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Abstract In this study, we are concerned with how agents can best amalgamate their
private information about a binary state of Nature. The agents are heterogeneous
in their “ability”, the quality of their private information. The agents cannot directly
communicate their private information but instead can only vote between the two states
(say “Innocent” or “Guilty” on a criminal jury). We first describe possible methods of
sequential majority voting, and then we analyze a particular one: the first n − 1 jurors
vote simultaneously and, in the case of a tie, the remaining juror has the casting vote.
We prove that when n = 3 (a common situation for a tribunal of three judges), the
probability of a correct verdict is maximized when the agent of median ability has the
casting vote.

Keywords Jury · Sequential voting · Casting vote · Group decision

1 Introduction

Beginning with the celebrated Jury Theorem of Condorcet (1785), the reliability of
majority verdicts in secret (or simultaneous) ballots between two alternative states of
Nature has been extensively analyzed. The states of Nature might be “Innocent” and
“Guilty” in a trial context, or “In” and “Out” for a tennis refereeing team. Condorcet
(1785) showed that the reliability of the verdict, that is the probability that the verdict
is correct, approaches one as the number of voters (called jurors) goes to infinity.
With the notable exceptions of Dekel and Piccione (2000) and Ottaviani and Sørensen
(2001), the case of sequential voting has not received similar attention. We consider
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the notion of sequential voting quite generally, as covering voting schemes where
numbered jurors vote in order, with each voter aware of the votes of a given subset of
the earlier voters. For example, in so-called roll-call voting, the given subset is simply
all the earlier voters; while in secret or simultaneous ballots, the given subset of each
voter is always the empty set. In the casting-vote scheme, extensively studied here,
all but one juror announce their votes simultaneously and then the “casting voter”
has the deciding vote in a tie. Here, the given subsets for the early voters are empty,
whereas that of the casting voter consists of all earlier voters. The casting-vote scheme
in action can be observed, for example, in the academic review process for a journal or
conference, where often an Associate Editor has the casting vote if recommendations
of the two independent referees are in opposite directions.

When the abilities of the jurors (to discern the true state of Nature) are heteroge-
neous, the order of voting in terms of juror ability may well affect the reliability of
the verdict. Here we assume that the abilities of the jurors are common knowledge,
though the problem of determining these abilities has been considered by Baharad
et al. (2012).

As discussedbyOttaviani andSørensen (2001), different approaches to this problem
have been made over time. Taking the term seniority to denote higher ability, they
contrast the anti-seniority rule (increasing ability order) of the ancient Sanhedrin court
to the seniority rule (decreasing ability order) for debating order in the US Supreme
court. Alpern and Chen (2017), using the same private information model as here,
show numerically that for roll-call voting of three jurors, reliability is maximized for
neither of these rules: it is always best for the juror of median ability to vote first.

To determine the optimal voting order, we need a strong model of private infor-
mation and of juror ability: the former is determined by independent signals of real
numbers in an interval which are correlated with the state of Nature; the latter is quan-
tified by a number between 0 (no ability) and 1 (maximum ability) that determines
the probability densities of these signals. Binary signals, which are common in the
literature, are not sufficient to obtain our results.

In this paper, we introduce general sequential voting schemes with our main results
centering on the casting-vote scheme of three voters. We show that for honest voting
(for the alternative that appears more likely at the time of voting) reliability is max-
imized when the median-ability juror has the casting vote. This contradicts common
practice and accepted wisdom that gives the casting vote to the senior judge in a panel
of three or gives the tennis umpiring post (with overrule or casting vote) to more senior
people than to the linesmen. We also give some results for larger juries.

2 Examples and literature

Let us present some examples of casting-vote schemes with known abilities of the
jurors and discuss the small literature on the subject. Throughout the paper, we use
the terms “voter” and “juror” interchangeably.

Asmentioned in the introduction, an example of interest to academics is the process
of refereeing conference paper submissions or journal submissions. In the latter, it is
common to have two referees and an editor who can break ties. Usually the editor will
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know the referees by reputation and can bias her casting vote towards the one with
more expertise in the area. For conference paper submissions, the expertise is made
more explicit. For example the conference refereeing software EasyChair explicitly
asks each referee to indicate one of the five possible levels of relevant expertise.

There are numerous examples of three-member casting vote juries. The selection
committee for the Master of the Rolls (a senior post in the United Kingdom) is man-
dated as follows, with the President of the Supreme Court given the casting vote: “The
selection panel comprises the President of the Supreme Court or his nominee as Chair,
the Lord Chief Justice or his nominee, the Chairman of the JAC or their nominee and
a lay member of the JAC. The Chairman of the panel has a casting vote in the event
of a tie”.

In boxing, three-man juries are common. A famous example, reported by the BBC
on February 20, 2000, was the following:

MarcoAntonio Barrera,WBO super-bantamweight champion, andWBC champ
Erik Morales squared up in Las Vegas for what will go down as one of the
greatest fights in boxing history. Unfortunately, a fantastic contest was spoilt
when Morales was handed a controversial split decision by the judges. One
judge each voted for Morales and Barrera but the casting vote, of Dalby Shirley,
was 115-113 in favour of the Tijuana man.

The literature on what we call jury voting goes back to the so-called Condorcet Jury
Theorem (Condorcet 1785).We have not found any analytical work on the casting-vote
scheme, but sequential (or roll-call) voting has received some attention. The principal
papers in this area are Dekel and Piccione (2000) and Ottaviani and Sørensen (2001).
The latter is similar to our model of honest voting because the jurors care about how
their reputation will be affected by the correctness (established subsequently) of their
opinions stated in debate. However, they do not know their own abilities. See also
Alpern and Chen (2017), which contains numerical work on optimal voting order in
roll-call voting. For large juries, roll-call voting is clearly far from casting voting, as
the first n − 1 jurors vote sequentially rather than simultaneously. Perhaps for a jury
of three the similarities are stronger, as it is only the second juror who has different
information in the two schemes. A general investigation of what we call jury voting
is given in Ali et al. (2008). Our work would fit into the information amalgamation
portion of the survey of Dewan and Shepsle (2011). In discussing the work of Dekel
and Piccione (2000), they observe that “because voters condition on the same event,
namely that of being pivotal, itmakes no differencewhether they cast their votes sooner
or later.” Our contrary results, where voting order matters, is due to the heterogenous
abilities of our voters and the continuous nature of their private signals, and so it
matters to the later, or casting, voter which early voters went for A and which went
for B. If those voting for A were overall of significantly higher abilities, then the
casting voter might vote against his weak signal for B (assuming a tie vote). Dewan
and Shepsle (2011) take account of this fact in a footnote where they say that “the
individual with the casting vote conditions her vote on the set of observed actions.”

Dekel and Piccione (2000) also take account of voting order (in sequential voting)
and conclude that (p. 48):
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…if voters are endowed ex ante with differential information (some voters can
be better informed than other) knowing which voters voted in favor and which
against can affect the choice of a later voter. It can be shown that, in a common-
value and two signal environment (as in Sec. IIIC above), if the player’s signals
are completely ordered (in the sense of Blackwell), then it is optimal to have
the better informed vote earlier. This provides an interesting contrast to the
findings of Ottaviani and Sørensen (1998) [subsequently published as Ottaviani
and Sørensen (2001)]. They obtain the opposite optimal order in an environment
in which information providers care not about the outcome but about appearing
to be well informed. It is not difficult, however, to construct examples in which
having the best-informed voter vote first is not optimal. Hence it seems unlikely
that general insights into this question can be obtained.

Our problem begins with a fixed set of jurors, and our questions are about their
voting order. However, if the potential jurors have biases (towards the alternatives
such as Innocent or Guilty), then there is a prior question of jury selection that has
been analyzed byBrams andDavis (1978) andmore generally byDeGroot andKadane
(1980), in terms of so-called “challenges”. A related selection problem with vetoes
is analyzed in Alpern et al. (2010). In our model, jurors are unbiased and differ only
in their abilities to discern the true alternative. However, if we were to give potential
jurors differing a priori subjective probabilities (biases) towards the alternatives, then
the jury selection problem could be analyzed in terms of both biases and abilities,
perhaps with challenges made by Defense, Prosecution and Judge.

We note that Karger et al. (2014) consider an optimization problem that is somehow
dual to our problem.Given a target reliability of answers to a number of queries (tasks),
they assign (with a cost) to these tasks workers of various abilities from a pool, where
a task can have multiple workers, and then combine the answers provided by the
assigned workers in an appropriate manner (e.g., majority voting), so that the target
reliability of the answers is achieved with minimum cost.

We note that our jurors receive their private information (signals) independently
but vote dependently, in the sense that the casting voter knows the previous voting.
The significance of dependence in such matters is considered by Nitzan and Paroush
(1984). For theoretical work on voting, see Grofman et al. (1983).

3 Sequential voting schemes

This section puts the casting-vote scheme into a more general framework of sequential
voting. It can be read before or after the main body of the paper, as it is mainly
motivational in approach and has no specific results to be used in the sequel.

3.1 General formalism and scheme counting

In the basic description of voting, we cannot have voter i knowing the vote of voter
j and simultaneously have voter j knowing the vote of voter i . More generally, we
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cannot have a cycle of voters, each of whom knows the vote of his predecessor. A
directed graph with no cycles is called acyclic.

Definition 1 A Sequential Voting Scheme is a directed acyclic graph (DAG) on a
finite number of nodes. The nodes correspond to voters and an arc from node i to node
j indicates that voter j knows the vote of voter i when he votes.

An elementary property of any finite DAG is that all its nodes can be numbered
so that any arc is from a lower numbered node to a higher numbered node (see, e.g.,
Kahn 1962). Therefore, a sequential voting scheme can be alternatively described as
follows: Associated with each voter i of {1, . . . , n} is set K (i) ⊆ {1, . . . , i − 1}, such
that when voter i comes to vote he has knowledge of the votes of all voters j in K (i).
The possibility of such a time-consistent ordering of the voters enables us to define
honest voting in a recursive manner later in the paper.

There are several ways of listing and counting finite DAGs. If the nodes are num-
bered 1 to n, then the number d(n) of DAGs has been calculated by Robinson (1973)
with the recurrence formula d(n) = ∑n

k=1(−1)k−1
(n
k

)
2k(n−k) d(n− k) where d(0) =

1. Hence the first five numbers are d(1) = 1, d(2) = 3, d(3) = 25, d(4) = 543 and
d(5) = 29281. However, if we take the aforementioned time-consistent numbering of
nodes, these counts can be significantly reduced. For example, in the case of n = 3,
given that independent specifications of K (1), K (2) and K (3) determine a sequential
voting scheme and the fact that there are 2i−1 possible subsets of {1, . . . , i − 1} for
any i ≥ 1, we have in total 1 × 2 × 4 = 8 possible sequential voting schemes, which
we depict in Fig. 1.

As can be seen in Fig. 1, the three DAGs (b)–(d) are isomorphic. So in total there
are six non-isomorphic voting schemes. Scheme (a) is secret ballot (or simultaneous
voting), (h) is roll-call voting, while (e) is casting-vote scheme, which we analyze in
detail later. The remaining three non-isomorphic schemes, which we do not explicitly

(a) (b) (c) (d)

1 2

3

1 2

3

1 2

3

1 2

3

(e) (f) (g) (h)

1 2

3

1 2

3

1 2

3

1 2

3

Fig. 1 Sequential voting schemes with three voters
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name, look distinctly odd, as they do not appear in actual voting systems. However, we
nonetheless keep them since the applicability of our analysis in the paper extends to
cases where nodes do not have to represent usual jurors or voters, but might be sensors
of locations in a neural network. Their “private information” might be the reading they
take of their environment or their chemical surrounding.

3.2 Scheme complexity

For a given sequential voting scheme, let k(i) denote the number of voting histories
that can be witnessed by voter i and that do not already determine a majority verdict.
For each of these histories, he must have a potentially distinct strategy. For example, in
secret voting k(i) = 1 for every voter i , as he always observes the null voting history
and needs only one strategy (which may of course depend on his private information).
Consider roll-call voting for n = 3. Here as for secret ballot, k(1) = 1, but as voter
2 can see the vote of voter 1 (either A or B), he has two possible voting histories, so
k(2) = 2. Finally, voter 3 can observe four histories AA, AB, BA and BB, but of
these only two (AB and BA) leave him with a verdict-relevant vote, so also k(3) = 2.
Therefore, in analyzing roll-call voting of three voters, if each strategy is a threshold
(in terms of his private information, which is a number in [0, 1]), one must consider a
total of 1+2+2 = 5 thresholds.We call this complexity 5, by defining more generally
the complexity C(n) of a given sequential voting scheme of n voters as

C(n) =
n∑

i=1

k(i).

Thus for n = 3 the secret ballot has complexity 3, roll-call voting has complexity
5 and the casting-vote scheme has complexity 4. This explains in part why we are
in this paper able to give an algebraic solution to the voting order problem for the
casting-vote scheme while the similar analysis for roll-call voting can be carried out
only with numerical analysis as in Alpern and Chen (2017).

4 The model

Our model is one of majority voting between two alternative states of Nature, A or B.
There are an odd number n of jurors, or voters. First n−1 of them vote simultaneously.
Then the casting juror votes, with knowledge of the earlier voting. It does not matter if
the casting voter only votes in the case of a tie or always votes. To specify the model,
we have to define what we mean by the ability of each juror, and how his ability (and
the state of Nature) determines the distribution of signals that he receives as private
information. We then define threshold strategies that determine a juror’s vote, based
on his signal and any prior voting he is aware of (if he is the casting voter). Finally,
we define what we mean by honest voting.
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4.1 Signals and abilities

We assume two states of Nature A and B, considered as negation of A, with a priori
probability of A given by Pr(A) = θ0. To simplify the analysis we will assume the
equiprobable case θ0 = 1/2, although our results are robust for θ0 values around 1/2.
Individuals have private information about the state of Nature modeled as a signal s in
the signal interval [−1,+1]. Positive signals are indications of A; negative signals B.
The signal s = 0 is neutral. Higher positive signals indicate Amore strongly; similarly
for negative signals and B. Thus a better signal is one with a higher absolute value.

Individual jurors have an ability a in the ability interval [0, 1], where individuals
of higher ability are generally (but not always) able to make better guesses about the
state of Nature. When Nature is in state A (resp. B), jurors receive independent signals
s ∈ [−1, 1] with probability density given by fa(s) (resp. ga(s)) if they have ability
a. We make the simplest nontrivial assumption on fa(s) and ga(s), namely that they
are linear in s. The slope of the density functions fa(s) and ga(s) for a juror of ability
a is proportional to a. Given that fa and ga(s) are density functions on [−1,+1], they
take the following form:

fa(s) = (1 + as)/2, −1 ≤ s ≤ +1, when Nature is A;
ga(s) = (1 − as)/2, −1 ≤ s ≤ +1, when Nature is B.

It is easily checked that fa(·) and ga(·) defined above are indeed density functions for
any a ∈ [0, 1]. The density functions for ability a = 1/2 are shown in Fig. 2. The
probability of a correct signal, that is positive when Nature is A, is the area under the
f0.5 line (and above the s axis) to the right of s = 0. When a = 0, such an area is
1/2, showing that a juror with ability a = 0 is just guessing (by flipping a fair coin to
determine the state of Nature).

Fig. 2 Plots of signal densities fa(a) for A and ga(s) for B
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The corresponding cumulative distributions of the signal s when Nature is A or B
are given by

{
Fa(s) = (s + 1)(as − a + 2)/4, −1 ≤ s ≤ +1, when Nature is A;
Ga(s) = (s + 1)(a − as + 2)/4, −1 ≤ s ≤ +1, when Nature is B.

(1)

Given prior probability θ0 of A and only his signal s, a juror of ability a has a posterior
probability θ ′ of A, as given by Bayes’ Law:

θ ′ = Pr(A\s) = θ0 fa(s)

θ0 fa(s) + (1 − θ0)ga(s)
= θ0 + asθ0

2asθ0 − as + 1

= as + 1

2
(if θ0 = 1/2). (2)

Note that for a juror of ability 0, we have θ ′ = θ0 for any received signal s, reinforcing
our notion that ability 0 is no ability at all. A juror of ability 0 can do no more than
guess. If we wish to view our juror of ability a as a Condorcet juror, we would say
that his probability of a correct signal (positive when Nature is A or negative when
Nature is B) is given by

∫ 1

0
fa(s) ds = (2 + a)/4. (3)

In particular a juror of ability 0 has only a 50% probability of a correct sign signal,
while a boffin of maximum ability 1 gets it right 75% of the time.

4.2 Threshold strategies and honest strategies

A strategy for a juror is a threshold τ , depending on previous voting, if any, such
that the juror votes A with signal s ≥ τ and B with signal s < τ (see Fig. 3 for an
illustration). A strategy profile is a list of strategies for each juror. So in our model
of three jurors, with a casting vote, the two first voters have single thresholds x and
y. (We can number the jurors by their voting order, although in our model the order
of the first n − 1 is arbitrary.) The casting voter has two thresholds zAB (if the prior
voting was AB) and zBA (if the prior voting was BA). We can ignore the case of prior
voting AA or BB, because in that case the last vote does not matter. So a strategy
profile is a four-tuple (x, y, zAB , zBA). We recall from Sect. 3.2 that this agrees with
the calculation of complexity C(3) = 4 for the casting-vote scheme.

Now let us formally introduce the notion of voting behavior by first defining the
most common or simplest one.

Definition 2 A strategy profile is said honest (or naive) if the thresholds are such that
every juror votes for the alternative that he believes is more likely, given the a priori
probability of A, his private signal, and any prior voting.

In our casting vote model, with neutral (equiprobable) alternatives A and B, honest
voting requires that the two first jurors have their thresholds x = y = 0 since for
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 0 +1

vote Avote B

signal s

Fig. 3 Voting based on signal and threshold

θ0 = 1/2 we have by (2) that Pr(A/s) = 1/2+ as/2 > 1/2 if and only if s > 0. This
should be clear in any case from the symmetry of our model with respect to A and
B. In other words, with honest voting early jurors (all but casting voter) each vote A
with a positive signal and B with a negative signal. The situation for the casting voter
is a bit different. We may relabel the alternatives so that the higher-ability early juror
voted A and the lower-ability early juror voted B. If the casting voter gets a positive
signal (for A) then obviously he votes A and that is the majority verdict. If however
he agrees with the early voter of lower ability (he gets a negative signal), then his
honest vote depends on the strength of his signal versus the ability discrepancy of the
early voters. Given their abilities, he will have a negative threshold τ < 0. If his own
signal is less than τ (even more negative than τ ), he follows his signal and votes B.
Otherwise he will base his vote on the fact that while the early voters split their votes,
those of higher ability voted for A and he will also vote A. This is the crux of the
matter—the only case in which the casting voter will vote differently than if he had
been voting simultaneously with the others.

4.3 Honest thresholds of the casting voter

In this section, we analyze the problem faced by the casting voter, who knows the
voting, abilities and thresholds of the first two voters. What is his honest threshold?
We assume the first two voters have ability a with threshold x and ability b with
threshold y. We now determine the optimal threshold of the third juror of ability c > 0
(the case of c = 0 will be considered shortly after), under the assumption that the a
priori probability of A (before the casting voter receives his signal s) is θ , given the
previous voting and thresholds. If the casting voter has signal s, then his posteriori
probability of A is given by θ ′ as given by equation (2) with a replaced by c and θ0
by θ . Hence

θ ′ = θ + csθ

2csθ − cs + 1
.

The honest threshold z is the value of s for which θ ′ = 1/2, or

1

2
= θ + csθ

2csθ − cs + 1
.
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Solving for s and making this value the honest threshold z gives

z = 1 − 2θ

c
. (4)

Of course, if (1 − 2θ)/c > 1 this means always vote B (same as threshold z = 1),
and if (1 − 2θ)/c < −1 this means always vote A (same as threshold z = −1). Such
phenomenon is known as herding behavior, where agents ignore their own private
information and follow prior agents. We can take the limit as c → 0+ to make the
same arguments if c = 0.

Now let us consider how to determine the above value of θ given the prior voting
sequence AB (i.e., the voter of ability a votes A and the voter of ability b votes B).
This value is given by

θ = θ(AB) = θ0(1 − Fa(x))Fb(y))

θ0(1 − Fa(x))Fb(x) + (1 − θ0)(1 − Ga(x))Gb(y)
(5)

= (2 + a + ax)(2 + b(−1 + y))

2(4 + ab(1 + x)(−1 + y))
, (6)

where the second equality is due to (1) for θ0 = 1/2. For the case of honest voting,
the thresholds x and y of the early voters are 0, so (6) reduces to

θ = θ(AB) = (2 + a)(2 − b)

8 − 2ab
. (7)

According to (4) we then have

zAB = 1 − 2θ(AB)

c
= w(a, b, c) ≡ 2(b − a)

c(4 − ab)
, (8)

and similarly

zBA = −zAB = −w(a, b, c) = 2(a − b)

c(4 − ab)
. (9)

To illustrate the importance of these calculations, consider the threshold of the
casting voter when the early voters have similar abilities and the ability of the casting
voter is large. For example suppose the early voters have abilities 0.5 and 0.6 and the
ability of the casting voter is 0.8. Then if the voter of ability 0.5 votes A and the voter
of ability 0.6 votes B, the threshold for the casting voter of ability 0.8 is given by
equation (8) as 2(0.1)/(0.8(4 − 0.3)) ≈ 0.068. Thus, the signal of the casting voter
has to be just a bit above neutral 0 for him to vote A. However, if the early voters have
widely different abilities, say 0.1 and 0.9, while the casting voter has ability 0.2, the
threshold of the casting voter will be 2(0.8)/(0.2(4− (0.1)(0.9))) = 2.046. Since this
is greater than 1, it means the casting voter will always copy the vote of the stronger
early voter, regardless of his own signal, a case of herding as alluded to earlier.
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4.4 Reliability

We define the reliability of a voting scheme as the probability that the majority verdict
is correct under this voting scheme.With equiprobable alternatives, a simple symmetry
argument shows this is the same as the probability of majority verdict A when Nature
is in state A. It is easy to calculate the reliability under honest voting where the early
voters have abilities a1, a2, . . . , an−1 and the casting voter has ability an . We ask the
simple question: Given a set of n abilities, which one of these should have the casting
vote if we wish to maximize the reliability of honest voting? For a jury of size three,
we will show that honest-voting reliability is maximized when the juror of median
ability has the casting vote. An alternative approach, also within the purview of our
model, ascribes costs to each type of voting error (verdict A when Nature is B and
vice versa) and minimizes the expected cost.

We now evaluate reliability Q(a, b, c), the probability of a correct verdict when
θ0 = 1/2, where the jurors have abilities a, b and c (in voting order) and the earlier
voter have honest thresholds x = y = 0. As the theoretical voting order of the early
voters (who vote simultaneously) does not matter, we clearly have

Q(a, b, c) = Q(b, a, c), for all 0 ≤ a, b, c ≤ 1. (10)

Let qA (resp. qB) denote the probability of majority verdict A (resp. B) when Nature
is A (resp. B). Then for an arbitrary a priori probability θ0 of A we have that the
reliability Q(a, b, c) is given by

Q(a, b, c) = θ0 qA(a, b, c) + (1 − θ0) qB(a, b, c).

Hence with neutral alternatives θ0 = 1/2, we have

Q(a, b, c) = 1

2
(qA(a, b, c) + qB(a, b, c)),

and symmetry gives the simpler formula

q(a, b, c) = qA(a, b, c) = qB(a, b, c). (11)

From now on we assume the case of neutral alternatives. As long as |zAB | < 1, the
formula for qA(a, b, c) is given by summing up the probabilities of voting patterns
AA, ABA and BAA when Nature is A. Thus

qA(a, b, c) = (1 − F(a, 0))(1 − F(b, 0)) + (1 − F(a, 0))F(b, 0)(1 − F(c, zAB)))

+ F(a, 0)(1 − F(b, 0))(1 − F(c, zBA))), (12)

with a similar formula for qB . Then according to (8), (9), and (11) provided |zAB | < 1,
we have Q(a, b, c) = q(a, b, c), where

q(a, b, c) ≡ qA(a, b, c) = 1

32

(

4(4 + a + b) + 4(a − b)2

(4 − ab)c
+ (4 − ab)c

)

. (13)
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In the case |zAB | ≥ 1, the casting voter follows the vote of the early voter of maximum
ability, that is, the one of ability max {a, b} in our notation. We have calculated the
probability that a juror gets the correct sign signal in (3). So in the above calculation of
q(a, b, c), by replacing zAB with−1 and+1 respectively if zAB ≤ −1 and zAB ≥ +1,
we get the more general reliability formula

Q(a, b, c) =
{
q(a, b, c), if |w(a, b, c)| < 1;
(max{a, b} + 2)/4, otherwise.

(14)

This indicates the fact that in the case of |zAB | ≥ 1 the private signal of the early juror
of higher ability determines the verdict, as his vote will be copied by the casting voter.
Thus Q applies even when the casting voter has extreme thresholds whereby he can
vote without taking his private signal into account.

For example, suppose we partition the ability interval [0, 1] into three subintervals
of length 1/3, and take a jury with one juror in the middle of each of these subintervals.
That is, we have a uniformly distributed jury of abilities 1/6, 1/2 and 5/6. If the high-
ability juror has the casting vote (c = 5/6 in the above notation), then zAB ≈ 0.204,
which lies within the signal interval [−1, 1] and so reliability is given by the formula
q(1/6, 1/2, 5/6) ≈ 0.690. Similarly, if the juror of middle-ability 1/2 has the casting
vote, then zAB ≈ 0.691. As this is also in the signal interval, the reliability is given
by q(1/6, 5/6, 1/2) ≈ 0.714. Finally, if the weakest juror has the casting vote, then
|zAB | = 48/43 > 1. This means that the casting voter follows the vote of the juror of
ability 5/6 = max{1/2, 5/6}, who is correct with probability (2 + 5/6)/4 ≈ 0.708
by formula (14) or (3). So in this case we have calculated that giving the casting vote
to the median-ability juror is best, to the lowest-ability voter is second best, and to
the highest-ability voter is worst. This result about the median voter is generalized in
Theorem 1.

Note that q(a, b, c) = (max{a, b} + 2)/4 when |zAB | = 1 according to (8) and
(13). On the other hand, it is easy to verify that |w(x, y, z)| ≤ w(�, 1, �) = 1 over
{(x, y, z) : � ≤ x, y, z ≤ 1} where � = 3 − √

7 ≈ 0.354. We obtain from (14) that

Q(a, b, c) = q(a, b, c) if � ≤ a, b, c ≤ 1. (15)

5 Mechanism design

We now consider the main question of the paper, the problem faced by a designer who
is given a fixed set of jurors with known abilities and must decide to whom to give the
casting vote. (Perhaps he is organizing a sporting event and has three volunteers for
refereeing,who comewith eyesight certificates.Ormaybe he iswriting the constitution
of the International Court of Justice and has to say which judge has the casting vote.)
We suppose here that there are three jurors and their abilities a, b, c are labeled so
that a ≤ b ≤ c. (Note that we have changed our labelling conventions from the last
section, where cwas always the ability of the casting voter.) In the last section we gave
an example with uniformly distributed abilities 1/6, 1/2 and 5/6, where we showed
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that it was best for the juror of ability 1/2 to have the casting vote, with the juror of
ability 1/6 second best. Here we will discuss the problem more generally.

To aid the intuition, we carry out a thought experiment where the casting-vote
scheme is conducted in another equivalent way. We let all the jurors vote simultane-
ously. If the verdict is close (2 to 1, or (n + 1)/2 to (n − 1)/2) we are allowed to
pick one of the jurors and let him decide whether to change his vote after viewing the
other votes (and with knowledge of everyone’s ability). If he voted with the minority,
changing his vote will not affect the verdict, so we assume he voted with the majority,
say A. This means the others voted equally for A and B. He will only change his vote
if he now thinks B is more likely than A, despite his private positive signal for A. This
will occur if one of the following two things occurs:

1. His positive signal s for A is weak (close 0).
2. The overall abilities of the B voters are significantly higher than that of the A

voters.

We realize that the second condition is vague. Condition 1 is most likely to be satisfied
when the juror has the smallest ability. This is because in our model small abilities are
more likely to produce weak signals. Condition 2 is most likely, for a jury of three,
when the abilities of the other two jurors are as far apart as possible. That is, when
they have the two extreme abilities. This occurs when the selected juror has the middle
ability. So this intuitive and qualitative analysis leads us to believe that in general the
casting voter should have a low or middle signal. Our later analysis for larger juries
indeed bears this out. Here we show that for a jury of three the forces (condition 2)
favoring themiddle- ormedian-ability juror outweigh the forces (condition 1) favoring
the low ability juror. In particular we have our following main result.

Theorem 1 Under casting-vote scheme suppose that A and B are equiprobable and
we have three honest jurors of abilities a, b, c with 0 ≤ a ≤ b ≤ c ≤ 1. Then the
reliability Q is maximized when the juror of median ability b has the casting vote.

Proof The idea of our proof is simple: starting with the case where the juror of ability
b has the casting vote, we show that reliability cannot increase when he is replaced in
that role by the juror of either higher ability c or lower ability a. Let S = {(a, b, c) :
0 ≤ a ≤ b ≤ c ≤ 1}. Denote

�1(a, b, c) = Q(a, c, b) − Q(a, b, c);
�2(a, b, c) = Q(a, c, b) − Q(b, c, a).

Then due to (10), our aforementioned simple idea is implemented by showing that
�1(a, b, c) and �2(a, b, c) are both non-negative for any (a, b, c) ∈ S. First of all,
the following are straightforward according to definition (8) for anygiven (a, b, c) ∈ S:

w(b, c, a) ≥ 1 ⇔ P1(a, b, c) ≡ abc − 4a − 2b + 2c ≥ 0; (16)

w(a, c, b) ≥ 1 ⇔ P2(a, b, c) ≡ abc − 2a − 4b + 2c ≥ 0; (17)

w(a, b, c) = 2(b − a)/(c(4 − ab)) ≤ (2/3)(b/c) < 1. (18)
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Depending on themagnitude ofw(a, c, b) ≥ 0 for any given (a, b, c) ∈ S, we consider
two possible cases separately.

Case 1 w(a, c, b) ≥ 1.
According to (14), we have

Q(a, c, b) = (c + 2)/4. (19)

Since P1(a, b, c) − P2(a, b, c) ≥ 2(b − a) ≥ 0, it follows from (16) and (17) that

w(a, c, b) ≥ 1 ⇒ w(b, c, a) ≥ 1,

which togetherwith (14) implies that Q(b, c, a) = (c + 2)/4, and hence�2(a, b, c) =
Q(a, c, b) − Q(b, c, a) = 0.

Next we prove the more difficult result�1(a, b, c) ≥ 0. According to (18) and (14)
we have Q(a, b, c) = q(a, b, c). It follows from (19) that

�1(a, b, c) = c + 2

4
− q(a, b, c) = d3(a, b, c)

32c(4 − ab)
,

where

d3(a, b, c) ≡ −4a2 + 8ab − 4b2 − 16ac − 16bc

+ 4a2bc + 4ab2c + 16c2 − a2b2c2.

So it remains only to establish that d3(a, b, c) ≥ 0 given the additional condition
2b ≤ c, which is implied by (17). In Sect. A.2 of theAppendixwe show that d3(a, b, c)
has a minimum of 0 over the set S ∩ {(a, b, c) : 2b ≤ c}, which is attained uniquely
at the point a = b = c = 0.

Case 2 w(a, c, b) < 1.
According to (14), we have Q(a, c, b) = q(a, c, b), which together with (18)

implies that

�1(a, b, c) = q(a, c, b) − q(a, b, c) = (c − b)d1(a, b, c)

8bc(4 − ab)(4 − ac)
,

where

d1(a, b, c) ≡ 4a2 − 8ab + 4b2 − 8ac + 4bc

+ 2a2bc − ab2c + 4c2 − abc2.

By taking partial derivatives, we can easily see that d1(a, b, c) is monotonically
decreasing in b and c for all (a, b, c) ∈ S, which implies that d1(a, b, c) ≥
d1(a, a, a) = 0 and hence �1(a, b, c) ≥ 0. Let us now show �2(a, b, c) ≥ 0. If
w(b, c, a) ≥ 1, then Q(b, c, a) = (c + 2)/4 and we have
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�2(a, b, c) = q(a, c, b) − c + 2

4
= (P2(a, b, c))2

32b(4 − ac)
≥ 0.

If w(b, c, a) < 1 (note that we always have w(b, c, a) ≥ 0), with (14) we have
Q(b, c, a) = q(b, c, a) and hence

�2(a, b, c) = q(a, c, b) − q(b, c, a) = (b − a)d2(a, b, c)

8ab(4 − ac)(4 − bc)
,

where

d2(a, b, c) ≡ −4a2 − 4ab − 4b2 + 8ac + 8bc

+ a2bc + ab2c − 4c2 − 2abc2,

In Sect. A.1 of the Appendix we show that the minimum of d2(a, b, c) over the
intersection of S and the set {(a, b, c) : w(b, c, a) ≤ 1} is 0. Hence �2(a, b, c) ≥ 0.
��
Remarks As we pointed out at the beginning of Sect. 4.1, the result in Theorem 1 is
robust for θ0 (the a priori probability of A) values around 1/2. However, if θ0 deviates
significantly from 1/2, the result in Theorem 1 is no longer true. As the following
two examples show, unique optimality is achieved when the casting voter is either
of the lowest (first example) or highest (second example) ability: If θ0 = 7/10 and
(a, b, c) = (2/5, 3/5, 4/5), then

Q(θ0, b, c, a) > 0.76 > Q(θ0, c, a, b) > 0.75 > Q(θ0, a, b, c).

On the other hand, if θ0 = 4/5 and (a, b, c) = (1/5, 2/5, 3/5), then

Q(θ0, b, c, a) = Q(θ0, c, a, b) = 4/5 < 33/40 = Q(θ0, a, b, c).

5.1 Minimizing expected cost

Let us consider an alternative voting goal. Instead of maximizing the reliability, sup-
pose we wish to minimize the expected cost of making both types of error: (I) verdict
B when Nature is A (e.g., acquittal of a guilty defendant); and (II) verdict A when
Nature is B (e.g., conviction of an innocent defendant). Similar to equation (12), we
can calculate the probability of making either type of error, Pr[B/A] or Pr[A/B].
Recall that in Sect. 4.4 we defined qA and qB as the probability of correct verdict
when Nature is in state A and B, respectively. Therefore,

Pr[B/A] = 1 − qA, and Pr[A/B] = 1 − qB .

Let k1, k2 ≥ 0 denote the cost of type-I and type-II error, respectively. Then the total
expected cost of making both types of error under honest voting with voting order
(a, b, c) (casting vote to c) is given by
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K (a, b, c) = k1 Pr[B/A] + k2 Pr[A/B]
= k1(1 − qA(a, b, c)) + k2(1 − qB(a, b, c)) = (k1 + k2)(1 − q(a, b, c)),

where the last equality is due to (11), with which we have shown the following.

Proposition 1 For a three-member jury under honest voting, the voting order with
maximum reliability also minimizes the expected cost of incorrect verdict, making both
types of error.

5.2 Choosing referees for two articles

Wehave alreadymentioned the “jury” consisting of an editor and two honest referees in
the context of a casting-vote scheme for evaluating an article submitted to an academic
journal. Now assume that the editor is a fixed agent of ability e who has to assign four
referees of abilities a ≤ b ≤ c ≤ d ≤ 1 to two articles (two to each). For simplicity
and practicality, we assume a ≥ � = 3 − √

7 ≈ 0.354 (chosen referees are supposed
to be experts in the relevant area of expertise). There are three ways to do this, with
{a, b}, {a, c} or {a, d} as the abilities of one refereeing team. The editor’s aim is to
maximize the expected number of articles that receive a correct evaluation. According
to (15), the three values of this expectation are given by

E1 = q(a, b, e) + q(c, d, e),

E2 = q(a, c, e) + q(b, d, e),

E3 = q(a, d, e) + q(b, c, e),

where function q(·, ·, ·) is given by (13). It turns out that the partition of referee abilities
into middles {b, c} and extremes {a, d} produces the highest expectation E3.

Proposition 2 For any referee abilities � ≤ a < b < c < d ≤ 1 and any editor
ability � ≤ e ≤ 1 we have

E3 > max{E1, E2}.

That is, to maximize expected number of correctly evaluated articles, the extreme-
ability referees should be assigned to one article and the middle-ability referees to the
other.

Proof Let T = {(a, b, c, d, e) : � ≤ a < b < c < d ≤ 1, � ≤ e ≤ 1}. We first show
that E3 − E2 > 0 on T . Note that

E3 − E2 = q(a, d, e) + q(b, c, e) − (q(a, c, e) + q(b, d, e))

= (q(b, c, e) − q(a, c, e)) − (q(b, d, e) − q(a, d, e)).

Hence it suffices to show that the incremental reliability of improving one of the early
voters (e.g., q(b, x, e) − q(a, x, e)) is a strictly decreasing function of the ability x of
the other early voter. More precisely, we have
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E3 − E2 =
∫ b

x=a

∂q(x, c, e)

∂x
dx −

∫ b

x=a

∂q(x, d, e)

∂x
dx

=
∫ b

x=a

(
∂q(x, c, e)

∂x
− ∂q(x, d, e)

∂x

)

dx

= −
∫ b

x=a

∫ d

y=c

∂2q(x, y, e)

∂x ∂y
dx dy,

which is positive if

∂2q(x, y, z)

∂x ∂y
< 0 (20)

for any (x, y, z) ∈ T . In fact, according to (13) we have

∂2q(x, y, z)

∂x ∂y
= N (x, y, z)

32(xy − 4)3z
, (21)

where

N (x, y, z) = 128 − x3y3z2 + 4x3y + 12x2y2z2 − 48x2 + 4xy3

− 48xyz2 + 32xy − 48y2 + 64z2.

Since the denominator in (21) is negative and the numerator

N (x, y, z) = 128 + z2(−x3y2 + 12x2y2 − 48xy + 64)

+ 4xy(8 + x2 + y2) − 48(x2 + y2)

≥ 128 + (64 − 48 − 1)z2 − 2 × 48 ≥ 128 − 2 × 48 = 72,

we have shown that (20) holds and hence E3 > E2 on T . Similarly,

E3 − E1 = (q(a, d, e) + q(b, c, e)) − (q(a, b, e) + q(c, d, e))

= (q(d, a, e) − q(b, a, e)) − (q(d, c, e) − q(b, c, e))

= −
∫ d

x=b

∫ c

y=a

∂2q(x, y, e)

∂x ∂y
dx dy,

which is positive according to (20). Hence E3 − E1 > 0 on T . ��
We can easily extend the above result to the problem faced by an editor of ability

e who has m articles to evaluate and a pool of n = 2m referees of abilities � ≤ a1 <

· · · < an ≤ 1. (If there are more than 2m potential referees, clearly it is best to ignore
those not in the top 2m abilities.)Any refereeing pairing is determined by a permutation
π of N = {1, 2, . . . , n} of order 2 (i.e., it satisfies the idempotent equation π2 = I ,
where I is the identical permutation), so that the referee of ability ai (or we simply say
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referee i) is paired with the one of ability aπ(i). For a pairing π , the expected number
of correctly evaluated articles is given by

E(π) = 1

2

n∑

i=1

q(ai , aπ(i), e), (22)

where the factor 1/2 is needed because each article appears twice in the sum.

Corollary 1 When an editor of ability e (� ≤ e ≤ 1) has n = 2m referees of abilities
� ≤ a1 < · · · < an ≤ 1 and m articles to be reviewed, the unique referee pairing π

that maximizes the expected number E(π) of correctly evaluated articles is given by
π̂(i) = n−i+1, with the associated referee pairings {1, n}, {2, n−1}, . . . , {m,m+1}.
Proof Since this is a finite problem, it has an optimal referee pairing π . Suppose
π �= π̂ . Then there is a minimum j (1 ≤ j ≤ m) such that π( j) �= π̂( j). Hence
π(i) = π̂(i) = n−i+1 for i = 1, . . . , j−1, which implies that all indices larger than
π̂( j) are paired with those smaller than j , which in turn implies that π( j) < π̂( j).
The same reasoning concludes that π̂( j) = π(k), for some k with j < k < π̂( j).
Thus we have four indices j, π( j), π̂( j) = π(k) and k, with j < π( j) < π̂( j)
and j < k < π̂( j). Of these four indices, the extreme indices (corresponding to the
extreme abilities) are j and π̂( j). Since these two are not paired by π , it follows
from Proposition 2 that the sum of the two terms in (22) (or four terms, counting
duplication) containing the four relevant indices can be improved by re-pairing these
four indices as { j, π̂( j)} and {π( j), k}. Thus the given pairing π cannot maximize
E(·), a contradiction. So the unique optimal pairing must be π̂ . ��

Onemight think that our optimization objective of maximizing (22) is incompatible
with the editor’smoral duty. Perhaps he should adopt a referee pairing π̄ thatmaximizes
the minimum reliability r̄ given to the evaluation of any article. We claim that our
solution π̂ has this maximin property. Suppose that in pairing π̂ the article with
least reliability of evaluation is refereed by referees k and π̂(k). So the minimum
reliability of our pairing π̂ is q(ak, aπ̂ (k), e) = r̂ . Suppose that in π̄ referee k is
paired with referee j = π̄(k). If j ≤ π̂(k) then q(ak, a j , e) ≤ q(ak, aπ̂ (k), e) = r̂
by monotonicity of q, indicating that the minimum reliability r̄ corresponding to
pairing π̄ cannot be higher than r̂ , and we are done. So we can assume j > π̂(k).
It follows that in π̄ one of the referees i = 1, . . . , k − 1, say j , must be paired with
a referee l = π̄( j) with l ≤ π̂(k), since these k − 1 referees cannot all be paired
with the k − 2 referees {π̂(k) + 1 = n − k + 2, . . . , n}\{ j}. Hence we now have
r̄ ≤ q(a j , al , e) ≤ q(ak, aπ̂ (k), e) = r̂ because j < k and l ≤ π̂(k). It follows that
r̄ ≤ r̂ .

For a different perspective on the reliability of the refereeing process relating to
information that should be available to referees, see Ben-Yashar and Nitzan (2001).

6 Larger juries with uniformly distributed abilities

Our main result of Theorem 1 has been established algebraically only for juries of
size three. Such analysis seems out of reach for larger juries with arbitrary sets of
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Fig. 4 Incremental reliability as a function of casting voter ability

abilities due to the complexity C(n) discussed in Sect. 3.2. However, if we take a jury
of size n with uniformly distributed abilities, we can determine numerically which
juror should be given the casting vote to maximize reliability under honest voting. We
divide the ability interval [0, 1] into n subintervals of length 1/n and give one juror i
the ability of the midpoint of the i th interval, so that ai = (2i − 1)/(2n) for the i th
juror in the jury of size n. As an example, when n = 5, the abilities of the five jurors
are 0.1, 0.3, 0.5, 0.7 and 0.9. For each jury of size n, let Q̄n denote the reliability of
simultaneous voting and Qn[i] denote the reliability under the casting-vote scheme
with the casting vote given to the i th juror, the one of ability ai . We then define the
non-negative quantities

δ(n, ai ) = Qn[i] − Q̄n

as the incremental reliability of casting voting. It turns out that calculating δ(n, ai ) is
easier than calculating Qn[i] directly. For fixed n, the reliability of giving the casting
vote to juror i is maximized when δ(n, ai ) is maximized over ai . Figure 4 plots for
n = 3, 5, 7 the incremental reliability δ(n, ai ) when the casting vote on the jury of
size n is given to the juror of ability ai , i = 1, . . . , n. For each n, the plotted points
are connected by straight lines to make the plot easier to read.

The curve for n = 3 has three plot points at abilities 1/6, 1/2 and 5/6. As known
from Theorem 1, the highest value will be for the median ability 1/2, as shown clearly
in the curve for n = 3. For the jury of size n = 5, the abilities of the jurors are
0.1, 0.3, 0.5, 0.7, 0.9, and the incremental reliability (and hence the absolute reliabil-
ity) is maximized when the second lowest ability juror (ability 0.3) has the casting
vote. For n = 7, reliability is maximized when the juror of lowest ability is given
the casting vote. The pattern for n = 7 is continued for larger juries, as shown in
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Fig. 5 Plots of δ(n, ·), n = 9, 11, 13, 15

Fig. 5 for juries of size n = 9, 11, 13, 15, where incremental (or absolute) reliability
is decreasing in the ability of the casting voter. To distinguish between the curves for
different values of n, note that at their left points, the curves are n = 9, 11, 15, 13,
counting from the top. Also observe that these figures are not useful for comparing
reliability of different size juries, as they have different base points Q̄n . The idea that
larger juries have higher reliability goes back to Condorcet, but that is not our point
of discussion here.

The mathematical analysis required to calculate the incremental reliabilities is pre-
sented in Sect. A.3 of the Appendix.

7 Conclusions

In this paper, we have formally introduced sequential voting schemes as directed
acyclic graphs, where the voters are represented by nodes and a voter’s knowledge of
another voter’s (prior) vote is indicated by an arc from the latter to the former. Since
we are interested in majority verdict of a jury of an odd size, the simplest nontrivial
case is that of a jury of three. For such juries there are essentially three sequential
voting schemes: secret ballot (equivalent to simultaneous voting), roll-call voting and
what we call the casting-vote scheme, where the first two jurors announce their votes
simultaneously and then the third (casting voter) determines the majority verdict in the
case of a tie.We define a notion of complexity of a scheme, inwhich roll-call voting has
complexity five and the casting-vote scheme has complexity four. This relates to the
difficulty of algebraically determining the optimal (most reliable) voting order, for a
fixed jury of heterogeneous abilities. For this reason, we have succeeded here in giving
a complete algebraic solution to the voting order problem for the casting-vote scheme.
We have shown algebraically that for any fixed abilities of a three-member honest jury,

123



Who should cast the casting vote?… 279

giving the casting vote to the juror of median ability maximizes the reliability of the
majority verdict (i.e., the probability that the verdict is correct). For larger juries of
uniformly distributed abilities, simulations have suggested that it is best to give the
casting vote to the least able juror and it is worst to give the casting vote to the most
able juror, results that are in stark contrast to the conventional wisdom (and practice)
of giving the casting vote to the most able juror.

We believe our methods can be extended to solve the voting order problem for
other sequential voting schemes, particularly roll-call voting. An important role in our
technique is to model private signals and individual abilities not by binary variable
but by real valued parameters in an interval.

In summary, as the main contribution of this paper, we have established that, for a
three-member jury, it is best to give themedian-ability juror the casting vote. However,
this result does not hold for larger juries or for asymmetric binary alternatives. This
paper considers onlymajority verdicts, aswith the originalCondorcetmodel.However,
it raises an important question as to the comparative reliability of other decision rules
such an requiring unanimous assent for a particular alternative or giving the last voter
the deciding vote even when both early voters are in agreement. The question of
optimal voting order for these other rules is also of interest.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix

A.1: Proof of d2(a, b, c) ≥ 0 in Theorem 1

For minimization of d2(a, b, c) subject to (a, b, c) ∈ S and P2(a, b, c) ≤ 0, the
Kuhn-Tucker conditions for potential minimizers are as follows:

2abc − 8a + b2c − 2bc2 + λ1(bc − 4) − 4b + 8c − λ2 + λ3 = 0,

a2c + 2abc − 2ac2 + λ1(ac − 2) − 4a − 8b + 8c − λ3 + λ4 = 0,

a2b + ab2 − 4abc + λ1(ab + 2) + 8a + 8b − 8c − λ4 + λ5 = 0,

λ1(abc − 4a − 2b + 2c) = 0,

aλ2 = 0, λ3(b − a) = 0, λ4(c − b) = 0, (1 − c)λ5 = 0.

λ1, . . . , λ5 ≥ 0; (a, b, c) ∈ S and P2(a, b, c) ≤ 0.

All solutions (a, b, c, λ1, . . . , λ5) of the above system projected to the (a, b, c) space
form the following set Smin:

Smin = {(0, b, b) : 0 ≤ b ≤ 1} ∪ {(aλ, aλ, aλ) : 0 < λ ≤ 3}
∪{(a, a, a/(a2 + 2)) : 0 < a ≤ 3 − √

7}
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where aλ is the middle root of equation a(4 − a2) = λ. Since d2(a, b, c) = 0 for any
(a, b, c) ∈ Smin, all elements of Smin are minimizers of d2(a, b, c).

A.2: Proof of d3(a, b, c) ≥ 0 in Theorem 1

For minimization of d3(a, b, c) subject to (a, b, c) ∈ S and c − 2b ≥ 0, the Kuhn-
Tucker conditions for potential minimizers are as follows:

− 2ab2c2 + 8abc − 8a + 4b2c + 8b − 16c − λ2 + λ3 = 0,

− 2a2bc2 + 4a2c + 8abc + 8a − 8b − 16c + 2λ1 − λ3 = 0,

− 2a2b2c + 4a2b + 4ab2 − 16a − 16b + 32c − λ1 + λ4 = 0,

λ1(c − 2b) = 0, aλ2 = 0, λ3(b − a) = 0, (1 − c)λ4 = 0.

λ1, . . . , λ4 ≥ 0; (a, b, c) ∈ S and c − 2b ≥ 0.

The above system has a unique solution of (0, 0, 0, 0, 0, 0, 0) and d3(0, 0, 0) = 0.
Hence we have d3(a, b, c) ≥ 0.

A.3: Analysis of large juries for Sect. 6

Here, we give the analysis of the casting-vote scheme for an arbitrary odd num-
ber of jurors which is used to derive Figs. 4 and 5 in Sect. 6. Suppose we have
n = 2m + 1 jurors with abilities, in nondecreasing order, given as the n-vector
a = (a1, a2, . . . , an). Let N = {1, . . . , n} and Ni = N\{i}. If juror i has the
casting vote, then the jurors Ni who vote first are ordered as the (n − 1)-vector
ai = (a1, . . . , ai−1, ai+1, . . . , an). Let S i denote the set of all m-subsets of Ni . A
set S ∈ S i can be interpreted as the set of jurors who vote for alternative A in the
first round when there is a tie vote and juror i has the casting vote. The conditional
probability of A in this case is denoted θS . If θS = 1/2 then Q[i] = Q̄, where Q̄ is
the reliability of simultaneous voting (with abilities a) and Q[i] is the reliability of
casting voting where juror i has the casting vote. Of course, we have Q[i] ≥ Q̄ for
all i ∈ N . If θS > 1/2 then for negative signals close to 0, the casting voter i will still
vote for A. The condition θS > 1/2 says roughly that those m jurors who voted for
A have collectively stronger abilities than those m jurors who voted for B. For any
j ∈ S, let r j = 1 − F(a j , 0) be the individual reliability of juror j , the probability
that he gets a positive signal and hence votes A when A is the state of Nature (or the
probability that juror j gets a negative signal given B). The probability that he gets a
negative signal given A (or a positive signal given B) is F(a j , 0) = 1− r j . Therefore,
we have

θS =

∏

j∈S
r j

∏

k∈Ni\S
(1 − rk)

∏

j∈S
r j

∏

k∈Ni\S
(1 − rk) + ∏

j∈S
(1 − r j )

∏

k∈Ni\S
rk

. (23)
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Consequently, the honest threshold for casting voter i , given S, is

τi (S) = 1 − 2θS
ai

∣
∣
∣
∣[−1,1]

, (24)

where z|[−1,1] denotes the projection of z onto [−1, 1]. We can also calculate the
probability that those voting A in the first round constitute a particular set S ∈ S i ,
given Nature is A:

Pr(S/A) = ∏

j∈S
r j

∏

k∈Ni\S
(1 − rk), for S ∈ S i . (25)

To evaluate Q[i] − Q̄, we see that the verdict with casting voter i will be different
from that of simultaneous voting only if both of the following two conditions hold:
(i) a tie vote (i.e., those voting A, { j : s j > 0}, form a set S ∈ S i ), and (ii) small
signal for casting voter (i.e.,juror i gets a signal si between his threshold τi (S) and
0). Taking equiprobable alternatives θ0 = 1/2 with juror i as the casting voter, let
S = { j ∈ Ni : s j > 0}, those who vote A in the first round. Then the verdict is A if
either |S| > m or |S| = m and si ≥ τi (S). Therefore, we have the following formula
for the reliability of voting with casting voter i :

Q[i] =
∑

S⊂Ni , |S|≥m+1

Pr(S/A) +
∑

S⊂Ni , |S|=m

Pr(S/A)(1 − F(ai , τi (S))).

Similarly, for simultaneous voting we can separate out the voting of juror i to obtain
the asymmetric formula for the reliability Q̄:

Q̄ =
∑

S⊂Ni , |S|≥m+1

Pr(S/A) +
∑

S⊂Ni , |S|=m

Pr(S/A)(1 − F(ai , 0)).

The difference between the above two formulae is that the latter involves only indi-
vidual reliabilities, whereas the former takes into account linear density functions on
the full signal distribution of the casting voter. In particular we have (noting that the
conditions S ⊂ Ni and |S| = m are the same as S ∈ S i ):

Q[i] − Q̄ =
∑

S∈S i

Pr(S/A)((1 − F(ai , τi )) − (1 − F(ai , 0)))

=
∑

S∈S i

Pr(S/A)(F(ai , 0) − F(ai , τi (S))). (26)

In the case of n = 3 with i = 3 having the casting vote and a1 = a, a2 = b, a3 = c,
there are two sets in S3, namely {1} (which is voting pattern AB) and {2} (which is
BA). There is one set S ⊆ {1, 2} with |S| = m + 1 = 2, namely {1, 2}. So evaluating
the general formula for Q[i] = Q[3] with the terms S in order {1, 2}, {1}, {2} gives
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(with τ3({1}) = zAB)

Q(a, b, c) = (1 − F(a, 0))(1 − F(b, 0))

+ [(1 − F(a, 0))(F(b, 0))](1 − F(c, zAB))

+ ((F(a, 0))(1 − F(b, 0)))(1 − F(c, zBA))

Note that the advantage of formula (26) is that we have fewer terms to evaluate to
see which is the best juror i to have the casting vote.
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