermodynamics, we needed to show that 

most microstates behave suitably, without specifying exactly how many. We do not 

need to show that “entropy will increase with 0.98 probability;” rather it is enough to 

show that “entropy will typically increase.”11 

5. Typicality Talk and Probability Talk 

In the previous sections I have shown how typicality has been introduced in a 

deterministic theory such as statistical mechanics. It is a measure on phase space that 

allows to suitably count the microstates in a macrostate, and in particular it is a measure 

that can be placed on initial conditions.  In this section I wish to discuss how typicality 

can help understating deterministic probability talk.  First, I argue that the probabilities 

which play a role in predictions and explanation, which therefore can be dubbed 

‘objective,’ can be understood in terms of typicality as single world typical frequencies 

(Section 5.1). They guide belief in the sense that we are justified in expecting what is 

typical. Moreover, the probability talk dealing with ignorance, namely the ‘subjective’ 

 
9 This is connected to Hempel’s notion of expectability (Hempel 1964). This is unsurprising, as the 

explanation based on typicality seems to be an extension of the deductive-nomological model (see also 

Wilhelm 2019, Allori 2020).  Moreover, this idea is compatible with Cournot’s principle: if an event has a 

very low probability, “then one can be practically certain that the event will not occur” (Kolmogorov 

1933). 
10 For more on typicality and explanation, see Lazarovici and Reichert (2015), Wilhelm (2019), Crane and 

Wilhelm (2020), Allori (2020). 
11 For more on the relation between typicality and probability, see Volchan (2007), Goldstein (2011), 

Pitowsky (2012), Hemmo and Shenker (2012), Lazarovici and Reichert (2015), Wilhelm (2019), Allori 

(2020), Maudlin (2007, 2020), Hubert (2021). 
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or epistemic component of deterministic probabilities, are understood as being about 

what happens in different worlds compatible with the actual macrostate and can be 

used to make sense of single event probabilities. 

5.1 Objective Probabilities: Predictions, Explanations, and Relative 

Frequencies 

In this section I argue that the typicality measure can be used to define single world 

typical relative frequencies which capture the essence of what we have called ‘objective 

deterministic probabilities’ by playing the necessary explanatory and predictive roles. 

They are also prescriptive, in the sense that they are a guide to belief as they explain 

why we are confident that typical things will happen. 

In the philosophical literature, objective probabilities are often connected with 

empirical distributions, as proposed by frequentist (actual or hypothetical) accounts 

according to which probabilities are fundamentally (actual or hypothetical) relative 

frequencies. These approaches have been criticized so much12 that frequentism can be 

barely regarded as a living view. However, a new version of frequentism has been 

recently proposed according to which probabilities are long term typical frequencies.13 

This account shares some features with the so-called range account, which identifies 

probabilities with ranges of values in a suitable space of possible states.14 Both the range 

account and typicality frequentism develop the idea that the probability of an event is 

the set of initial conditions leading to the event over the total initial conditions (von 

Kries 1886). However, while von Kries’ account is epistemic (depending on the agent 

knowledge, the relevant sets may change), the range account uses the work of Poincare 

(1912) and & Hopf (1934) on the method of arbitrary functions to define probabilities in 

terms of suitable probability distributions.15 The main problem with the range account 

is to justify the choice of the probability measure, which is solved in typicality 

frequentism because, in contrast with the range account, it uses a typicality measure 

dictated by the relevant physical situation.16 

While I am sympathetic with typicality frequentism, I think it has some 

difficulties. As anticipated above, typicality frequentism takes the probabilities in 

deterministic theories to be relative frequencies understood in terms of typicality. I 

disagree with the idea that all deterministic probabilities are of this form: I think that 

there are subjective deterministic probabilities that can be interpreted in terms of 

 
12 Jeffries (1992), Hajek (1997, 2007, 2009). 
13 Hubert (2021). 
14 Abrams (2000), Rosenthal (2010, 2016), Strevens (2003, 2008, 2011, 2013). 
15 See also Myrvold’s account of ‘almost objective chances’ (2016, 2020, 2021), which is based on the 

method of arbitrary functions, but which is however not objective. 
16 See Hubert (2021) for a discussion. 
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typicality, more in agreement with the spirit of the range account, as I discuss in the 

following section. 

More importantly, in typicality frequentism each microstate in a given macrostate 

represents a possible universe, so that by saying that it is typical for a free gas to 

expand, one means that in most universes compatible with the current macrostate the 

free gas expands. This is also what happens in the Mentaculus vision, with respect to 

the probability measure. However, I do not think this is correct: by saying that it is 

typical for a free gas to expand, one should mean with this that in most repeated 

experiments in this world the free gas expands. In fact, to say that a theory explains a 

phenomenon should be to say that it accounts for why the phenomenon happens in our 

world, not in other worlds. If typical frequencies are to play the role of objective 

probabilities, they have to be relative frequencies in a single world, generated by 

repeating the same experiments with similar initial conditions. The relative frequency 

which we want to explain and predict with our theory is a well-defined regularity in a 

given class of repeated experiments with initial macroscopic preparations which are 

substantially identical. That is, when an experimenter prepares a set of repeated 

experiments in this way, she will obtain empirical regularities, or empirical 

distributions, which are the relative frequencies of the various outcomes. If we repeat M 

times N coin tosses (with N and M sufficiently big) they tend to display half heads and 

half tails (or half 1s and half 0s). That is, suppose we toss 100 coins 1000 times: the first 

series of 100 coin tosses 𝑋1 is taken in San Diego at 5 pm today, the second 𝑋2 is taken in 

Chicago tomorrow at 8 am, the third 𝑋3 in Venice on December 8th at 4 pm and so on. 

The (actual) frequency of heads of the generic j-th series is 𝑛(𝑋𝑗) = ∑ 𝑁𝑖/1001000
𝑖 , where 

𝑁𝑖 is the number of 1s in the j-th series (𝑗 = 1, . . . ,1000), and the set 𝜌𝑒𝑚𝑝 =

{𝑁(𝑋1), 𝑁(𝑋2), 𝑁(𝑋3), … . , 𝑁(𝑋1000)} is the relevant empirical distribution, which shows 

the pattern that, for most coin tosses, half will be 1s and half will be 0s. Alternatively, 

take a set of 𝑁 gases concentrated in one corner of 𝑁 similar boxes; let them evolve 

freely; check what has happened after 2 hours, say; record the 𝑁 results: the first gas 

spreads out in the first box; the second spreads out in the second box; and so on. In 

general, the empirical distributions present patterns: for instance, most gases spread 

across the entire container. These are single world frequencies. 

Instead across-worlds frequencies, which are the ones considered by typicality 

frequentism, are neither explanatory nor can have predictive power (however, see the 

next section). In fact, if we repeat the same experiment (for example, the free expansion 

of a gas initially concentrated in a corner of a box) in different universes (whatever this 

would mean), we observe that entropy increases in most of them. Nevertheless, this fact 

does not help understanding why in this universe, if we prepare the gas in a corner of a 

box, in most repetitions of this experiment it will spread all over, and it does not allow 

us to predict that in this universe most gases will expand. In other words, the relative 
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frequencies that have an explanatory and predictive role are the distributions in the 

actual world: the (typical) frequencies in this universe. 

These single world typical frequencies are explanatory in the sense that the 

distribution predicted by the theory matches the observed distribution. In particular, in 

statistical mechanics that means that the observed distribution 𝜌𝑒𝑚𝑝 and the theoretical 

distribution 𝜌𝑡ℎ𝑒𝑜 are close: | 𝜌𝑒𝑚𝑝 −  𝜌𝑡ℎ𝑒𝑜| < 𝜀., with some positive 𝜀. In the example of 

the coin tosses, typicality explains the pattern that for the typical sequence half results 

will be 1s and half 0s: |
1

𝑁
∑ 𝑁𝑖 −

1

2
| ≪ 𝜀𝑁

𝑖=1 . That is, there exist atypical sequences 𝑋𝑘 such 

that frequencies 𝑛(𝑋𝑘) is very different from ½  which therefore belong to the set of 

exceptions 𝐸, but they are such that they are very few (figure 3).  

 
Figure 3: Empirical distributions are in one world, not across worlds 

 

Therefore, the empirical distributions are explained if they are typical in this 

world as just explained: it’s typical for free gases to expand, for coin tosses to display 

half heads and half tails, for ice cubes to melt, and so on. So, to conclude, I think that 

single world typical frequencies play the role of objective deterministic probabilities in our 

discourse are, and that, in virtue of their connection with typicality, they play the 

suitable explanatory and predictive roles that Loewer required of deterministic 

probabilities. 

5.2 Subjective Probabilities: Ignorance, Belief, Updating, and Single Events 

I have argued in the previous section that single world typical frequencies capture the 

essence of what we have dubbed objective deterministic probabilities: we talk about 

objective probabilities in a deterministic framework, we are talking about single world 

typical frequencies. 

However, typicality can also be used to understand the probability talk which has 

to do with our lack of information. Consider a single event probability. Some have 
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argued that single event probabilities are meaningful,17 while others instead thought 

that ‘the probability of winning this battle’ has no place in the theory of probability.18 

Nonetheless, I think we can give a definition of probability of a single event as follows. 

What is the meaning of the sentence: “The probability of tossing a fair coin and getting 

heads is 50%”? We have seen it in the previous section: repeated tossing of fair coins 

will typically show half tails and half heads. However, what about the sentence: “The 

probability that tossing this fair coin and getting heads is 50%”? There is no repetition 

here, so we cannot describe it like before. I think however that this can be understood in 

terms of across-world frequencies: 50 microstates out of the 100 which are compatible 

with the actual macrostate of this coin will evolve into a macrostate where the coin has 

landed heads. In other words, there is a fact of the matter of what the actual microstate 

of the coin is, which determines how the coin will eventually land. However, we do not 

know what the actual microstate is, therefore we cannot compute where the coin will 

end up, so we have to consider all the microstates. Since we are spanning over the 

macrostate, these microstates represent possible worlds macroscopically similar to the 

actual world. If the coin is typical, most microstates compatible with the coin’s 

macrostate will display a sequence of half heads and half tails. Therefore, we can think 

of the probability of getting heads in terms of volume in phase space. That is, the 

probability of getting heads is given by the number of possible microstates in the initial 

macrostate which lead to the final macrostate corresponding to heads, over the total 

number of microstates in the initial microstate: 𝑃 = 𝑉ℎ𝑒𝑎𝑑/(𝑉ℎ𝑒𝑎𝑑 + 𝑉𝑡𝑎𝑖𝑙), where  𝑉ℎ𝑒𝑎𝑑 

and 𝑉𝑡𝑎𝑖𝑙 are respectively the volumes in phase space of the microstate corresponding to 

the coin landing heads and landing tails. We could use the indifference principle 

because the ignorance about the actual microstate is real: we do not know which 

microstate is actual, and we have no reason to think something is privileged over the 

other (figure 4). This is essentially how to understand the subjective probability of a fair 

coin landing heads. Notice how this probability is across-worlds, so that it does not 

specify a feature of our world. It describes our ignorance about which world we are in. 

This approach is similar to the range account, which, unlike typicality frequentism, 

prescribes that probabilities are fundamentally connected to volumes in a relevant 

phase space. 

This ignorance probability can be interpreted as the degree of belief of an external 

observer making an inference on the probability this coin will land heads. That is, the 

observer does not know which microstate they are in, so they do not know what will 

happen exactly, but they do know the statistics of the typical coin. This plays a role in 

the justification of why they have a given degree of belief about coins landing heads.  

The observer’s confidence in the probability of this coin coming up head being ½ comes 

 
17 Hajek (2009) and La Caze (2016). 
18 von Mises quoted in Gilles (2000). 
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from the fact that we assume the world is typical and fair. If repeated coin tosses 

display an atypical distribution (such as all tails) one would expect the coin to be unfair 

and they will reshape the volumes in phase space accordingly. That is, given that 

probability is used here to comply with ignorance of the actual microstate, if we earn 

new information we can modify and update the set of possible accessible states. 

 
Figure 4: The phase space accessible to the coin is divided into two volumes corresponding to the coin 

landing heads and landing tail.  

 

Given that the measure of typicality is temporally stationary, one can make sense 

of the fact that probabilities can be time indexed. Indeed, the subjective probability 

which guides degrees of belief changes once one updates their information about the 

actual microstate as discussed above. 

Notice again that this subjective probability guiding beliefs does not reflect an 

objective feature of the world. Rather it is about our ignorance of the actual macrostate. 

Using the typicality measure to guide one’s credence does not play any role in the 

explanation or the prediction of any physical fact. The fact that I do not know the actual 

microstate does not explain that, say, this coin lands heads. This is cashed out by 

thinking of single event probabilities as being about what happens to different worlds 

compatible with the actual macrostate, while objective deterministic probabilities are 

single world frequencies. 
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6. The Paradox is Solved 

The paradox of deterministic probability is solved in my approach as follows: 

1) There is a typicality measure over initial conditions. 

My approach differs from the Mentaculus vision in that it has a typicality measure 

rather than a probability measure, like typicality frequentism and (some versions of) 

the range account. 

2) This typicality measure allows to define both objective and subjective deterministic 

probabilities. 

The role of objective probabilities is fulfilled by typical relative frequencies in our 

world, and this is distinct from all the previous approaches (Mentaculus, range 

account, typicality frequentism), which all think of objective probabilities as across 

worlds. The empirical distributions are explained by the theory if they are typical. In 

this approach, subjective probabilities are ignorance probabilities, which allow us to 

define single event probabilities. Unlike typicality frequentism, which remains silent 

on them, in my approach subjective probabilities can be accounted for: ignorance 

probabilities use the uniform distribution as a practical rule in order to predict some 

macroscopic behavior, and are defined in terms of ratios of volumes in phase space. 

3) Only objective deterministic probabilities play the necessary predictive and 

explanatory roles we want probability to have. 

Objective probabilities explain by looking at single world frequencies and sowing 

they are typical. In contrast, subjective probabilities run across worlds. And this is 

compatible with the fact that in my approach subjective probabilities are neither 

explanatory nor predictive, in contrast with what happens within the Menatculus 

vision. 
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