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Tensorial Relativistic Quantum Mechanics

in (1 + 1) Dimensions and Boundary Conditions
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The tensorial relativistic quantum mechanics in (1 + 1) dimensions is considered.
Its kinematical and dynamical features are reviewed as well as the problem of
finding the Dirac spinor for given finite multivectors. For stationary states, the
dynamical tensorial equations, equivalent to the Dirac equation, are solved for a
free particle, for a particle inside a box, and for a particle in a step potential.

1. INTRODUCTION

From the beginning of the quantum theory it has been accepted that the
spinors are essential in the quantum domain. However, a physical system
can be described by giving simultaneously the observables and the state in
the form of tensorial densities, that is, probability densities, currents and
fields etc. that are sesquilinearly defined in terms of the relativistic wave
function and/or its derivatives. Physicists like Pauli, Gordon, Belinfante,
Proca, ( 1) among others, studied this type of quantities by their utility in the
interpretation of the relativistic quantum theory. The idea of formulating
the relativistic quantum mechanics without using spinors, in the form of a
hydrodynamic of tensorial densities, which satisfy dynamical equations
equivalent to the Dirac equation, was considered by Costa de Beauregard
and Takabayasi.( 2) The inversion of the bilinear relations, which permits to
express the Dirac spinor in terms of multivectors has been considered. (3 )

The dynamical aspects of the tensorial theory show the existence of an
equivalence theorem between the Dirac equation and Maxwell-like equations;
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thus, the quantum theory can be regarded as a generalized electromagne-
tism.( 4) Despite of this, solving problems by using the tensorial theory in
3 + 1 dimensions is troublesome. The reason is the non-linear character of
the resultant dynamical equations, and the complexity of the probabilistic
fluid arising from the spin. The tensorial theory in 1 + 1 dimensions is more
simple and is linear; but as far as we know, it has not been considered in
the scientific literature.( 5)

We shall study the tensorial theory in 1 + 1 dimensions obtaining a
dynamical equation for the probability density and we will solve this equa-
tion for some standard problems. In particular, we shall consider a particle
inside a one-dimensional box.( 6) That is, the problem of the various bound-
ary conditions that may be imposed to a relativistic `̀ free’’ particle inside a
one-dimensional box. By the way, one might be interested in studying
relativistic equations with covariant boundary conditions. However, with-
out loss of generality, the Lorentz covariance of a dynamical equation can
be used so as to choose the privileged frame in which the basic properties
of the physical system present themselves in the simplest form. For a
particle in a box, the convenient privileged frame is the one in which the
space-time Lorentz transformations are frozen and the box is at rest in
a determined space region. In this paper, we use the formally covariant
tensorial theory in this privileged frame, what will allow us to understand
the physics behind some of the spinorial boundary conditions that make
self-adjoint the `̀ free’’ hamiltonian of the Dirac particle in the box.

A detailed spinorial study of the boundary conditions, i.e., self-adjoint
extensions for a relativistic particle inside a box, as well as their non-
relativistic limits, has been considered by two of us (V. A. and S. De V.) . (7 )

An analogous problem in 1 + 1 dimensions but in the frame of quan-
tum field theory was considered by Schwinger, ( 8) and has been the subject
of several investigations.( 9)

The localization problem( 10 ) needs no longer to be regarded as such in
the tensorial theory. This is because the intrinsic extended nature of the
Dirac particle becomes an essential feature, so that various concepts
associated to the point particle lose their meaning. Of course, this is espe-
cially evident in 3 + 1 dimensions, where the tensorial theory appears as a
very rich hydrodynamic theory which includes vortical currents.

In Secs. 2 and 3, we review the kinematical and dynamical structures
of the tensorial theory, as well as the problem of finding the Dirac spinor
in terms of finite multivectors. In Sec. 4 we particularize the obtained
results for stationary states. Finally, in Secs. 5 and 6 we study the free par-
ticle, the problem of a particle inside a box, and that of a particle in a step
potential; here we consider the Klein paradox, ( 11, 12) recovering the results
reported by Greiner.
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2. KINEMATICAL STRUCTURE OF THE TENSORIAL THEORY

Let Y = Y (x, t) be a Dirac-like spinor which does not necessarily
satisfy the Dirac equation. In 1 + 1 dimensions Y is a two components
spinor and represents the quantum state; but a pure state can also be
described by an observable density matrix, such as the Clifford number

C = 2 Î Y Ä Y
±

= 2 Î YY
±

( 1)

where Î = 2 e/ |e| , that is, for electrons Î = 1. The Dirac adjoint is
Y
±

= c ²
c

0 where Y
² is the hermitian conjugate of Y and c

0 is the first one
of the two gamma matrices c

m = ( c0, c1 ) = ( b, ba) , which satisfy the Clifford
relation: c

m
c

n + c
n
c

m = 2g mn = 2 diag( 1, 2 1 ). It can be proved that the
charge-conjugation anticommutes with the Dirac adjoint operation:
(Y

±
) c = 2 (Y c ) , where Y

c = aY* is the charge conjugate of Y , with Y* the
complex conjugate of Y and Î c = 2 Î .

The Clifford number C is a 2 3 2 spinor complex matrix, and is ten-
sorially a scalar. The Dirac adjoint of C is defined as C

±
= c

0C ²
c

0. Note that
C
±
Þ C ²

Þ C, but C
±

= C. The Clifford algebra shows that C can be written
in a unique way as a linear combination of four matrices basis: C

A =
C

A = {1, c
m, 2 ic5}, where c

5 = a verifies c
5
c

m + c
m
c

5 = 0, which constitute
the Clifford basis; that is

C = +
4

A = 1

lA C
A = S1 + V m c

m 2 iv
+

c
5 ( 2)

The components lA = {S , V m , v
+

} of C are real because C
±

= C, and can be
obtained by using the scalar product of matrices: lA = (C A, C ) =
1
2Tr [ (C A ) ² C], where Tr means trace. So,

S = Y
±
Y ( 3)

V m = Y
±
c

m
Y ( 4)

v
+

= iY
±
c

5
Y ( 5)

which are the basic finite multivectors. We shall refer to V m as to the two-
vector probability current, to S and V 0 as to the scalar and the probability
densities respectively, V 1 is the spatial component of the probability
current density, and v

+
is the pseudo-scalar density.(7 ) The symbol +

denotes the dual operation, so v
+

is a pseudo-tensor.
It is convenient to write explicitly (3) ± (5) as: S = Y ² bY , V 0 = Y ² Y ,

V 1 = Y ² aY, and v
+

= iY ² baY. Any of the 2 3 2 Pauli matrices can be used
as the Dirac matrices a and b. In the standard or Dirac representation in
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1 + 1 dimensions, a= s x and b = s z . In the so-called Weyl representation,
a= s z and b = s x .

From (1), we get

1 C
2S 2

2

=
C
2S

( 6)

moreover, the Dirac adjoint of C/2S verifies (C/2S ) = C/2S . Then, C/2S is
a projection operator with eigenvalues 0, 1, and therefore it represents a
pure state.

Substituting (2) in ( 6) and using the identities c
m
c

n = gmn 2 c5D
+

mn and

c
m
c

5 = D
+

mn
cn , where D

+

mn = 2 D
+

nm and D
+

01 = 1, with D
+

mn the permutation
pseudo-tensor, we obtain as a consequence of the purity of the quantum
state

S 2 + v
+ 2 = V mV m ( 7)

This relation implies that only the three finite multivectors ( 3) ± ( 5) are
independents.

Introducing the covariant derivative of Y : D m = ¶ m + ( ieAm /ac) , with
¶ m = ( (1/c) ¶ t , ¶ x ) , and letting l = a/2mc , we define the set of Clifford
numbers

Cm = 2il(D m Y Ä Y
±
2 Y Ä D m Y ) ( 8)

which tensorially constitute a covariant vector and may also be written as

Cm = Im 1 + T nmc
n 2 ih

+

m c 5 ( 9)

The differential multivectors defined by (9) are obtained by using the
scalar product between matrices. That is,

Im = il(Y
±
D m Y 2 D m Y Y ) = il(Y

±
¶ m Y 2 ¶ m Y Y ) 2

eAm S
mc 2 ( 10)

T mn = il(Y
±
c mD nY 2 D nY cm Y ) = il(Y

±
cm ¶ nY 2 ¶ nY cm Y ) 2

eAnV m

mc 2 ( 11)

h
+

m = il( iY
±
c

5D m Y 2 iD m Y c
5
Y ) = il( iY

±
c

5 ¶ m Y 2 i ¶ m Y c
5
Y ) 2

eAmv
+

mc 2 ( 12)

where e = 2 |e| is the electron charge and m is its mass. The electro-
magnetic potential is Am = (Q , A) . Obviously, A = 0 in 1 + 1 dimensions.
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The differential multivectors Im and h
+

m are called the convective and
the pseudo-current respectively, and T mn the probability tensor.

Using (1) and (8), it may be verified that

CCm = 4il[Y
±
D m Y (Y Ä Y

±
) 2 Y

±
Y(Y Ä D m Y ) ] ( 13)

and

Cm C = 4il[Y
±
Y(D m Y Ä Y

±
) 2 D m Y Y (Y Ä Y

±
) ] ( 14)

Then,

CCm + Cm C = 2(SC m + Im C ) ( 15)

CCm 2 Cm C = 2il( ¶ m S C 2 S ¶ m C ) ( 16)

Substituting (2) and (9) in (15) and (16), we obtain from (15) the
following relation between multivectors:

SI m + v
+

h
+

m = V nT nm ( 17)

and from (16),

D
+

mn(V
nh
+

r 2 v
+

T n
r ) = l(V m ¶ r S 2 S ¶ r V m ) ( 18)

D
+

mnV mT n
r = l(S ¶ r v

+
2 v

+
¶ r S ) ( 19)

Using (15), (16) and (6), we also obtain

i
l

2
(C ¶ m C 2 ¶ m C C ) = 2(Im C 2 SCm ) ( 20)

Following the same procedure adopted for deriving (17) ± ( 19) , two
new relations may be obtained from (20)

lD
+

mnV m ¶ r V n = v
+

Ir 2 S h
+

r ( 21)

lD
+

mn(V
n ¶ r v

+
2 v

+
¶ r V n) = ST mr 2 Ir V m ( 22)

The expression (21) is particularly interesting because it relates the three
two-vector currents which are present in the 1 + 1 tensorial theory.

We emphasize that ( 17) ± (19), as well as ( 21) and (22), have been
systematically derived without involving the Dirac equation, so they
answer to non-dynamical features.
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3. DYNAMICAL STRUCTURE OF THE TENSORIAL THEORY

3.1. Dynamical Equations

Let O D = ic mDm 2 (mc/a ) be the Dirac operator. If Y satisfies the Dirac
equation

OD Y = 0 (23)

Y becomes a Dirac spinor.
Let us define the Clifford number

CD = O D Y Ä Y
±

( 24)

In view of (23), each complex multivector belonging to CD is null, that is

Y
±
C

AO D Y = 0 (25)

Thus, the real and imaginary parts of ( 25) are zero. Making full use of the
definitions of the multivectors and of the relations between the gamma
matrices given above, in addition to: c

m ² = c
0
c

m
c

0; c
5² = c

5 and D
+

mnD
+

ab =
2 d

m
a d

n
b + d

m
b d

n
a, we obtain the dynamical equations implied by the

Dirac equation. These may be conveniently grouped in three pairs:

lD
+

mn ¶ nv
+

= Im 2 V m ( 26)

lD
+

nm ¶ nS = h
+

m ( 27)

T m
m = S ( 28)

D
+

mnT mn = 0 (29)

¶ m V m = 0 (30)

lD
+

mn ¶ m V n = v
+

( 31)

These equations are the fundamental dynamical relations implied by the
Dirac equation.

Note that, from (26) , ( 27) and (30), the currents Im and h
+

m verify

¶ m Im = 0 (32)

¶ m h
+

m = 0 (33)

Hence, these currents, as well V m according to (30), are conserved,
inasmuch as each one of them satisfies a continuity equation.
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The above three pairs of dynamical equations (26) ± (31) look like a
rather large set of relations to be satisfied. However, the first pair, which
we call the Maxwell-like equations, may be considered as the fundamental
one. We will see that the other two pairs may be derived from these
Maxwell-like equations and the non-dynamical relations ( 7) , ( 17) and (18),
( 19) being implied by (7) and (18).

3.2. Mathematical Equivalence Between the Maxwell-like Equations and the

Dirac Equation

Multiplying (26) with S and (27) with v
+

, we have

lD
+

mn(S ¶ nv
+

2 v
+

¶ nS ) = SI m + v
+

h
+

m 2 SV m ( 34)

Using (17) and (19) , and the product D
+

mnD
+

ab given earlier, this expression
takes the form

V m(T n
n 2 S ) = V n(T

mn 2 T nm) ( 35)

Contracting (35) with V m ,

V m V m(T n
n 2 S ) = 0 (36)

From (7) V m V m is not zero, thus we get ( 28).
Returning to (35) and using the last result, we have T mn = T nm, and

contracting it with D
+

mn we obtain (29).
From (18) we can write

D
+

mn(V
nh
+

m 2 v
+

T nm) = l(V m ¶ m S 2 S ¶ mV m) ( 37)

using (27) and (29) and the identity D
+

mnD
+

mr = 2 d n
r , we get ( 30).

Contracting (18) with D
+

rm we find

V r h
+

r 2 v
+

T r
r = lD

+
rm(V m ¶ r S 2 S ¶ r V m) ( 38)

Taking into account (28) and (27) in this equation, we finally get ( 31).
So, the dynamical information of the Dirac equation is contained in

only two vectorial equations. Indeed, if the Dirac equation is verified, it
implies three pairs of dynamical equations which with help of the non-
dynamical or algebraic relations may be reduced to a single pair. On the
other hand, if the three pairs of dynamical relations are verified, then (25)
is satisfied for every C A. The spinor Y

±
is in general not null, thus the Dirac
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equation is satisfied. In this way, the equivalence between Maxwell-like
equations and the Dirac equation is demonstrated.

Let us assume that we know the necessary multivectors and that we
want to obtain their corresponding spinor. In the next section we will show
how to obtain the spinor for a given set of finite multivectors.

3.3. Spinors from Multivectors

Let us first consider the following general spinor in the Dirac repre-
sentation:

Y (x, t) = 1 Ï a e i( e + V )

Ï b e i( e 2 V ) 2 ( 39)

From (3) ± (5) one obtains: S = a 2 b, V 0 = a + b, V 1 = 2 Ï ab cos(2V ) , and
v
+

= 2 Ï ab sin(2V ) . From which one gets

a = 1
2 (V 0 + S ) ( 40)

b = 1
2 (V 0 2 S ) ( 41)

cos(2V ) = V 1/[ (V 1 ) 2 + (v
+

) 2] 1 / 2 ( 42)

In order to obtain the overall phase e up to an integration constant,
one may use any of the Maxwell-like equations. It is convenient to write
them only in terms of finite multivectors, the external electromagnetic
potential Am , and the gradient of e. For this, let us write the currents Im

and h
+

m in terms of the spinor ( 39):

Im = 2 2 l(S ¶ m e+ V 0 ¶ m V ) 2
eAm S
mc 2 ( 43)

h
+

m = 2 2 lv
+ 1 ¶ m e +

V 0

S
¶ m V 2 2

eAm v
+

mc 2 2
l

S
D
+

arV a ¶ m V r ( 44)

where we have used (21) in order to express h
+

m in term of Im .
Substituting (43) in (26) and (44) in (27), one gets

lD
+

mn ¶ n
v
+

= 2 2 l(S ¶ m e + V 0 ¶ m V ) 2
eAm S
mc 2 2 V m ( 45)

lS D
+

mn ¶ nS = lD
+

arV a ¶ m V r + 2lv
+

(S ¶ m e+ V 0 ¶ m V ) +
eA m Sv

+

mc 2 ( 46)
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In this way, with (45) or ( 46) , both implied by the Dirac equation, one
obtains ¶ m e from the finite multivectors and the external electromagnetic
potential. This quantity is observable. Integrating it, one can calculate the
overall phase e up to an integration constant.

4. STATIONARY STATES

In the case of a stationary state the overall phase may be written as:
e(x, t) = e = 2 (E/a ) t + f (x ) , moreover ¶ t V = 0 and ¶ t Am = 0. So, from the
general spinor in the Dirac representation (39), one obtains Y (x, t) =
c (x) e 2 i(E / " ) t, where c (x) = ( Ï a e i( f + V )

Ï b e i( f 2 V ) ) . The finite multivectors may be
written as

S = c ²
bc = w*w 2 x*x ( 47)

V 0 = c ² c = w*w + x*x ( 48)

V 1 = c ² a c = w*x + x*w ( 49)

v
+

= i c ²
bac = i(w*x 2 x*w ) ( 50)

where w = Ï a e i( f + V ) and x = Ï b e i( f 2 V ) are respectively the spatial parts
of the so-called large and small components of the spinor Y in the Dirac
representation.

Denoting hereafter with primes the differentiation with respect to x
and choosing the axial gauge A1 = 0, and eA0 º U, the components of the
differential multivectors (10) ± (12) are

I0 =
E 2 U
mc 2 S ( 51)

I1 = il( c ² ¢ bc 2 c ² bc ¢ ) ( 52)

T 00 =
E 2 U
mc 2 V 0 ( 53)

T 01 = il( c ² ¢ c 2 c ² c ¢ ) ( 54)

T 10 =
E 2 U
mc 2 V 1 ( 55)

T 11 = il( c ² ¢ ac 2 c ² a c ¢ ) ( 56)

h
+

0 =
E 2 U
mc 2 v

+
( 57)

h
+

1 = il( i c ² ¢ bac 2 i c ² bac ¢ ) ( 58)
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From the Maxwell-like equations the following relations are obtained:

2 lv
+ ¢ = I0 2 V 0 ( 59)

0 = I1 2 V 1 ( 60)

lS ¢ = h
+

0 ( 61)

0 = h
+

1 ( 62)

The remainder dynamical equations implied by the Maxwell-like equations
are

T 00 2 T 11 = S ( 63)

T 01 2 T 10 = 0 (64)

(V 1 ) ¢ = 0 (65)

l(V 0 ) ¢ = v
+

( 66)

We emphasize that the pseudo-scalar v
+

is nothing but a gradient of
the probability density V 0. Taking into account the set of non-dynamical
relations and the definitions of the differential multivectors components, it
is possible to find a set of equations that only involve finite multivectors
and that can be solved for a given external electromagnetic potential. Cer-
tainly, boundary conditions on the multivectors must also be considered.

From (51) and (59) , one has

2 lv
+ ¢ = 1 E 2 U

mc 2 2 S 2 V 0 ( 67)

using (57) and (61),

lS ¢ = 1 E 2 U
mc 2 2 v

+
( 68)

In addition to these relations, it is also convenient to write here ( 65) , ( 66)
and (7):

(V 1 ) ¢ = 0, l(V 0) ¢ = v
+

, S 2 + v
+ 2 = (V 0) 2 2 (V 1 ) 2

This set of equations involves only finite multivectors. The differential mul-

tivectors {I m, T mn, h
+

m} can be obtained from (51) , ( 60) , ( 53), (63), (55),
( 64) , (57) and (62).
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Returning to the problem of calculating the spinor starting from multi-
vectors for stationary states, we obtain from the spatial component of ( 45)
a differential equation that permits us to get the overall phase f (x) up to
an integration constant, with V obtained from (42),

2l(Sf ¢ + V 0V ¢ ) = V 1 ( 69)

The time component of (45) is precisely ( 67).
Given a potential energy U(x) , the Maxwell-like equations yield a

linear differential equation for the probability density. By using (66) ± ( 68)
we obtain

(V 0 ) ¢ ¢ ¢ + g(V 0) ² + (2k ) 2 (V 0 ) ¢ 2
g
l

2 V 0 = 0 (70)

where g(x ) = U ¢ (x)/(E 2 U(x) ) and k2 = ((E 2 U ) 2 2 (mc 2 ) 2 )/a2c2. In the
next section we solve this equation for g(x) = 0, in this case a harmonic
type equation is obtained.

5. FREE PARTICLE

Let us now solve the Maxwell-like equations for a free particle. Letting
U= 0 in (70), and then k2 = (E 2 2 (mc 2) 2 )/a2c2, we obtain the fundamental
equation for the probability density V 0(x) ,

(V 0) ¢ ¢ ¢ + (2k ) 2 (V 0 ) ¢ = 0 (71)

The general solution of ( 71) and (65) may be written as:

V 0(x) =
mc 2

ack
[A + B sin(2kx ) 2 C cos(2kx ) ] > 0 (72)

V 1(x) = D ( 73)

where A, B, C and D are arbitrary constants. For the other two finite mul-
tivectors the general solution is given by:

S(x) =
E

mc 2 V 0(x) 2
ack
E

A ( 74)

v
+

(x) = B cos( 2kx ) + C sin(2kx ) ( 75)
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Using the constraint (7) one obtains:

2
(mc 2) 2

E 2 A2 + B2 + C 2 + D 2 = 0 (76)

The simplest solution of ( 72) is a constant probability density:

V 0(x) =
mc 2

ack
A > 0 (77)

Thus, (74) and (75) can be written as

S(x) =
(mc 2) 2

ackE
A ( 78)

v
+

(x) = 0 (79)

The probability current is given by

V 1(x) = ±
mc 2

E
A ( 80)

where the constraint ( 76) has been used. Obviously, A is a normalization
constant.

For a free particle the differential multivectors can be easily obtained

in terms of finite multivectors by using: I0 = ES/mc 2, I1 = V 1, h
+

0 = Ev
+

/mc 2,

h
+

I = 0, T 00 = EV 0/mc 2, T 11 = T 00 2 S , and T 01 = T 10 = EV 1/mc 2.
The Dirac spinor (39) , that is Y = ( Ï a e i( f + V )

Ï b e i( f 2 V ) ) e 2 i(E / " ) t, may be obtained
by using (40) ± (42) and (69) , from which: a = (mc 2/2ackE ) (E + mc 2 ) A,
b = (mc 2/2ackE ) (E 2 mc 2 ) A, cos(2V ) = ±1 and f ¢ = k.

Substituting in the spinor Y the last expressions for a and b, and
choosing V = 0 or V = p/2 and f = kx up to a constant, one finds

Y µ ! mc 2

ack
A 1

1

2 e± ikxe 2 i(E / " ) t ( 81)
±

ack
E + mc 2

This spinor is the well known solution to the Dirac equation for a free
particle.
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6. ``FREE’’ PARTICLE INSIDE A BOX

Let us now consider a relativistic `̀ free’’ particle confined inside a one-
dimensional box with fixed walls at x = 0 and x = L . In order to obtain the
four arbitrary constants and the energy eigenvalues, instead of considering
a confinement potential at the walls of the box, we impose adequate
boundary conditions upon the solutions (72) ± (75).

Using (73), the constraint ( 7) becomes

(V 0 ) 2 (x) 2 S 2(x) 2 v
+ 2(x) = D 2 ( 82)

For a particle confined inside a box, we put V 1( 0) = V 1 (L ) = 0, then D = 0
everywhere and

S 2(x) + v
+ 2(x) = (V 0) 2 (x) ( 83)

So, V 0(x) cannot vanish unless S (x) = v
+

(x) = 0, but this yields the trivial
solution.

Using (83) at the boundaries of the box

S 2( 0) + v
+ 2( 0) = (V 0) 2 ( 0)

( 84)S 2(L ) + v
+ 2(L ) = (V 0) 2 (L )

In order to satisfy this set of relations, one may write, for 0 < h, j < 2p,

S (0) = 2 cos h V 0(0), v
+

( 0) = 2 sin h V 0(0) ( 85)

S (L ) = cos j V 0(L ) , v
+

(L ) = 2 sin j V 0(L ) ( 86)

where the parameters h, j label the subfamilies of boundary conditions. It
can be shown that this two-parameters family of boundary conditions is
the most general one for a particle confined in a box, and that these condi-
tions define the domain of the Dirac Hamiltonian for a `̀ free’’ particle
inside a box. We will only consider those boundary conditions that are
symmetrical under space inversions. The fundamental equation (71) is
invariant under space inversions if

V 0(x) = V 0(L 2 x) ( 87)

Then, by using (66) and (74), we obtain

v
+

(x) = 2 v
+

(L 2 x) ( 88)

S(x) = S(L 2 x) ( 89)
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In this case, we have only a one-parameter family

S( 0) = cos j V 0(0), v
+

( 0) = sin j V 0(0) ( 90)

S (L ) = cos j V 0(L ) , v
+

(L ) = 2 sin j V 0(L ) ( 91)

Among the infinite boundary conditions parametrized by j we choose
the simplest ones: j = 0, p and j = p/2, 3p/2. In the following list we specify
the tensorial boundary conditions for the local observables (TBC) , their
corresponding spinorial boundary conditions (SBC), and the energy eigen-
value equations (EEE). For the first case j = 0, p, we obtain:

v
+

( 0) = v
+

(L ) = 0 (92)

( a) TBC: S( 0) = 2 V 0(0), S(L ) = 2 V 0(L ) ( 93)

SBC: w( 0) = w(L ) = 0

EEE: cos(2kL ) = 1

(b) TBC: S( 0) = V 0( 0), S (L ) = V 0(L ) ( 94)

SBC: x( 0) = x(L ) = 0

EEE: cos(2kL ) = 1

For the second case j = p/2, 3p/2, we obtain:

S (0 ) = S(L ) = 0 (95)

(c) TBC: v
+

(0 ) = 2 V 0( 0), v
+

(L ) = V 0(L ) ( 96)

SBC: x(L ) = 2 iw(L ) , x( 0) = iw(0)

EEE: tan(kL ) 2
ack
mc 2 = 0

(d) TBC: v
+

(0 ) = V 0( 0), v
+

(L ) = 2 V 0(L ) ( 97)

SBC: x(L ) = iw(L ) , x(0) = 2 iw(0)

EEE: tan(kL ) +
ack
mc 2 = 0
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Then, using the constraint ( 7) the multivectors for the first case are:

V 0(x) = A
mc 2

ack 3 ± 1 2
mc 2

E
cos(2kx ) 4 ( 98)

V 1(x) = 0 (99)

S (x) =
E

mc 2 V 0(x) 2
ack
E

A (100)

v
+

(x) = A
mc 2

E
sin(2kx) (101)

The upper sign corresponds to the boundary condition (a) and the lower
one to the boundary condition (b). Note that in order that V 0(x) be
positive the lower sign in (98) must be used only for electrons with negative
energy.

The multivectors for the second case are

V 0(x) = A
(mc 2 ) 2

E 2 3 E 2

ackmc 2 7 sin(2kx ) 2
mc 2

ack
cos( 2kx ) 4 (102)

V 1(x) = 0 (103)

S (x) =
E

mc 2 V 0(x) 2
ack
E

A (104)

v
+

(x) = A
(mc 2) 2

E 2 3 sin(2kx ) 7
ack
mc 2 cos( 2kx ) 4 (105)

Where the upper signs corresponds to the boundary condition ( c) and the
lower one to the boundary condition (d).

Knowing the finite multivectors, the Dirac spinors may be obtained
using the relations ( 40) ± ( 42) and (69). For the first case of boundary con-
ditions the following spinors are obtained for ( a) and (b)

Y µ Ï A 1
sin(kx )

2 e 2 i(E / " ) t (106)2 iack
E + mc 2 cos(kx )

Y µ Ï A 1
cos(kx )

2 e 2 i(E / " ) t (107)iack
E + mc 2 sin(kx )
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where the upper and the lower sign respectively has been used in order to
obtain the spinors ( 106) and (107) respectively.

For the second case of boundary conditions j = p/2, 3p/2, using the
upper sign of ( 102), (105) , we obtain the spinor

Y µ Ï A 1
sin 1 kx 2

f

2 2
2 iack

E + mc 2 cos 1 kx 2
f

2 2 2 e 2 i(E / " ) t (108)

where tan( f ) = ack/mc 2. Using the lower sign, we obtain

Y µ Ï A 1
cos 1 kx 2

d

2 2
iack

E + mc 2 sin 1 kx 2
d

2 2 2 e 2 i(E / " ) t (109)

where tan(d ) = 2 ack/mc 2.

7. PARTICLE IN A STEP POTENTIAL

Let us consider the scattering problem of an electron with energy E
and momentum ack1 at the potential step

U(x ) = 5 0, x < 0
U, x > 0

(110)

The electrons of positive energy are incoming from the left side (x < 0) .
In the region x < 0, with ack 1 = Ï E 2 2 (mc 2 ) 2, the solutions (72) ± ( 75)

are

V 0(x) =
mc 2

ack 1
[A1 + B1 sin(2k1 x ) 2 C1 cos( 2k1x ) ]

V 1(x) = D 1

(111)
S (x) =

E
mc 2 V 0(x ) 2 ack 1 A1

v
+

(x) = B1 cos( 2k1 x) + C1 sin(2k1 x)
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Likewise, in the region x > 0, with (ack 2) 2 = (E 2 U ) 2 2 (mc 2 ) 2 we get

V 0(x) =
mc 2

ack 2
A2

V 1(x) = D 2

(112)
S(x) =

(mc 2 ) 2

ack 2(E 2 U )
A2

v
+

(x) = 0

where the sign of k2 will be choose later according to the physical bound-
ary conditions.

Using the continuity of the multivectors at x = 0,

V 0( 2 0 ) = V 0( +0 )

V 1( 2 0 ) = V 1( +0 )
(113)

S( 2 0 ) = S ( +0 )

v
+

( 2 0 ) = v
+

( +0 )

we obtain for x < 0,

V 0(x) =
2E |A | 2

E + mc 2 3 1 + R + 2 Ï R
mc 2

E
cos(2k1 x) 4

V 1(x) = 2 ! E 2 mc 2

E + mc 2 ( 1 2 R) |A |2

(114)

S (x) =
2mc 2

E + mc 2 |A | 2 3 1 + R + 2 Ï R
E

mc 2 cos( 2k1 x) 4
v
+

(x) = 2 4 ! E 2 mc 2

E + mc 2 Ï R |A |2 sin(2k1 x)

and for x > 0,

V 0(x) =
2(E 2 U)

ack 2 ! E 2 mc 2

E + mc 2 T |A | 2

V 1(x) = 2 ! E 2 mc 2

E + mc 2 T |A | 2

(115)

S (x) =
2mc 2

ack 2 ! E 2 mc 2

E + mc 2 T |A | 2

v
+

(x) = 0
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where |A |2 = (mc 2/2(E 2 U) ) Ï (E + mc 2 )/(E 2 mc 2 ) 1/( 1 2 R) A2 ; R =
( (1 2 m)/( 1 + m ) ) 2 and T = 4m/( 1 + m) 2 being respectively the reflection and
transmission coefficients which satisfy

R + T = 1 (116)

with m º g2 /g1 = (k2 /k1 ) ( (E + mc 2)/(E 2 U + mc 2 ) ) . The corresponding
spinor solutions are

Y = A 1 e ik1x + Ï R e 2 ik1x

g1(e
ik1x + Ï R e 2 ik1 x ) 2 e 2 i(E / " ) t (117)

for x < 0, and

Y = A Ï T ! g1

g2 1 1
g2 2 e ik2 xe 2 i(E / " ) t (118)

in the region x > 0, with g1 = Ï (E 2 mc 2 )/(E + mc 2 ) and g2 =

Ï (E 2 U 2 mc 2 )/(E 2 U+ mc 2 ).
If (k2 ) 2 < 0 and x > 0, we have an exponentially damped solution in

(118) , that is, a classically forbidden region. In this case, mc 2 > E 2 U>
2 mc 2.

With (k2 ) 2 > 0 we have an oscillatory solution and this occurs not
only when E 2 U> mc 2 but also when the potential becomes so strongly
repulsive that E 2 U < 2 mc 2. Semiclassically speaking, an electron initially
confined in the region x < 0, can tunnel through the region x > 0 where
behaves as it were in an attractive potential. The oscillatory solution inside
a potential step, where a non-relativistic solution would decay exponen-
tially, is called the Klein’s paradox.( 11) Several analysis of this problem
have been considered in the literature, some of them in the context of
quantum field theory.( 12)

In the present, let us assume that U > E + mc 2 > 2mc 2. We will study
this problem from the point of view of the one-particle interpretation of the
relativistic quantum theory. In the region x > 0 the group velocity of the
moving wave packet is given by

n=
V 1(x )
V 0(x )

=
c2ak2

E 2 U
(119)

Since E 2 U < 0, this is a classically forbidden region. Clearly, n and k2 will
have opposite directions. So, we choose k2 > 0, it looks as if the transmitted
wave packet came in from x = + ¥ , which contradicts the hypothesis of
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the incoming wave packet from x = 2 ¥ . We then have to choose k2 < 0,
so that m > 0 and the reflection coefficient is R < 1.

When U ® E + mc 2, R ® 1 since m ® ¥ . On the other hand, with
U ® ¥ , m ® Ï (E + mc 2 )/(E 2 mc 2 ) and the reflection and transmissions
coefficients are

R ®
E 2 ack 1

E + ack 1
, T ®

2ack 1

E + ack 1
(120)

As also pointed out by Greiner, the unexpected largeness of the transmis-
sion coefficient, which is classically not understandable, holds for a finite
large U of the order of several rest masses. For a smooth potential, which
gave the same qualitative results, it was shown( 13) that there is a much
smaller transmission coefficient when the gradient of U occurs in regions
larger than the Compton wave length.

8. CONCLUSIONS

We reviewed the kinematical and dynamical aspects of the tensorial
quantum theory in 1 + 1 dimensions. We proved the mathematical equiv-
alence between the Dirac equation and the Maxwell-like equations, showing
that the dynamics of quantum mechanics is of the Maxwell type. We were
able to write the Dirac spinor in terms of finite multivectors, i.e., currents
and fields. By considering stationary states, we obtained a linear differential
equation for the observable probability density. It is worth mentioning that
the dynamical equation for the probability density has been from the
beginnings an important aim of quantum mechanics.

We solved the problems of a free particle, of a particle inside a box,
and of a particle in a step potential, considering the Klein paradox. In the
problem of a `̀ free’’ particle inside a one-dimensional box, the tensorial
theory turned out to be useful in the choice among the infinite sets of
boundary conditions that make self-adjoint the Hamiltonian of the system.
These can be grouped in specific and simple families in terms of local
observable densities. Thus, the imposition of symmetries and boundary
conditions is easier, and is more physically meaningful.

We have seen that from the tensorial viewpoint, the relativistic quan-
tum mechanics appears as a hydrodynamic-like theory, whose objects are
explicitly the local mean values of the quantum observables and obey
evolution equations equivalent to the Dirac equation. Thus, the tensorial
formulation is by itself a quantum mechanics and is essential to the inter-
pretation of this theory. Certainly it exhibits important features of the
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extended structure of the electron; which brings a fresh insight in the
localization problem and should be investigated thoroughly in 3 + 1 dimen-
sions. But of course, the tensorial formulation does not substitute the
spinorial formulation of quantum mechanics, which as a counterpart of its
implicate character is linear in all dimensions and therefore very much
simpler, being clearly essential to quantum algorithm.
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